1932

Abstract

Understanding the influence of genetics on human disease is among the primary goals for biology and medicine. To this end, the direct study of natural human genetic variation has provided valuable insights into human physiology and disease as well as into the origins and migrations of humans. In this review, we discuss the foundations of population genetics, which provide a crucial context to the study of human genes and traits. In particular, genome-wide association studies and similar methods have revealed thousands of genetic loci associated with diseases and traits, providing invaluable information into the biology of these traits. Simultaneously, as the study of rare genetic variation has expanded, so-called human knockouts have elucidated the function of human genes and the therapeutic potential of targeting them.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-072018-021148
2020-07-20
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/3/1/annurev-biodatasci-072018-021148.html?itemId=/content/journals/10.1146/annurev-biodatasci-072018-021148&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:6822860–921
    [Google Scholar]
  2. 2. 
    Int. HapMap Consort 2005. A haplotype map of the human genome. Nature 437:70631299–320
    [Google Scholar]
  3. 3. 
    Int. HapMap 3 Consort 2010. Integrating common and rare genetic variation in diverse human populations. Nature 467:731152–58
    [Google Scholar]
  4. 4. 
    Mardis ER. 2008. Next-generation DNA sequencing methods. Annu. Rev. Genom. Hum. Genet. 9:387–402
    [Google Scholar]
  5. 5. 
    Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q et al. 2019. Insights into human genetic variation and population history from 929 diverse genomes. bioRxiv 674986. https://doi.org/10.1101/674986
    [Crossref]
  6. 6. 
    Fairley S, Lowy-Gallego E, Perry E, Flicek P 2019. The International Genome Sample Resource (IGSR) collection of open human genomic variation resources. Nucleic Acids Res 48:D941–47
    [Google Scholar]
  7. 7. 
    Tennessen JA, Bigham AW, O'Connor TD, Fu W, Kenny EE et al. 2012. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337:609064–69
    [Google Scholar]
  8. 8. 
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E et al. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:7616285–91
    [Google Scholar]
  9. 9. 
    Karczewski KJ, Francioli LC, Tiao G, Cummings BB 2019. The mutational constraint spectrum quantified from variation in 141,456 humans. bioRxiv 531210. https://doi.org/10.1101/531210
    [Crossref]
  10. 10. 
    Jónsson H, Sulem P, Kehr B, Kristmundsdottir S, Hardarson MT et al. 2017. Parental influence on human germline de novo mutations in 1,548 trios from Iceland. Nature 549:7673519–22
    [Google Scholar]
  11. 11. 
    Collins RL, Brand H, Karczewski KJ, Zhao X, Alfoldi J et al. 2019. An open resource of structural variation for medical and population genetics. bioRxiv 578674. https://doi.org/10.1101/578674
    [Crossref]
  12. 12. 
    Hartl DL, Clark AG. 2006. Principles of Population Genetics Sunderland, MA: Sinauer Assoc. , 4th ed..
    [Google Scholar]
  13. 13. 
    Short PJ, Gallone G, Geschwind DH, Barrett JC, Hurles ME 2018. De novo mutations in regulatory elements in neurodevelopmental disorders. Nature 555:611–16
    [Google Scholar]
  14. 14. 
    Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C et al. 2010. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327:5967836–40
    [Google Scholar]
  15. 15. 
    Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW, Cavalli-Sforza LL 2005. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. PNAS 102:4415942–47
    [Google Scholar]
  16. 16. 
    Henn BM, Cavalli-Sforza LL, Feldman MW 2012. The great human expansion. PNAS 109:4417758–64
    [Google Scholar]
  17. 17. 
    Martin AR, Karczewski KJ, Kerminen S, Kurki MI, Sarin A-P et al. 2018. Haplotype sharing provides insights into fine-scale population history and disease in Finland. Am. J. Hum. Genet. 102:5760–75
    [Google Scholar]
  18. 18. 
    Lim ET, Würtz P, Havulinna AS, Palta P, Tukiainen T et al. 2014. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLOS Genet 10:7e1004494
    [Google Scholar]
  19. 19. 
