
Full text loading...
Fluorescence microscopy imaging has long been complementary to DNA sequencing- and mass spectrometry–based omics in biomedical research, but these approaches are now converging. On the one hand, omics methods are moving from in vitro methods that average across large cell populations to in situ molecular characterization tools with single-cell sensitivity. On the other hand, fluorescence microscopy imaging has moved from a morphological description of tissues and cells to quantitative molecular profiling with single-molecule resolution. