1932

Abstract

Recently, there has been growing interest in genome sequencing, driven by advances in sequencing technology, in terms of both efficiency and affordability. These developments have allowed many to envision whole-genome sequencing as an invaluable tool for both personalized medical care and public health. As a result, increasingly large and ubiquitous genomic data sets are being generated. This poses a significant challenge for the storage and transmission of these data. Already, it is more expensive to store genomic data for a decade than it is to obtain the data in the first place. This situation calls for efficient representations of genomic information. In this review, we emphasize the need for designing specialized compressors tailored to genomic data and describe the main solutions already proposed. We also give general guidelines for storing these data and conclude with our thoughts on the future of genomic formats and compressors.

Keyword(s): compressiongenomic datastorage
Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-072018-021229
2019-07-20
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/2/1/annurev-biodatasci-072018-021229.html?itemId=/content/journals/10.1146/annurev-biodatasci-072018-021229&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921
    [Google Scholar]
  2. 2. 
    White House Off. Press Secr. 2000. Remarks made by the President, Prime Minister Tony Blair of England (via satellite), Dr. Francis Collins, Director of the National Human Genome Research Institute, and Dr. Craig Venter, President and Chief Scientific Officer, Celera Genomics Corporation, on the completion of the first survey of the entire Human Genome Project. Press Release, June 26, White House Off. Press Sec. Washington, DC
    [Google Scholar]
  3. 3. 
    Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C et al. 2015. Big data: Astronomical or genomical. PLOS Biol. 13:e1002195
    [Google Scholar]
  4. 4. 
    Wetterstrand KA 2018. Data sequencing costs: data from the NHGRI Genome Sequencing Program (GSP). Tech. Rep., Natl. Human Genome Res. Inst., Bethesda, MD, updated 25 April
    [Google Scholar]
  5. 5. 
    Illumina 2019. NovaSeq 6000 sequencing system Specif. Sheet Illumina, San Diego, CA: accessed Jan 2 https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/novaseq-6000-system-specification-sheet-770-2016-025.pdf
    [Google Scholar]
  6. 6. 
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–79
    [Google Scholar]
  7. 7. 
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E et al. 2011. The variant call format and VCFtools. Bioinformatics 27:2156–58
    [Google Scholar]
  8. 8. 
    Bonfield JK, Mahoney MV 2013. Compression of FASTQ and SAM format sequencing data. PLOS ONE 8:e59190
    [Google Scholar]
  9. 9. 
    Zhu Z, Zhang Y, Ji Z, He S, Yang X 2013. High-throughput DNA sequence data compression. Brief. Bioinform. 16:bbt087
    [Google Scholar]
  10. 10. 
    Deorowicz S, Grabowski S 2013. Data compression for sequencing data. Algorithms Mol. Biol. 8:25
    [Google Scholar]
  11. 11. 
    Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM 2010. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 38:1767–71
    [Google Scholar]
  12. 12. 
    Daily K, Rigor P, Christley S, Xie X, Baldi P 2010. Data structures and compression algorithms for high-throughput sequencing technologies. BMC Bioinform. 11:514
    [Google Scholar]
  13. 13. 
    Tembe W, Lowey J, Suh E 2010. G-SQZ: compact encoding of genomic sequence and quality data. Bioinformatics 26:2192–94
    [Google Scholar]
  14. 14. 
    Deorowicz S, Grabowski S 2011. Robust relative compression of genomes with random access. Bioinformatics 27:2979–86
    [Google Scholar]
  15. 15. 
    Yanovsky V 2011. ReCoil—an algorithm for compression of extremely large datasets of DNA data. Algorithms Mol. Biol. 6:23
    [Google Scholar]
  16. 16. 
    Cox AJ, Bauer MJ, Jakobi T, Rosone G 2012. Large-scale compression of genomic sequence databases with the Burrows–Wheeler transform. Bioinformatics 28:1415–19
    [Google Scholar]
  17. 17. 