    Quintana-Murci L. 2016. Understanding rare and common diseases in the context of human evolution. Genome Biol 17:1225
    [Google Scholar]
  20. 20. 
    Crow JF, Kimura M. 1970. An Introduction to Population Genetics Theory Minneapolis, MN: Burgess. , 1st ed..
    [Google Scholar]
  21. 21. 
    Ohta T, Gillespie JH. 1996. Development of neutral and nearly neutral theories. Theor. Popul. Biol. 49:2128–42
    [Google Scholar]
  22. 22. 
    Kimura M, Maruyama T, Crow JF 1963. The mutation load in small populations. Genetics 48:1303–12
    [Google Scholar]
  23. 23. 
    Henn BM, Botigué LR, Bustamante CD, Clark AG, Gravel S 2015. Estimating the mutation load in human genomes. Nat. Rev. Genet. 16:6333–43
    [Google Scholar]
  24. 24. 
    Menozzi P, Piazza A, Cavalli-Sforza L 1978. Synthetic maps of human gene frequencies in Europeans. Science 201:4358786–92
    [Google Scholar]
  25. 25. 
    Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38:8904–9
    [Google Scholar]
  26. 26. 
    Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR et al. 2008. Genes mirror geography within Europe. Nature 456:721898–101
    [Google Scholar]
  27. 27. 
    Gravel S, Henn BM, Gutenkunst RN, Indap AR, Marth GT et al. 2011. Demographic history and rare allele sharing among human populations. PNAS 108:2911983–88
    [Google Scholar]
  28. 28. 
    Bryc K, Durand EY, Macpherson JM, Reich D, Mountain JL 2015. The genetic ancestry of African Americans, Latinos, and European Americans across the United States. Am. J. Hum. Genet. 96:137–53
    [Google Scholar]
  29. 29. 
    Han E, Carbonetto P, Curtis RE, Wang Y, Granka JM et al. 2017. Clustering of 770,000 genomes reveals post-colonial population structure of North America. Nat. Commun. 8:14238
    [Google Scholar]
  30. 30. 
    Schraiber JG, Akey JM. 2015. Methods and models for unravelling human evolutionary history. Nat. Rev. Genet. 16:12727–40
    [Google Scholar]
  31. 31. 
    Marchini J, Howie B. 2010. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 11:7499–511
    [Google Scholar]
  32. 32. 
    Pasaniuc B, Rohland N, McLaren PJ, Garimella K, Zaitlen N et al. 2012. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat. Genet. 44:6631–35
    [Google Scholar]
  33. 33. 
    Pickrell J. 2017. It is time to replace genotyping arrays with sequencing. The Gencove Blog Aug 14. https://medium.com/the-gencove-blog/it-is-time-to-replace-genotyping-arrays-with-sequencing-73535efa66ed
    [Google Scholar]
  34. 34. 
    Homburger JR, Neben CL, Mishne G, Zhou AY, Kathiresan S, Khera AV 2019. Low coverage whole genome sequencing enables accurate assessment of common variants and calculation of genome-wide polygenic scores. Genome Med 11:74
    [Google Scholar]
  35. 35. 
    Visscher PM, Hill WG, Wray NR 2008. Heritability in the genomics era—concepts and misconceptions. Nat. Rev. Genet. 9:4255–66
    [Google Scholar]
  36. 36. 
    Schoech AP, Jordan DM, Loh P-R, Gazal S, O'Connor LJ et al. 2019. Quantification of frequency-dependent genetic architectures in 25 UK Biobank traits reveals action of negative selection. Nat. Commun. 10:1790
    [Google Scholar]
  37. 37. 
    Loh P-R, Tucker G, Bulik-Sullivan BK, Vilhjálmsson BJ, Finucane HK et al. 2015. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47:3284–90
    [Google Scholar]
  38. 38. 
    Zhou W, Zhao Z, Nielsen JB, Fritsche LG, LeFaive J et al. 2019. Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts. bioRxiv 583278. https://doi.org/10.1101/583278
    [Crossref]
  39. 39. 
