1932

Abstract

The past two decades of analytical efforts have highlighted how much more remains to be learned about the human genome and, particularly, its complex involvement in promoting disease development and progression. While numerous computational tools exist for the assessment of the functional and pathogenic effects of genome variants, their precision is far from satisfactory, particularly for clinical use. Accumulating evidence also suggests that the human microbiome's interaction with the human genome plays a critical role in determining health and disease states. While numerous microbial taxonomic groups and molecular functions of the human microbiome have been associated with disease, the reproducibility of these findings is lacking. The human microbiome–genome interaction in healthy individuals is even less well understood. This review summarizes the available computational methods built to analyze the effect of variation in the human genome and microbiome. We address the applicability and precision of these methods across their possible uses. We also briefly discuss the exciting, necessary, and now possible integration of the two types of data to improve the understanding of pathogenicity mechanisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-030320-041014
2020-07-20
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/3/1/annurev-biodatasci-030320-041014.html?itemId=/content/journals/10.1146/annurev-biodatasci-030320-041014&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kruger J, Dunning D. 1999. Unskilled and unaware of it: How difficulties in recognizing one's own incompetence lead to inflated self-assessments. J. Personal. Soc. Psychol. 77:1121–34
    [Google Scholar]
  2. 2. 
    NHGRI (Natl. Human Genome Res. Inst.) 2019. Human Genome Project FAQ Fact Sheet, NHGRI Bethesda, MD: https://www.genome.gov/human-genome-project/Completion-FAQ
  3. 3. 
    Levy S, Sutton G, Ng PC, Feuk L, Halpern AL et al. 2007. The diploid genome sequence of an individual human. PLOS Biol 5:e254
    [Google Scholar]
  4. 4. 
    Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L et al. 2008. The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–76
    [Google Scholar]
  5. 5. 
    NHGRI (Natl. Human Genome Res. Inst.) 2019. The cost of sequencing a human genome Fact Sheet, NHGRI Bethesda, MD: https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
  6. 6. 
    Schwarze K, Buchanan J, Taylor JC, Wordsworth S 2018. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet. Med. 20:1122–30
    [Google Scholar]
  7. 7. 
    ENCODE Proj. Consort 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74
    [Google Scholar]
  8. 8. 
    Gibbs RA, Belmont JW, Hardenbol P, Willis TD, Yu F et al. 2003. The International HapMap Project. Nature 426:789–96
    [Google Scholar]
  9. 9. 
    1000 Genomes Proj. Consort 2015. A global reference for human genetic variation. Nature 526:68–74
    [Google Scholar]
  10. 10. 
    Karczewski KJ, Weisburd B, Thomas B, Solomonson M, Ruderfer DM et al. 2017. The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Res 45:D840–45
    [Google Scholar]
  11. 11. 
    Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J et al. 2019. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv 531210. https://doi.org/10.1101/531210
    [Crossref]
  12. 12. 
    Burley SK, Almo SC, Bonanno JB, Capel M, Chance MR et al. 1999. Structural genomics: beyond the human genome project. Nat. Genet. 23:151–57
    [Google Scholar]
  13. 13. 
    Stevens RC, Yokoyama S, Wilson IA 2001. Global efforts in structural genomics. Science 294:89–92
    [Google Scholar]
  14. 14. 
    GTEx Consort 2013. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45:580–85
    [Google Scholar]
  15. 15. 
    Clough E, Barrett T. 2016. The Gene Expression Omnibus database. Methods Mol. Biol. 1418:93–110
    [Google Scholar]
  16. 16. 
    Sunkin SM, Ng L, Lau C, Dolbeare T, Gilbert TL et al. 2013. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res 41:D996–1008
    [Google Scholar]
  17. 17. 
    Marchal C, Sima J, Gilbert DM 2019. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell Biol. 20:721–37
    [Google Scholar]
  18. 18. 
    Zheng H, Xie W. 2019. The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 20:535–50
    [Google Scholar]
  19. 19. 
    van Steensel B, Furlong EEM 2019. The role of transcription in shaping the spatial organization of the genome. Nat. Rev. Mol. Cell Biol. 20:327–37
    [Google Scholar]
  20. 20. 
    Trieu T, Oluwadare O, Cheng J 2019. Hierarchical reconstruction of high-resolution 3D models of large chromosomes. Sci. Rep. 9:4971
    [Google Scholar]
  21. 21. 
    Satterlee JS, Chadwick LH, Tyson FL, McAllister K, Beaver J et al. 2019. The NIH Common Fund/Roadmap Epigenomics Program: successes of a comprehensive consortium. Sci. Adv. 5:eaaw6507
    [Google Scholar]
  22. 22. 
    Mott MC, Gordon JA, Koroshetz WJ 2018. The NIH BRAIN Initiative: advancing neurotechnologies, integrating disciplines. PLOS Biol 16:e3000066
    [Google Scholar]
  23. 23. 