    Hach F, Numanagić I, Alkan C, Sahinalp SC 2012. SCALCE: boosting sequence compression algorithms using locally consistent encoding. Bioinformatics 28:3051–57
    [Google Scholar]
  18. 18. 
    Jones DC, Ruzzo WL, Peng X, Katze MG 2012. Compression of next-generation sequencing reads aided by highly efficient de novo assembly. Nucleic Acids Res. 40:e171
    [Google Scholar]
  19. 19. 
    Mohammed MH, Dutta A, Bose T, Chadaram S, Mande SS 2012. DELIMINATE—a fast and efficient method for loss-less compression of genomic sequences: sequence analysis. Bioinformatics 28:2527–29
    [Google Scholar]
  20. 20. 
    Wan R, Anh VN, Asai K 2012. Transformations for the compression of FASTQ quality scores of next-generation sequencing data. Bioinformatics 28:628–35
    [Google Scholar]
  21. 21. 
    Howison M 2013. High-throughput compression of FASTQ data with SeqDB. IEEE/ACM Trans. Comput. Biol. Bioinform. 10:213–18
    [Google Scholar]
  22. 22. 
    Ochoa I, Asnani H, Bharadia D, Chowdhury M, Weissman T, Yona G 2013. QualComp: a new lossy compressor for quality scores based on rate distortion theory. BMC Bioinform. 14:187
    [Google Scholar]
  23. 23. 
    Pinho AJ, Pratas D 2013. MFCompress: a compression tool for FASTA and multi-FASTA data. Bioinformatics 30:117–18
    [Google Scholar]
  24. 24. 
    Wandelt S, Leser U 2013. FRESCO: referential compression of highly similar sequences. IEEE/ACM Trans. Comput. Biol. Bioinform. 10:1275–88
    [Google Scholar]
  25. 25. 
    Cánovas R, Moffat A, Turpin A 2014. Lossy compression of quality scores in genomic data. Bioinformatics 30:2130–36
    [Google Scholar]
  26. 26. 
    Grabowski S, Deorowicz S, Roguski Ł 2014. Disk-based compression of data from genome sequencing. Bioinformatics 31:1389–95
    [Google Scholar]
  27. 27. 
    Roguski Ł, Deorowicz S 2014. DSRC2 industry-oriented compression of FASTQ files. Bioinformatics 30:2213–15
    [Google Scholar]
  28. 28. 
    Yu YW, Yorukoglu D, Berger B 2014. Traversing the -mer landscape of NGS read datasets for quality score sparsification. Res. Comput. Mol. Biol. 8394:385–99
    [Google Scholar]
  29. 29. 
    Benoit G, Lemaitre C, Lavenier D, Drezen E, Dayris T et al. 2015. Reference-free compression of high throughput sequencing data with a probabilistic de Bruijn graph. BMC Bioinform. 16:288
    [Google Scholar]
  30. 30. 
    Dutta A, Haque MM, Bose T, Reddy CV, Mande SS 2015. FQC: a novel approach for efficient compression, archival, and dissemination of fastq datasets. J. Bioinform. Comput. Biol. 13:1541003
    [Google Scholar]
  31. 31. 
    Kingsford C, Patro R 2015. Reference-based compression of short-read sequences using path encoding. Bioinformatics 31:1920–28
    [Google Scholar]
  32. 32. 
    Malysa G, Hernaez M, Ochoa I, Rao M, Ganesan K, Weissman T 2015. QVZ: lossy compression of quality values. Bioinformatics 31:193122–29
    [Google Scholar]
  33. 33. 
    Nicolae M, Pathak S, Rajasekaran S 2015. LFQC: a lossless compression algorithm for FASTQ files. Bioinformatics 31:3276–81
    [Google Scholar]
  34. 34. 
    Patro R, Kingsford C 2015. Data-dependent bucketing improves reference-free compression of sequencing reads. Bioinformatics 31:2770–77
    [Google Scholar]
  35. 35. 