    MacArthur J, Bowler E, Cerezo M, Gil L, Hall P et al. 2017. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res 45:D1D896–901
    [Google Scholar]
  40. 40. 
    Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H et al. 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:7510421–27
    [Google Scholar]
  41. 41. 
    Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE et al. 2018. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat. Commun. 9:12941
    [Google Scholar]
  42. 42. 
    Suzuki K, Akiyama M, Ishigaki K, Kanai M, Hosoe J et al. 2019. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat. Genet. 51:3379–86
    [Google Scholar]
  43. 43. 
    Mahajan A, Wessel J, Willems SM, Zhao W, Robertson NR et al. 2018. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat. Genet. 50:4559–71
    [Google Scholar]
  44. 44. 
    Ellinghaus D, Jostins L, Spain SL, Cortes A, Bethune J et al. 2016. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat. Genet. 48:5510–18
    [Google Scholar]
  45. 45. 
    Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R et al. 2015. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47:9979–86
    [Google Scholar]
  46. 46. 
    van der Harst P, Verweij N 2018. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ. Res. 122:3433–43
    [Google Scholar]
  47. 47. 
    Klarin D, Damrauer SM, Cho K, Sun YV, Teslovich TM et al. 2018. Genetics of blood lipids among ∼300,000 multi-ethnic participants of the Million Veteran Program. Nat. Genet. 50:111514–23
    [Google Scholar]
  48. 48. 
    Hoffmann TJ, Theusch E, Haldar T, Ranatunga DK, Jorgenson E et al. 2018. A large electronic-health-record-based genome-wide study of serum lipids. Nat. Genet. 50:3401–13
    [Google Scholar]
  49. 49. 
    Abul-Husn NS, Kenny EE. 2019. Personalized medicine and the power of electronic health records. Cell 177:158–69
    [Google Scholar]
  50. 50. 
    Verbanck M, Chen C-Y, Neale B, Do R 2018. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50:5693–98
    [Google Scholar]
  51. 51. 
    Benner C, Spencer CCA, Havulinna AS, Salomaa V, Ripatti S, Pirinen M 2016. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32:101493–501
    [Google Scholar]
  52. 52. 
    Wang G, Sarkar A, Carbonetto P, Stephens M 2018. A simple new approach to variable selection in regression, with application to genetic fine-mapping. bioRxiv 501114. https://doi.org/10.1101/501114
    [Crossref]
  53. 53. 
    Holmes MV, Ala-Korpela M, Smith GD 2017. Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat. Rev. Cardiol. 14:10577–90
    [Google Scholar]
  54. 54. 
    Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y et al. 2015. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47:111228–35
    [Google Scholar]
  55. 55. 
    Martin AR, Daly MJ, Robinson EB, Hyman SE, Neale BM 2019. Predicting polygenic risk of psychiatric disorders. Biol. Psychiatry 86:297–109
    [Google Scholar]
  56. 56. 
    Torkamani A, Wineinger NE, Topol EJ 2018. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19:9581–90
    [Google Scholar]
  57. 57. 
    Lambert SA, Abraham G, Inouye M 2019. Towards clinical utility of polygenic risk scores. Hum. Mol. Genet. 28:R2R133–42
    [Google Scholar]
  58. 58. 
    Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ 2019. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51:4584–91
    [Google Scholar]
  59. 59. 
    Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J et al. 2015. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47:3291–95
    [Google Scholar]
  60. 60. 
    Brown BC, Asian Genet. Epidemiol. Netw. Type 2 Diabetes Consort., Ye CJ, Price AL, Zaitlen N 2016. Transethnic genetic-correlation estimates from summary statistics. Am. J. Hum. Genet 99:176–88
    [Google Scholar]
  61. 61. 
    Gurdasani D, Carstensen T, Fatumo S, Chen G, Franklin CS et al. 2019. Uganda genome resource enables insights into population history and genomic discovery in Africa. Cell 179:4984–1002.e36
    [Google Scholar]
  62. 62. 