    Barlas S. 2016. The White House launches a cancer moonshot: Despite funding questions, the progress appears promising. P&T 41:290–95
    [Google Scholar]
  24. 24. 
    Audrezet MP, Munck A, Scotet V, Claustres M, Roussey M et al. 2015. Comprehensive CFTR gene analysis of the French cystic fibrosis screened newborn cohort: implications for diagnosis, genetic counseling, and mutation-specific therapy. Genet. Med. 17:108–16
    [Google Scholar]
  25. 25. 
    Biesecker BB, Lewis KL, Umstead KL, Johnston JJ, Turbitt E et al. 2018. Web platform versus in-person genetic counselor for return of carrier results from exome sequencing: a randomized clinical trial. JAMA Intern. Med. 178:338–46
    [Google Scholar]
  26. 26. 
    Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A et al. 2012. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci. Transl. Med. 4:154ra35
    [Google Scholar]
  27. 27. 
    Aref-Eshghi E, Bend EG, Colaiacovo S, Caudle M, Chakrabarti R et al. 2019. Diagnostic utility of genome-wide DNA methylation testing in genetically unsolved individuals with suspected hereditary conditions. Am. J. Hum. Genet. 104:685–700
    [Google Scholar]
  28. 28. 
    Osman AA, Neskey DM, Katsonis P, Patel AA, Ward AM et al. 2015. Evolutionary action score of TP53 coding variants is predictive of platinum response in head and neck cancer patients. Cancer Res 75:1205–15
    [Google Scholar]
  29. 29. 
    Reisberg S, Krebs K, Lepamets M, Kals M, Magi R et al. 2019. Translating genotype data of 44,000 biobank participants into clinical pharmacogenetic recommendations: challenges and solutions. Genet. Med. 21:1345–54
    [Google Scholar]
  30. 30. 
    Syn NL, Wong AL-A, Lee S-C, Teoh H-L, Yip JWL et al. 2018. Genotype-guided versus traditional clinical dosing of warfarin in patients of Asian ancestry: a randomized controlled trial. BMC Med 16:104
    [Google Scholar]
  31. 31. 
    Sender R, Fuchs S, Milo R 2016. Revised estimates for the number of human and bacteria cells in the body. PLOS Biol 14:e1002533
    [Google Scholar]
  32. 32. 
    Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E et al. 2014. IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 42:D560–67
    [Google Scholar]
  33. 33. 
    Grice EA, Segre JA. 2012. The human microbiome: our second genome. Annu. Rev. Genom. Hum. Genet. 13:151–70
    [Google Scholar]
  34. 34. 
    van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG et al. 2013. Duodenal infusion of donor feces for recurrent Clostridium difficile. New Engl. J. Med 368:407–15
    [Google Scholar]
  35. 35. 
    Kelly CR, Khoruts A, Staley C, Sadowsky MJ, Abd M et al. 2016. Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection: a randomized trial. Ann. Intern. Med. 165:609–16
    [Google Scholar]
  36. 36. 
    Choi HH, Cho Y-S. 2016. Fecal microbiota transplantation: current applications, effectiveness, and future perspectives. Clin. Endosc. 49:257–65
    [Google Scholar]
  37. 37. 
    Fox GE, Wisotzkey JD, Jurtshuk P Jr 1992. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42:166–70
    [Google Scholar]
  38. 38. 
    Zhu C, Delmont TO, Vogel TM, Bromberg Y 2015. Functional basis of microorganism classification. PLOS Comput. Biol. 11:e1004472
    [Google Scholar]
  39. 39. 
    Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ 2011. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480:241–44
    [Google Scholar]
  40. 40. 
    Zhu C, Mahlich Y, Miller M, Bromberg Y 2018. fusionDB: assessing microbial diversity and environmental preferences via functional similarity networks. Nucleic Acids Res 46:D535–41
    [Google Scholar]
  41. 41. 
    Zhu C, Miller M, Marpaka S, Vaysberg P, Rühlemann MC et al. 2018. Functional sequencing read annotation for high precision microbiome analysis. Nucleic Acids Res 46:4e23
    [Google Scholar]
  42. 42. 
    Jeong H, Arif B, Caetano-Anollés G, Kim KM, Nasir A 2019. Horizontal gene transfer in human-associated microorganisms inferred by phylogenetic reconstruction and reconciliation. Sci. Rep. 9:5953
    [Google Scholar]
  43. 43. 
    Zeevi D, Korem T, Godneva A, Bar N, Kurilshikov A et al. 2019. Structural variation in the gut microbiome associates with host health. Nature 568:43–48
    [Google Scholar]
  44. 44. 
    Peng Y, Leung HC, Yiu SM, Chin FY 2012. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28:1420–28
    [Google Scholar]
  45. 45. 