    Zhang Y, Li L, Yang Y, Yang X, He S, Zhu Z 2015. Light-weight reference-based compression of FASTQ data. BMC Bioinform. 16:188
    [Google Scholar]
  36. 36. 
    Yu YW, Yorukoglu D, Peng J, Berger B 2015. Quality score compression improves genotyping accuracy. Nat. Biotechnol. 33:240–43
    [Google Scholar]
  37. 37. 
    Fu J, Ma Y, Ke B, Dong S 2016. LCTD: a lossless compression tool of FASTQ file based on transformation of original file distribution. 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) T Tian, Y Wang, Q Jiang, X Hu, Y Liu et al.864–69 New York: IEEE
    [Google Scholar]
  38. 38. 
    Greenfield DL, Stegle O, Rrustemi A 2016. GeneCodeq: quality score compression and improved genotyping using a Bayesian framework. Bioinformatics 32:3124–32
    [Google Scholar]
  39. 39. 
    Hernaez M, Ochoa I, Weissman T 2016. A cluster-based approach to compression of quality scores. 2016 Data Compression Conference (DCC) Proceedings A Bilgin, MW Marcellin, J Serra-Sagrista, JA Storer261–70 Los Alamitos, CA: IEEE Comput. Soc.
    [Google Scholar]
  40. 40. 
    Ochoa I, No A, Hernaez M, Weissman T 2016. CROMqs: An infinitesimal successive refinement lossy compressor for the quality scores. 2016 IEEE Information Theory Workshop (ITW)121–25 New York: IEEE
    [Google Scholar]
  41. 41. 
    Zhang Y, Patel K, Endrawis T, Bowers A, Sun Y 2016. A FASTQ compressor based on integer-mapped k-mer indexing for biologist. Gene 579:75–81
    [Google Scholar]
  42. 42. 
    Chandak S, Tatwawadi K, Weissman T 2017. Compression of genomic sequencing reads via hash-based reordering: algorithm and analysis. Bioinformatics 34:558–67
    [Google Scholar]
  43. 43. 
    Fu J, Dong S 2017. ALL-CQS: adaptive locality-based lossy compression of quality scores. 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) X Hu, Y Gong, C-R Shyu, D Korkin, Y Bromberg et al.353–59 New York: IEEE
    [Google Scholar]
  44. 44. 
    Holley G, Wittler R, Stoye J, Hach F 2017. Dynamic alignment-free and reference-free read compression. 21st Annual International Conference on Research in Computational Molecular Biology (RECOMB 2017) SC Sahinalp50–65 Cham, Switz.: Springer
    [Google Scholar]
  45. 45. 
    Huang ZA, Wen Z, Deng Q, Chu Y, Sun Y, Zhu Z 2017. LW-FQZip 2: a parallelized reference-based compression of FASTQ files. BMC Bioinform. 18:179
    [Google Scholar]
  46. 46. 
    Paridaens T, Van Wallendael G, De Neve W, Lambert P 2017a. AFRESh: an adaptive framework for compression of reads and assembled sequences with random access functionality. Bioinformatics 33:1464–72
    [Google Scholar]
  47. 47. 
    Paridaens T, Van Wallendael G, De Neve W, Lambert P 2017b. AQUa: an adaptive framework for compression of sequencing quality scores with random access functionality. Bioinformatics 34:425–33
    [Google Scholar]
  48. 48. 
    Wang R, Bai Y, Cheng Q, Zang T, Wang Y 2017. A bucket index correction based method for compression of genomic sequencing data. 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) X Hu, Y Gong, C-R Shyu, D Korkin, Y Bromberg et al.634–37 New York: IEEE
    [Google Scholar]
  49. 49. 
    Chandak S, Tatwawadi K, Ochoa I, Hernaez M, Weissman T 2018. SPRING: a next-generation compressor for FASTQ data. Bioinformatics In press
    [Google Scholar]
  50. 50. 