    1000 Genomes Proj. Consort 2015. A global reference for human genetic variation. Nature 526:757168–74
    [Google Scholar]
  63. 63. 
    Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM et al. 2017. Human demographic history impacts genetic risk prediction across diverse populations. Am. J. Hum. Genet. 100:4635–49
    [Google Scholar]
  64. 64. 
    Sohail M, Maier RM, Ganna A, Bloemendal A, Martin AR et al. 2019. Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. eLife 8:e39702
    [Google Scholar]
  65. 65. 
    Berg JJ, Harpak A, Sinnott-Armstrong N, Joergensen AM, Mostafavi H et al. 2019. Reduced signal for polygenic adaptation of height in UK Biobank. eLife 8:e39725
    [Google Scholar]
  66. 66. 
    Kerminen S, Martin AR, Koskela J, Ruotsalainen SE, Havulinna AS et al. 2019. Geographic variation and bias in the polygenic scores of complex diseases and traits in Finland. Am. J. Hum. Genet. 104:61169–81
    [Google Scholar]
  67. 67. 
    Ott J, Wang J, Leal SM 2015. Genetic linkage analysis in the age of whole-genome sequencing. Nat. Rev. Genet. 16:5275–84
    [Google Scholar]
  68. 68. 
    Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P et al. 1995. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:1155–65
    [Google Scholar]
  69. 69. 
    Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ et al. 2010. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. 42:9790–93
    [Google Scholar]
  70. 70. 
    Bamshad MJ, Nickerson DA, Chong JX 2019. Mendelian gene discovery: fast and furious with no end in sight. Am. J. Hum. Genet. 105:3448–55
    [Google Scholar]
  71. 71. 
    Chong JX, Buckingham KJ, Jhangiani SN, Boehm C, Sobreira N et al. 2015. The genetic basis of Mendelian phenotypes: discoveries, challenges, and opportunities. Am. J. Hum. Genet. 97:2199–215
    [Google Scholar]
  72. 72. 
    Landrum MJ, Lee JM, Benson M, Brown GR, Chao C et al. 2018. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46:D1D1062–67
    [Google Scholar]
  73. 73. 
    Whiffin N, Walsh R, Ing AY, Barton PJR, Funke B, Cook SA 2017. Using high-resolution variant frequencies to empower clinical genome interpretation. Genet. Med. 19:101151–58
    [Google Scholar]
  74. 74. 
    Cummings BB, Marshall JL, Tukiainen T, Lek M, Donkervoort S et al. 2017. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci. Transl. Med. 9:386eaal5209
    [Google Scholar]
  75. 75. 
    Deciphering Dev. Disord. Study 2017. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542:7642433–38
    [Google Scholar]
  76. 76. 
    Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE et al. 2012. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485:7397242–45
    [Google Scholar]
  77. 77. 
    Kosmicki JA, Samocha KE, Howrigan DP, Sanders SJ, Slowikowski K et al. 2017. Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat. Genet. 49:4504–10
    [Google Scholar]
  78. 78. 
    Satterstrom FK, Walters RK, Singh T, Wigdor EM, Lescai F et al. 2018. ASD and ADHD have a similar burden of rare protein-truncating variants. bioRxiv 277707. https://doi.org/10.1101/277707
    [Crossref]
  79. 79. 
    Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S et al. 2018. Novel genes for autism implicate both excitatory and inhibitory cell lineages in risk. bioRxiv 484113. https://doi.org/10.1101/484113
    [Crossref]
  80. 80. 
    Abifadel M, Varret M, Rabès J-P, Allard D, Ouguerram K et al. 2003. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34:2154–56
    [Google Scholar]
  81. 81. 
    Cohen JC, Boerwinkle E, Mosley TH Jr., Hobbs HH 2006. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354:121264–72
    [Google Scholar]
  82. 82. 
    Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH 2005. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. . Genet 37:2161–65
    [Google Scholar]
  83. 83. 
    Whiffin N, Armean IM, Kleinman A, Marshall JL, Minikel EV et al. 2019. Human loss-of-function variants suggest that partial LRRK2 inhibition is a safe therapeutic strategy for Parkinson's disease. bioRxiv 561472. https://doi.org/10.1101/561472
    [Crossref]
  84. 84. 
    King EA, Davis JW, Degner JF 2019. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLOS Genet 15:12e1008489
    [Google Scholar]
  85. 85. 
    Ganna A, Satterstrom FK, Zekavat SM, Das I, Churchhouse C et al. 2018. Quantifying the impact of rare and ultra-rare coding variation across the phenotypic spectrum. Am. J. Hum. Genet. 102:61204–11
    [Google Scholar]
  86. 86. 
    Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B et al. 2011. Testing for an unusual distribution of rare variants. PLOS Genet 7:3e1001322
    [Google Scholar]
  87. 87. 
    Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X 2011. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89:182–93
    [Google Scholar]
  88. 88. 
    Cirulli ET, White S, Read RW, Elhanan G, Metcalf WJ et al. 2019. Genome-wide rare variant analysis for thousands of phenotypes in 54,000 exomes. bioRxiv 692368. https://doi.org/10.1101/692368
    [Crossref]
  89. 89. 
    Petrovski S, Wang Q, Heinzen EL, Allen AS, Goldstein DB 2013. Genic intolerance to functional variation and the interpretation of personal genomes. PLOS Genet 9:8e1003709
    [Google Scholar]
  90. 90. 
    Samocha KE, Robinson EB, Sanders SJ, Stevens C, Sabo A et al. 2014. A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 46:9944–50
    [Google Scholar]
  91. 91. 
    Wang X, Goldstein DB. 2018. Enhancer redundancy predicts gene pathogenicity and informs complex disease gene discovery. bioRxiv 459123. https://doi.org/10.1101/459123
    [Crossref]
  92. 92. 
    Whiffin N, Karczewski KJ, Zhang X, Chothani S, Smith MJ et al. 2019. Characterising the loss-of-function impact of 5′ untranslated region variants in whole genome sequence data from 15,708 individuals. bioRxiv 543504. https://doi.org/10.1101/543504
    [Crossref]
  93. 93. 
    Plenge RM. 2019. Priority index for human genetics and drug discovery. Nat. Genet. 51:71073–75
    [Google Scholar]
  94. 94. 
    Fang H, ULTRA-DD Consort., De Wolf H, Knezevic B, Burnham KL, et al. 2019. A genetics-led approach defines the drug target landscape of 30 immune-related traits. Nat. Genet. 51:71082–91
    [Google Scholar]
  95. 95. 
    Harper AR, Nayee S, Topol EJ 2015. Protective alleles and modifier variants in human health and disease. Nat. Rev. Genet. 16:12689–701
    [Google Scholar]
  96. 96. 
    Nguyen PA, Born DA, Deaton AM, Nioi P, Ward LD 2019. Phenotypes associated with genes encoding drug targets are predictive of clinical trial side effects. Nat. Commun. 10:11579
    [Google Scholar]
  97. 97. 
    Plenge RM, Scolnick EM, Altshuler D 2013. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov. 12:8581–94
    [Google Scholar]
  98. 98. 
    Bush WS, Moore JH. 2012. Genome-wide association studies. PLOS Comput. Biol. 8:12e1002822
    [Google Scholar]
  99. 99. 
    Li JZ, Absher DM, Tang H, Southwick AM, Casto AM et al. 2008. Worldwide human relationships inferred from genome-wide patterns of variation. Science 319:58661100–4
    [Google Scholar]
  100. 100. 
    Nishino J, Ochi H, Kochi Y, Tsunoda T, Matsui S 2018. Sample size for successful genome-wide association study of major depressive disorder. Front. Genet. 9:227
    [Google Scholar]
  101. 101. 
    Marchini J, Cardon LR, Phillips MS, Donnelly P 2004. The effects of human population structure on large genetic association studies. Nat. Genet. 36:5512–17
    [Google Scholar]
  102. 102. 
    Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G et al. 1989. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:49221059–65
    [Google Scholar]
  103. 103. 
    Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R et al. 1989. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:49221066–73
    [Google Scholar]
  104. 104. 
    Du K, Sharma M, Lukacs GL 2005. The ΔF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Nat. Struct. Mol. Biol. 12:117–25
    [Google Scholar]
  105. 105. 
    Scriver JB, Waugh TR. 1930. Studies on a case of sickle-cell anaemia. Can. Med. Assoc. J. 23:3375–80
    [Google Scholar]
  106. 106. 
    Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT et al. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:47321350–54
    [Google Scholar]
  107. 107. 
    Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C et al. 1996. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:6593722–25
    [Google Scholar]
  108. 108. 
    Gulick RM, Lalezari J, Goodrich J, Clumeck N, DeJesus E et al. 2008. Maraviroc for previously treated patients with R5 HIV-1 infection. N. Engl. J. Med. 359:141429–41
    [Google Scholar]
  109. 109. 
    Greggio E, Jain S, Kingsbury A, Bandopadhyay R, Lewis P et al. 2006. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol. Dis. 23:2329–41
    [Google Scholar]
  110. 110. 
    West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW et al. 2005. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. PNAS 102:4616842–47
    [Google Scholar]
  111. 111. 
    TG HDL Work. Group Exome Seq. Proj., Natl. Heart Lung Blood Inst., Crosby J, Peloso GM, Auer PL, Crosslin DR et al. 2014. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N. Engl. J. Med. 371:122–31
    [Google Scholar]
  112. 112. 
    Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A 2014. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N. Engl. J. Med. 371:132–41
    [Google Scholar]
  113. 113. 
    Kanai Y, Lee WS, You G, Brown D, Hediger MA 1994. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J. Clin. Investig. 93:1397–404
    [Google Scholar]
  114. 114. 
    Santer R, Kinner M, Schneppenheim R, Hillebrand G, Kemper M et al. 2000. The molecular basis of renal glucosuria: mutations in the gene for a renal glucose transporter (SGLT2). J. Inherit. Metab. Dis. 23: Suppl. 1 178
    [Google Scholar]
  115. 115. 
    Santer R, Calado J. 2010. Familial renal glucosuria and SGLT2: from a Mendelian trait to a therapeutic target. Clin. J. Am. Soc. Nephrol. 5:1133–41
    [Google Scholar]
  116. 116. 
    Hsia DS, Grove O, Cefalu WT 2017. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr. Opin. Endocrinol. Diabetes Obes. 24:173–79
    [Google Scholar]
  117. 117. 
    Verma D, Särndahl E, Andersson H, Eriksson P, Fredrikson M et al. 2012. The Q705K polymorphism in NLRP3 is a gain-of-function alteration leading to excessive interleukin-1β and IL-18 production. PLOS ONE 7:4e34977
    [Google Scholar]
  118. 118. 
    Verma D, Lerm M, Blomgran Julinder R, Eriksson P, Söderkvist P, Särndahl E 2008. Gene polymorphisms in the NALP3 inflammasome are associated with interleukin-1 production and severe inflammation: relation to common inflammatory diseases. ? Arthritis Rheum 58:3888–94
    [Google Scholar]
  119. 119. 
    Dendrou CA, Cortes A, Shipman L, Evans HG, Attfield KE et al. 2016. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci. Transl. Med. 8:363ra149
    [Google Scholar]
  120. 120. 
    Burke JR, Cheng L, Gillooly KM, Strnad J, Zupa-Fernandez A et al. 2019. Autoimmune pathways in mice and humans are blocked by pharmacological stabilization of the TYK2 pseudokinase domain. Sci. Transl. Med. 11:502eaaw1736
    [Google Scholar]
  121. 121. 
    Diogo D, Bastarache L, Liao KP, Graham RR, Fulton RS et al. 2015. TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. PLOS ONE 10:4e0122271
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-072018-021148
Loading
/content/journals/10.1146/annurev-biodatasci-072018-021148
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error