    Luo R, Liu B, Xie Y, Li Z, Huang W et al. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18
    [Google Scholar]
  46. 46. 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–76
    [Google Scholar]
  47. 47. 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–34
    [Google Scholar]
  48. 48. 
    Meyer F, Paarmann D, D'Souza M, Olson R, Glass E et al. 2008. The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386
    [Google Scholar]
  49. 49. 
    Nayfach S, Bradley PH, Wyman SK, Laurent TJ, Williams A et al. 2015. Automated and accurate estimation of gene family abundance from shotgun metagenomes. PLOS Comput. Biol. 11:e1004573
    [Google Scholar]
  50. 50. 
    Sharifi F, Ye Y. 2017. From gene annotation to function prediction for metagenomics. Methods Mol. Biol. 1611:27–34
    [Google Scholar]
  51. 51. 
    Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M et al. 2018. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15:962–68
    [Google Scholar]
  52. 52. 
    Lavertu A, McInnes G, Daneshjou R, Whirl-Carrillo M, Klein TE, Altman RB 2018. Pharmacogenomics and big genomic data: from lab to clinic and back again. Hum. Mol. Genet. 27:R72–78
    [Google Scholar]
  53. 53. 
    Rizkallah MR, Saad R, Aziz RK 2010. The Human Microbiome Project, personalized medicine and the birth of pharmacomicrobiomics. Curr. Pharmacogenom. Personal. Med. 8:182–93
    [Google Scholar]
  54. 54. 
    Clark MM, Hildreth A, Batalov S, Ding Y, Chowdhury S et al. 2019. Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation. Sci. Transl. Med. 11:eaat6177
    [Google Scholar]
  55. 55. 
    Zhang C, Yin A, Li H, Wang R, Wu G et al. 2015. Dietary modulation of gut microbiota contributes to alleviation of both genetic and simple obesity in children. eBioMedicine 2:968–84
    [Google Scholar]
  56. 56. 
    Zhao Z, Jin L, Fu YX, Ramsay M, Jenkins T et al. 2000. Worldwide DNA sequence variation in a 10-kilobase noncoding region on human chromosome 22. PNAS 97:11354–58
    [Google Scholar]
  57. 57. 
    Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA 2005. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33:D514–17
    [Google Scholar]
  58. 58. 
    Reich DE, Lander ES. 2001. On the allelic spectrum of human disease. Trends Genet 17:502–10
    [Google Scholar]
  59. 59. 
    LaFramboise T. 2009. Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res 37:4181–93
    [Google Scholar]
  60. 60. 
    Int. HapMap Consort 2005. A haplotype map of the human genome. Nature 437:1299–320
    [Google Scholar]
  61. 61. 
    Richards S, Aziz N, Bale S, Bick D, Das S et al. 2015. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17:405–24
    [Google Scholar]
  62. 62. 
    Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM et al. 2019. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res 47:D941–47
    [Google Scholar]
  63. 63. 
    Smedley D, Schubach M, Jacobsen JOB, Köhler S, Zemojtel T et al. 2016. A whole-genome analysis framework for effective identification of pathogenic regulatory variants in Mendelian disease. Am. J. Hum. Genet. 99:595–606
    [Google Scholar]
  64. 64. 
    Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A et al. 2013. TERT promoter mutations in familial and sporadic melanoma. Science 339:959–61
    [Google Scholar]
  65. 65. 
    Zhou J, Troyanskaya OG. 2015. Predicting effects of noncoding variants with deep learning–based sequence model. Nat. Methods 12:931–34
    [Google Scholar]
  66. 66. 
    Zhao J, Li D, Seo J, Allen AS, Gordân R 2017. Quantifying the impact of non-coding variants on transcription factor-DNA binding. Proceedings of the 21st Annual International Conference on Research in Computational Molecular Biology (RECOMB 2017) SC Sahinalp 336–52 Cham, Switz.: Springer
    [Google Scholar]
  67. 67. 
    Hoffman GE, Bendl J, Girdhar K, Schadt EE, Roussos P 2019. Functional interpretation of genetic variants using deep learning predicts impact on chromatin accessibility and histone modification. Nucleic Acids Res 47:2010597–611
    [Google Scholar]
  68. 68. 
    Edwards NC, Hing ZA, Perry A, Blaisdell A, Kopelman DB et al. 2012. Characterization of coding synonymous and non-synonymous variants in ADAMTS13 using ex vivo and in silico approaches. PLOS ONE 7:e38864
    [Google Scholar]
  69. 69. 
    Hunt RC, Simhadri VL, Iandoli M, Sauna ZE, Kimchi-Sarfaty C 2014. Exposing synonymous mutations. Trends Genet 30:308–21
    [Google Scholar]
  70. 70. 
    Robert F, Pelletier J. 2018. Exploring the impact of single-nucleotide polymorphisms on translation. Front. Genet. 9:507
    [Google Scholar]
  71. 71. 