    Roguski Ł, Ochoa I, Hernaez M, Deorowicz S 2018. FaStore–a space-saving solution for raw sequencing data. Bioinformatics 34:2748–56
    [Google Scholar]
  51. 51. 
    Voges J, Fotouhi A, Ostermann J, Külekci MO 2018. A two-level scheme for quality score compression. J. Comput. Biol. 25:101141–51
    [Google Scholar]
  52. 52. 
    Ochoa I, Hernaez M, Goldfeder R, Weissman T, Ashley E 2016. Effect of lossy compression of quality scores on variant calling. Brief. Bioinform. 18:2183–94
    [Google Scholar]
  53. 53. 
    Fritz MHY, Leinonen R, Cochrane G, Birney E 2011. Efficient storage of high throughput DNA sequencing data using reference-based compression. Genome Res. 21:734–40
    [Google Scholar]
  54. 54. 
    Bonfield JK 2014. The Scramble conversion tool. Bioinformatics 30:2818–19
    [Google Scholar]
  55. 55. 
    Li H, Durbin R 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–60
    [Google Scholar]
  56. 56. 
    Popitsch N, von Haeseler A 2012. NGC: lossless and lossy compression of aligned high-throughput sequencing data. Nucleic Acids Res. 41:e27
    [Google Scholar]
  57. 57. 
    Campagne F, Dorff KC, Chambwe N, Robinson JT, Mesirov JP 2013. Compression of structured high-throughput sequencing data. PLOS ONE 8:e79871
    [Google Scholar]
  58. 58. 
    Hach F, Numanagic I, Sahinalp SC 2014. DeeZ: reference-based compression by local assembly. Nat. Methods 11:1082–84
    [Google Scholar]
  59. 59. 
    Ochoa I, Hernaez M, Weissman T 2014. Aligned genomic data compression via improved modeling. J. Bioinform. Comput. Biol. 12:61442002
    [Google Scholar]
  60. 60. 
    Filippova D, Kingsford C 2015. Rapid, separable compression enables fast analyses of sequence alignments. Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics194–201 New York: Assoc. Comput. Mach.
    [Google Scholar]
  61. 61. 
    Cánovas R, Moffat A, Turpin A 2016. CSAM: compressed SAM format. Bioinformatics 32:3709–16
    [Google Scholar]
  62. 62. 
    Roguski Ł, Ribeca P 2016. CARGO: effective format-free compressed storage of genomic information. Nucleic Acids Res. 44:e114
    [Google Scholar]
  63. 63. 
    Voges J, Munderloh M, Ostermann J 2016. Predictive coding of aligned next-generation sequencing data. 2016 Data Compression Conference (DCC) Proceedings A Bilgin, MW Marcellin, J Serra-Sagrista, JA Storer241–50 Los Alamitos, CA: IEEE Comput. Soc.
    [Google Scholar]
  64. 64. 
    Long R, Hernaez M, Ochoa I, Weissman T 2017. GeneComp, a new reference-based compressor for SAM files. 2017 Data Compression Conference (DCC) Proceedings A Bilgin, MW Marcellin, J Serra-Sagrista, JA Storer330–39 Los Alamitos, CA: IEEE Comput. Soc.
    [Google Scholar]
  65. 65. 
    Voges J, Ostermann J, Hernaez M 2017. CALQ: compression of quality values of aligned sequencing data. Bioinformatics 34:1650–58
    [Google Scholar]
  66. 66. 
    Bonfield JK, McCarthy SA, Durbin R 2018. Crumble: reference free lossy compression of sequence quality values. Bioinformatics 35:337–39
    [Google Scholar]
  67. 67. 
    Numanagić I, Bonfield JK, Hach F, Voges J, Ostermann J et al. 2016. Comparison of high-throughput sequencing data compression tools. Nat. Methods 13:1005
    [Google Scholar]
  68. 68. 
    Firtina C, Alkan C 2016. On genomic repeats and reproducibility. Bioinformatics 32:2243–47
    [Google Scholar]
  69. 69. 