    Pechmann S, Frydman J. 2013. Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nat. Struct. Mol. Biol. 20:237–43
    [Google Scholar]
  72. 72. 
    Cartegni L, Krainer AR. 2002. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat. . Genet 30:377–84
    [Google Scholar]
  73. 73. 
    Nishibori Y, Liu L, Hosoyamada M, Endou H, Kudo A et al. 2004. Disease-causing missense mutations in NPHS2 gene alter normal nephrin trafficking to the plasma membrane. Kidney Int 66:1755–65
    [Google Scholar]
  74. 74. 
    Pires DE, Blundell TL, Ascher DB 2015. Platinum: a database of experimentally measured effects of mutations on structurally defined protein-ligand complexes. Nucleic Acids Res 43:D387–91
    [Google Scholar]
  75. 75. 
    Wang Z, Burge CB. 2008. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14:802–13
    [Google Scholar]
  76. 76. 
    Seidman J, Seidman C. 2002. Transcription factor haploinsufficiency: when half a loaf is not enough. J. Clin. Investig. 109:451–55
    [Google Scholar]
  77. 77. 
    Brachmann RK. 2004. p53 mutants: the Achilles' heel of human cancers. ? Cell Cycle 3:1030–34
    [Google Scholar]
  78. 78. 
    Gong W, Chavez S, Beato M 1997. Point mutation in the ligand-binding domain of the progesterone receptor generates a transdominant negative phenotype. Mol. Endocrinol. 11:1476–85
    [Google Scholar]
  79. 79. 
    Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G et al. 2006. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform 7:S7
    [Google Scholar]
  80. 80. 
    Wang Y, Miller M, Astrakhan Y, Petersen B-S, Schreiber S et al. 2019. Identifying Crohn's disease signal from variome analysis. Genome Med 11:59
    [Google Scholar]
  81. 81. 
    Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J 2014. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46:310–15
    [Google Scholar]
  82. 82. 
    Quang D, Chen Y, Xie X 2015. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 31:761–63
    [Google Scholar]
  83. 83. 
    Shihab HA, Rogers MF, Gough J, Mort M, Cooper DN et al. 2015. An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics 31:1536–43
    [Google Scholar]
  84. 84. 
    Schwarz JM, Cooper DN, Schuelke M, Seelow D 2014. MutationTaster2: mutation prediction for the deep-sequencing age. Nat. Methods 11:361–62
    [Google Scholar]
  85. 85. 
    Ritchie GRS, Dunham I, Zeggini E, Flicek P 2014. Functional annotation of noncoding sequence variants. Nat. Methods 11:294–96
    [Google Scholar]
  86. 86. 
    Huang Y-F, Gulko B, Siepel A 2017. Fast, scalable prediction of deleterious noncoding variants from functional and population genomic data. Nat. Genet. 49:618–24
    [Google Scholar]
  87. 87. 
    Gao L, Uzun Y, Gao P, He B, Ma X et al. 2018. Identifying noncoding risk variants using disease-relevant gene regulatory networks. Nat. Commun. 9:702
    [Google Scholar]
  88. 88. 
    Hu J, Ng PC. 2012. Predicting the effects of frameshifting indels. Genome Biol 13:R9
    [Google Scholar]
  89. 89. 
    Buske OJ, Manickaraj A, Mital S, Ray PN, Brudno M 2013. Identification of deleterious synonymous variants in human genomes. Bioinformatics 29:1843–50
    [Google Scholar]
  90. 90. 
    Zhang X, Li M, Lin H, Rao X, Feng W et al. 2017. regSNPs-splicing: a tool for prioritizing synonymous single-nucleotide substitution. Hum. Genet. 136:1279–89
    [Google Scholar]
  91. 91. 
    Livingstone M, Folkman L, Yang Y, Zhang P, Mort M et al. 2017. Investigating DNA-, RNA-, and protein-based features as a means to discriminate pathogenic synonymous variants. Hum. Mutat. 38:1336–47
    [Google Scholar]
  92. 92. 
    Shi F, Yao Y, Bin Y, Zheng C-H, Xia J 2019. Computational identification of deleterious synonymous variants in human genomes using a feature-based approach. BMC Med. Genom. 12:12
    [Google Scholar]
  93. 93. 
    Peters B, Brenner SE, Wang E, Slonim D, Kann MG 2018. Putting benchmarks in their rightful place: the heart of computational biology. PLOS Comput. Biol. 14:e1006494
    [Google Scholar]
  94. 94. 
    Shihab HA, Gough J, Cooper DN, Day INM, Gaunt TR 2013. Predicting the functional consequences of cancer-associated amino acid substitutions. Bioinformatics 29:1504–10
    [Google Scholar]
  95. 95. 
    Carter H, Douville C, Stenson PD, Cooper DN, Karchin R 2013. Identifying Mendelian disease genes with the Variant Effect Scoring Tool. BMC Genom 14:S3
    [Google Scholar]
  96. 96. 
    Rogers MF, Shihab HA, Gaunt TR, Campbell C 2017. CScape: a tool for predicting oncogenic single-point mutations in the cancer genome. Sci. Rep. 7:11597
    [Google Scholar]
  97. 97. 
    Bromberg Y, Rost B. 2007. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res 35:3823–35
    [Google Scholar]
  98. 98. 
    Gilis D, Rooman M. 2000. PoPMuSiC, an algorithm for predicting protein mutant stability changes: application to prion proteins. Protein Eng 13:849–56
    [Google Scholar]
  99. 99. 
    Capriotti E, Fariselli P, Casadio R 2005. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33:W306–10
    [Google Scholar]
  100. 100. 
    Capriotti E, Fariselli P, Rossi I, Casadio R 2008. A three-state prediction of single point mutations on protein stability changes. BMC Bioinform 9:S6
    [Google Scholar]
  101. 101. 
    Adzhubei I, Jordan DM, Sunyaev SR 2013. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 72: 7.20.1–7.20.41
    [Google Scholar]
  102. 102. 
    Olatubosun A, Väliaho J, Härkönen J, Thusberg J, Vihinen M 2012. PON-P: integrated predictor for pathogenicity of missense variants. Hum. Mutat. 33:1166–74
    [Google Scholar]
  103. 103. 
    Niroula A, Urolagin S, Vihinen M 2015. PON-P2: prediction method for fast and reliable identification of harmful variants. PLOS ONE 10:e0117380
    [Google Scholar]
  104. 104. 
    Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK et al. 2016. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 99:877–85
    [Google Scholar]
  105. 105. 
    Fowler DM, Fields S. 2014. Deep mutational scanning: a new style of protein science. Nat. Methods 11:801–7
    [Google Scholar]
  106. 106. 
    Gray VE, Hause RJ, Luebeck J, Shendure J, Fowler DM 2018. Quantitative missense variant effect prediction using large-scale mutagenesis data. Cell Syst 6:116–24.e3
    [Google Scholar]
  107. 107. 
    Pejaver V, Babbi G, Casadio R, Folkman L, Katsonis P et al. 2019. Assessment of methods for predicting the effects of PTEN and TPMT protein variants. Hum. Mutat. 40:1495–506
    [Google Scholar]
  108. 108. 
    Papadimitriou S, Gazzo A, Versbraegen N, Nachtegael C, Aerts J et al. 2019. Predicting disease-causing variant combinations. PNAS 116:11878–87
    [Google Scholar]
  109. 109. 
    Bromberg Y, Kahn PC, Rost B 2013. Neutral and weakly nonneutral sequence variants may define individuality. PNAS 110:14255–60
    [Google Scholar]
  110. 110. 
    Miller M, Bromberg Y, Swint-Kruse L 2017. Computational predictors fail to identify amino acid substitution effects at rheostat positions. Sci. Rep. 7:41329
    [Google Scholar]
  111. 111. 
    Ng PC, Henikoff S. 2001. Predicting deleterious amino acid substitutions. Genome Res 11:863–74
    [Google Scholar]
  112. 112. 
    Choi Y, Sims GE, Murphy S, Miller JR, Chan AP 2012. Predicting the functional effect of amino acid substitutions and indels. PLOS ONE 7:e46688
    [Google Scholar]
  113. 113. 
    Hecht M, Bromberg Y, Rost B 2015. Better prediction of functional effects for sequence variants. BMC Genom 16:S1
    [Google Scholar]
  114. 114. 
    Li B, Krishnan VG, Mort ME, Xin F, Kamati KK et al. 2009. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 25:2744–50
    [Google Scholar]
  115. 115. 
    Pejaver V, Urresti J, Lugo-Martinez J, Pagel KA, Lin GN et al. 2017. MutPred2: inferring the molecular and phenotypic impact of amino acid variants. bioRxiv 134981. https://doi.org/10.1101/134981
    [Crossref]
  116. 116. 
    Miller M, Wang Y, Bromberg Y 2019. What went wrong with variant effect predictor performance for the PCM1 challenge. Hum. Mutat. 40:1486–94
    [Google Scholar]
  117. 117. 
    Miller M, Vitale D, Kahn PC, Rost B, Bromberg Y 2019. funtrp: identifying protein positions for variation driven functional tuning. Nucleic Acids Res 47:21e142
    [Google Scholar]
  118. 118. 
    Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS et al. 2014. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 42:D980–85
    [Google Scholar]
  119. 119. 
    Stenson PD, Mort M, Ball EV, Evans K, Hayden M et al. 2017. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum. Genet. 136:665–77
    [Google Scholar]
  120. 120. 
    Meyer PE, Lafitte F, Bontempi G 2008. minet: a R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinform 9:461
    [Google Scholar]
  121. 121. 