    Alberti C, Daniels N, Hernaez M, Voges J, Goldfeder RL et al. 2016. An evaluation framework for lossy compression of genome sequencing quality values. 2016 Data Compression Conference (DCC) Proceedings A Bilgin, MW Marcellin, J Serra-Sagrista, JA Storer221–30 Los Alamitos, CA: IEEE Comput. Soc.
    [Google Scholar]
  70. 70. 
    Christley S, Lu Y, Li C, Xie X 2009. Human genomes as email attachments. Bioinformatics 25:274–75
    [Google Scholar]
  71. 71. 
    Brandon MC, Wallace DC, Baldi P 2009. Data structures and compression algorithms for genomic sequence data. Bioinformatics 25:1731–38
    [Google Scholar]
  72. 72. 
    Pavlichin DS, Weissman T, Yona G 2013. The human genome contracts again. Bioinformatics 29:172199–202
    [Google Scholar]
  73. 73. 
    Polychronopoulos D, Sellis D, Almirantis Y 2014. Conserved noncoding elements follow power-law-like distributions in several genomes as a result of genome dynamics. PLOS ONE 9:e95437
    [Google Scholar]
  74. 74. 
    Buldyrev SV 2006. Power law correlations in DNA sequences. Power Laws, Scale-Free Networks and Genome Biology E Koonin, YI Wolf, G Karev123–64 Boston: Springer
    [Google Scholar]
  75. 75. 
    Sherry ST, Ward MH, Kholodov M, Baker J, Phan L et al. 2001. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29:308–11
    [Google Scholar]
  76. 76. 
    Liu Y, Peng H, Wong L, Li J 2017. High-speed and high-ratio referential genome compression. Bioinformatics 33:3364–72
    [Google Scholar]
  77. 77. 
    Ochoa I, Hernaez M, Weissman T 2014. iDoComp: a compression scheme for assembled genomes. Bioinformatics 31:5626–33
    [Google Scholar]
  78. 78. 
    Pratas D, Pinho AJ, Ferreira PJ 2016. Efficient compression of genomic sequences. 2016 Data Compression Conference (DCC) Proceedings A Bilgin, MW Marcellin, J Serra-Sagrista, JA Storer231–40 Los Alamitos, CA: IEEE Comput. Soc.
    [Google Scholar]
  79. 79. 
    Deorowicz S, Danek A, Niemiec M 2015. GDC 2: compression of large collections of genomes. Sci. Rep. 5:11565
    [Google Scholar]
  80. 80. 
    Hosseini M, Pratas D, Pinho AJ 2016. A survey on data compression methods for biological sequences. Information 7:56
    [Google Scholar]
  81. 81. 
    Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A et al. 2015. An integrated map of structural variation in 2,504 human genomes. Nature 526:75–81
    [Google Scholar]
  82. 82. 
    McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR et al. 2016. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48:1279–83
    [Google Scholar]
  83. 83. 
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E et al. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–91
    [Google Scholar]
  84. 84. 
    Deorowicz S, Danek A, Grabowski S 2013. Genome compression: a novel approach for large collections. Bioinformatics 29:2572–78
    [Google Scholar]
  85. 85. 
    Tatwawadi K, Hernaez M, Ochoa I, Weissman T 2016. GTRAC: fast retrieval from compressed collections of genomic variants. Bioinformatics 32:i479–86
    [Google Scholar]
  86. 86. 
    Layer RM, Kindlon N, Karczewski KJ Exome Aggreg. Consort. Quinlan AR 2015. Efficient genotype compression and analysis of large genetic-variation data sets. Nat. Methods 13:63–65
    [Google Scholar]
  87. 87. 
    Li H 2015. BGT: efficient and flexible genotype query across many samples. Bioinformatics 32:590–92
    [Google Scholar]
  88. 88. 
    Zheng X, Gogarten SM, Lawrence M, Stilp A, Conomos MP et al. 2017. SeqArray—a storage-efficient high-performance data format for WGS variant calls. Bioinformatics 33:2251–57
    [Google Scholar]
  89. 89. 
    Danek A, Deorowicz S 2018. GTC: how to maintain huge genotype collections in a compressed form. Bioinformatics 34:1834–40
    [Google Scholar]
  90. 90. 
    Acuna-Hidalgo R, Veltman JA, Hoischen A 2016. New insights into the generation and role of de novo mutations in health and disease. Genome Biol. 17:241
    [Google Scholar]
  91. 91. 
    Dumont BL, Payseur BA 2007. Evolution of the genomic rate of recombination in mammals. Evolution 62:276–94
    [Google Scholar]
  92. 92. 
    Loh PR, Baym M, Berger B 2012. Compressive genomics. Nat. Biotechnol. 30:627–30
    [Google Scholar]
  93. 93. 
    Yu YW, Daniels NM, Danko DC, Berger B 2015. Entropy-scaling search of massive biological data. Cell Syst. 1:130–40
    [Google Scholar]
  94. 94. 
    Yorukoglu D, Yu YW, Peng J, Berger B 2016. Compressive mapping for next-generation sequencing. Nat. Biotechnol. 34:374–76
    [Google Scholar]
  95. 95. 
    Alberti C, Paridaens T, Voges J, Naro D, Ahmad JJ et al. 2018. An introduction to MPEG-G, the new ISO standard for genomic information representation. bioRxiv 426353. https://doi.org/10.1101/426353
    [Crossref] [Google Scholar]
  96. 96. 
    Csordas A, Ovelleiro D, Wang R, Foster JM, Ríos D et al. 2012. PRIDE: quality control in a proteomics data repository. Database 2012:bas004
    [Google Scholar]
  97. 97. 
    Martens L, Hermjakob H, Jones P, Adamski M, Taylor C et al. 2005. PRIDE: the proteomics identifications database. Proteomics 5:3537–45
    [Google Scholar]
  98. 98. 
    Jones P, Côté RG, Martens L, Quinn AF, Taylor CF et al. 2006. PRIDE: a public repository of protein and peptide identifications for the proteomics community. Nucleic Acids Res. 34:D659–63
    [Google Scholar]
  99. 99. 
    Rigden DJ, Fernández XM 2017. The 2018 Nucleic Acids Research database issue and the online molecular biology database collection. Nucleic Acids Res. 46:D1–7
    [Google Scholar]
  100. 100. 
    Lv J, Liu H, Su J, Wu X, Liu H et al. 2011. DiseaseMeth: a human disease methylation database. Nucleic Acids Res. 40:D1030–35
    [Google Scholar]
  101. 101. 
    Song Q, Decato B, Hong EE, Zhou M, Fang F et al. 2013. A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics. PLOS ONE 8:e81148
    [Google Scholar]
  102. 102. 
    Yang R, Chen X, Ochoa I 2019. MassComp, a lossless compressor for mass spectrometry data. bioRxiv 542894. https://doi.org/10.1101/542894
    [Crossref] [Google Scholar]
  103. 103. 
    Teleman J, Dowsey AW, Gonzalez-Galarza FF, Perkins S, Pratt B et al. 2014. Numerical compression schemes for proteomics mass spectrometry data. Mol. Cell. Proteom. 13:1537–42
    [Google Scholar]
  104. 104. 
    Peng J, Milenkovic O, Ochoa I 2018. METHCOMP: a special purpose compression platform for DNA methylation data. Bioinformatics 34:152654–56
    [Google Scholar]
  105. 105. 
    Ravanmehr V, Kim M, Wang Z, Milenković O 2017. ChIPWig: a random access-enabling lossless and lossy compression method for ChIP-seq data. Bioinformatics 34:911–19
    [Google Scholar]
  106. 106. 
    Wang Z, Weissman T, Milenkovic O 2015. smallWig: parallel compression of RNA-seq WIG files. Bioinformatics 32:173–80
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-072018-021229
Loading
/content/journals/10.1146/annurev-biodatasci-072018-021229
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error