    Yue Z, Li HT, Yang Y, Hussain S, Zheng CH et al. 2016. Identification of breast cancer candidate genes using gene co-expression and protein-protein interaction information. Oncotarget 7:36092–100
    [Google Scholar]
  122. 122. 
    Amar D, Vizel A, Levy C, Shamir R 2018. ADEPTUS: a discovery tool for disease prediction, enrichment and network analysis based on profiles from many diseases. Bioinformatics 34:1959–61
    [Google Scholar]
  123. 123. 
    Cirincione AG, Clark KL, Kann MG 2018. Pathway networks generated from human disease phenome. BMC Med. Genom. 11:75
    [Google Scholar]
  124. 124. 
    Cowen L, Ideker T, Raphael BJ, Sharan R 2017. Network propagation: a universal amplifier of genetic associations. Nat. Rev. Genet. 18:551–62
    [Google Scholar]
  125. 125. 
    Lamparter D, Marbach D, Rueedi R, Kutalik Z, Bergmann S 2016. Fast and rigorous computation of gene and pathway scores from SNP-based summary statistics. PLOS Comput. Biol. 12:e1004714
    [Google Scholar]
  126. 126. 
    Wei Z, Wang W, Bradfield J, Li J, Cardinale C et al. 2013. Large sample size, wide variant spectrum, and advanced machine-learning technique boost risk prediction for inflammatory bowel disease. Am. J. Hum. Genet. 92:1008–12
    [Google Scholar]
  127. 127. 
    Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP et al. 2012. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–24
    [Google Scholar]
  128. 128. 
    Han L, Maciejewski M, Brockel C, Gordon W, Snapper SB et al. 2017. A probabilistic pathway score (PROPS) for classification with applications to inflammatory bowel disease. Bioinformatics 34:985–93
    [Google Scholar]
  129. 129. 
    Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M 2015. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–62
    [Google Scholar]
  130. 130. 
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65
    [Google Scholar]
  131. 131. 
    Human Microbiome Proj. Consort 2012. A framework for human microbiome research. Nature 486:215–21
    [Google Scholar]
  132. 132. 
    Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM et al. 2014. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–42
    [Google Scholar]
  133. 133. 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–96
    [Google Scholar]
  134. 134. 
    McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ et al. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–18
    [Google Scholar]
  135. 135. 
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335–36
    [Google Scholar]
  136. 136. 
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537–41
    [Google Scholar]
  137. 137. 
    Plummer E, Twin J, Bulach DM, Garland SM, Tabrizi SN 2015. A comparison of three bioinformatics pipelines for the analysis of preterm gut microbiota using 16S rRNA gene sequencing data. J. Proteom. Bioinform. 8:283–91
    [Google Scholar]
  138. 138. 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37:852–57
    [Google Scholar]
  139. 139. 
    Almeida A, Mitchell AL, Tarkowska A, Finn RD 2018. Benchmarking taxonomic assignments based on 16S rRNA gene profiling of the microbiota from commonly sampled environments. Gigascience 7:giy054
    [Google Scholar]
  140. 140. 
    Janda JM, Abbott SL. 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45:2761–64
    [Google Scholar]
  141. 141. 
    Delmont TO, Prestat E, Keegan KP, Faubladier M, Robe P et al. 2012. Structure, fluctuation and magnitude of a natural grassland soil metagenome. ISME J 6:1677–87
    [Google Scholar]
  142. 142. 
    Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G et al. 2015. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12:902–3
    [Google Scholar]
  143. 143. 
    Milanese A, Mende DR, Paoli L, Salazar G, Ruscheweyh H-J et al. 2019. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Commun. 10:1014
    [Google Scholar]
  144. 144. 
    Kim D, Song L, Breitwieser FP, Salzberg SL 2016. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res 26:1721–29
    [Google Scholar]
  145. 145. 
    Lu J, Breitwieser FP, Thielen P, Salzberg SL 2017. Bracken: estimating species abundance in metagenomics data. PeerJ Comput. Sci. 3:e104
    [Google Scholar]
  146. 146. 
    Wood DE, Lu J, Langmead B 2019. Improved metagenomic analysis with Kraken 2. Genome Biol 20:257
    [Google Scholar]
  147. 147. 
    Menzel P, Ng KL, Krogh A 2016. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7:11257
    [Google Scholar]
  148. 148. 
    Ounit R, Wanamaker S, Close TJ, Lonardi S 2015. CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. BMC Genom 16:236
    [Google Scholar]
  149. 149. 
    Ye SH, Siddle KJ, Park DJ, Sabeti PC 2019. Benchmarking metagenomics tools for taxonomic classification. Cell 178:779–94
    [Google Scholar]
  150. 150. 
    Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC 2019. New insights from uncultivated genomes of the global human gut microbiome. Nature 568:505–10
    [Google Scholar]
  151. 151. 
    Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB et al. 2019. A new genomic blueprint of the human gut microbiota. Nature 568:499–504
    [Google Scholar]
  152. 152. 
    Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N et al. 2019. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176:649–62.e20
    [Google Scholar]
  153. 153. 
    Lerminiaux NA, Cameron ADS. 2019. Horizontal transfer of antibiotic resistance genes in clinical environments. Can. J. Microbiol. 65:34–44
    [Google Scholar]
  154. 154. 
    Zhu W, Lomsadze A, Borodovsky M 2010. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38:e132
    [Google Scholar]
  155. 155. 
    Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S et al. 2017. Critical Assessment of Metagenome Interpretation—a benchmark of metagenomics software. Nat. Methods 14:1063–71
    [Google Scholar]
  156. 156. 
    Sinha R, Clarke J, Benson AK 2015. Alignment behaviors of short peptides provide a roadmap for functional profiling of metagenomic data. BMC Genom 16:1080
    [Google Scholar]
  157. 157. 
    Schnoes AM, Brown SD, Dodevski I, Babbitt PC 2009. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLOS Comput. Biol. 5:e1000605
    [Google Scholar]
  158. 158. 
    Abubucker S, Segata N, Goll J, Schubert AM, Izard J et al. 2012. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLOS Comput. Biol. 8:e1002358
    [Google Scholar]
  159. 159. 
    Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–14
    [Google Scholar]
  160. 160. 
    Caspi R, Altman T, Billington R, Dreher K, Foerster H et al. 2013. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 42:D459–71
    [Google Scholar]
  161. 161. 
    Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH, UniProt Consort 2015. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31:926–32
    [Google Scholar]
  162. 162. 
    Nazeen S, Yu YW, Berger B 2020. Carnelian uncovers hidden functional patterns across diverse study populations from whole metagenome sequencing reads. Genome Biol 21:147
    [Google Scholar]
  163. 163. 
    Donaldson GP, Lee SM, Mazmanian SK 2016. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14:20–32
    [Google Scholar]
  164. 164. 
    Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ 2019. Role of the microbiome in human development. Gut 68:1108–14
    [Google Scholar]
  165. 165. 
    Castaner O, Goday A, Park Y-M, Lee S-H, Magkos F et al. 2018. The gut microbiome profile in obesity: a systematic review. Int. J. Endocrinol. 2018:4095789
    [Google Scholar]
  166. 166. 
    Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ et al. 2013. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103
    [Google Scholar]
  167. 167. 
    Kostic AD, Xavier RJ, Gevers D 2014. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146:1489–99
    [Google Scholar]
  168. 168. 
    Li Q, Han Y, Dy ABC, Hagerman RJ 2017. The gut microbiota and autism spectrum disorders. Front. Cell. Neurosci. 11:120
    [Google Scholar]
  169. 169. 
    Manichanh C, Rigottier‐Gois L, Bonnaud E, Gloux K, Pelletier E et al. 2006. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55:205–11
    [Google Scholar]
  170. 170. 
    Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. 2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. PNAS 104:13780–85
    [Google Scholar]
  171. 171. 
    Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL et al. 2012. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13:R79
    [Google Scholar]
  172. 172. 
    Ackerman H, Usen S, Jallow M, Sisay-Joof F, Pinder M, Kwiatkowski DP 2005. A comparison of case-control and family-based association methods: the example of sickle-cell and malaria. Ann. Hum. Genet. 69:559–65
    [Google Scholar]
  173. 173. 
    Thye T, Owusu-Dabo E, Vannberg FO, van Crevel R, Curtis J et al. 2012. Common variants at 11p13 are associated with susceptibility to tuberculosis. Nat. Genet. 44:257–59
    [Google Scholar]
  174. 174. 
    Wang Z, Sun Y, Xa Fu, Yu G, Wang C et al. 2016. A large-scale genome-wide association and meta-analysis identified four novel susceptibility loci for leprosy. Nat. Commun. 7:13760
    [Google Scholar]
  175. 175. 
    Whittaker RH. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30:279–338
    [Google Scholar]
  176. 176. 
    Bray JR, Curtis JT. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27:325–49
    [Google Scholar]
  177. 177. 
    Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R et al. 2016. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19:731–43
    [Google Scholar]
  178. 178. 
    Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R et al. 2015. Host genetic variation impacts microbiome composition across human body sites. Genome Biol 16:191
    [Google Scholar]
  179. 179. 
    Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F et al. 2016. The effect of host genetics on the gut microbiome. Nat. Genet. 48:1407–12
    [Google Scholar]
  180. 180. 
    Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T et al. 2018. Environment dominates over host genetics in shaping human gut microbiota. Nature 555:210–15
    [Google Scholar]
  181. 181. 
    Wang J, Thingholm LB, Skieceviciene J, Rausch P, Kummen M et al. 2016. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat. Genet. 48:1396–406
    [Google Scholar]
  182. 182. 
    Imhann F, Vich Vila A, Bonder MJ, Fu J, Gevers D et al. 2018. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 67:108–19
    [Google Scholar]
  183. 183. 
    Integr. HMP (iHMP) Res. Netw. Consort 2014. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16:276–89
    [Google Scholar]
  184. 184. 
    Proctor LM, Creasy HH, Fettweis JM, Lloyd-Price J, Mahurkar A et al. 2019. The Integrative Human Microbiome Project. Nature 569:641–48
    [Google Scholar]
  185. 185. 
    LeCun Y, Bengio Y, Hinton G 2015. Deep learning. Nature 521:436–44
    [Google Scholar]
  186. 186. 
    Hinton GE, Salakhutdinov RR. 2006. Reducing the dimensionality of data with neural networks. Science 313:504–7
    [Google Scholar]
  187. 187. 
    Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ et al. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312:1355–59
    [Google Scholar]
  188. 188. 
    Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA et al. 2009. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. PNAS 106:3698–703
    [Google Scholar]
  189. 189. 
    Fergus C, Barnes D, Alqasem MA, Kelly VP 2015. The queuine micronutrient: charting a course from microbe to man. Nutrients 7:2897–929
    [Google Scholar]
  190. 190. 
    Shaw KA, Cutler DJ, Okou D, Dodd A, Aronow BJ et al. 2019. Genetic variants and pathways implicated in a pediatric inflammatory bowel disease cohort. Genes Immun 20:131–42
    [Google Scholar]
  191. 191. 
    Mallory EK, Acharya A, Rensi SE, Turnbaugh PJ, Bright RA, Altman RB 2018. Chemical reaction vector embeddings: towards predicting drug metabolism in the human gut microbiome. Pac. Symp. Biocomput. 23:56–67
    [Google Scholar]
  192. 192. 
    Wang M, Tai C, Weinan E, Wei L 2018. DeFine: Deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants. Nucleic Acids Res 46:e69
    [Google Scholar]
  193. 193. 
    Tang H, Thomas PD. 2016. PANTHER-PSEP: predicting disease-causing genetic variants using position-specific evolutionary preservation. Bioinformatics 32:2230–32
    [Google Scholar]
  194. 194. 
    Vazquez M, Pons T, Brunak S, Valencia A, Izarzugaza JM 2016. wKinMut-2: identification and interpretation of pathogenic variants in human protein kinases. Hum. Mutat. 37:36–42
    [Google Scholar]
  195. 195. 
    Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED et al. 2014. PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLOS Comput. Biol. 10:e1003440
    [Google Scholar]
  196. 196. 
    Shihab HA, Gough J, Mort M, Cooper DN, Day INM, Gaunt TR 2014. Ranking non-synonymous single nucleotide polymorphisms based on disease concepts. Hum. Genom. 8:11
    [Google Scholar]
  197. 197. 
    Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GLA et al. 2013. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum. Mutat. 34:57–65
    [Google Scholar]
  198. 198. 
    Capriotti E, Altman RB, Bromberg Y 2013. Collective judgment predicts disease-associated single nucleotide variants. BMC Genom 14:Suppl. 3S2
    [Google Scholar]
  199. 199. 
    Izarzugaza JMG, del Pozo A, Vazquez M, Valencia A 2012. Prioritization of pathogenic mutations in the protein kinase superfamily. BMC Genom 13:Suppl. 4S3
    [Google Scholar]
  200. 200. 
    Reva B, Antipin Y, Sander C 2011. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 39:e118
    [Google Scholar]
  201. 201. 
    Dehouck Y, Grosfils A, Folch B, Gilis D, Bogaerts P, Rooman M 2009. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Bioinformatics 25:2537–43
    [Google Scholar]
  202. 202. 
    Capriotti E, Calabrese R, Casadio R 2006. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 22:2729–34
    [Google Scholar]
  203. 203. 
    Mathe E, Olivier M, Kato S, Ishioka C, Hainaut P, Tavtigian SV 2006. Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res 34:1317–25
    [Google Scholar]
  204. 204. 
    Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L 2005. The FoldX web server: an online force field. Nucleic Acids Res 33:W382–88
    [Google Scholar]
  205. 205. 
    Stone EA, Sidow A. 2005. Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. Genome Res 15:978–86
    [Google Scholar]
  206. 206. 
    Bao L, Zhou M, Cui Y 2005. nsSNPAnalyzer: identifying disease-associated nonsynonymous single nucleotide polymorphisms. Nucleic Acids Res 33:W480–82
    [Google Scholar]
  207. 207. 
    Ramensky V, Bork P, Sunyaev S 2002. Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894–900
    [Google Scholar]
  208. 208. 
    Schwarz JM, Rodelsperger C, Schuelke M, Seelow D 2010. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 7:575–76
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-030320-041014
Loading
/content/journals/10.1146/annurev-biodatasci-030320-041014
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error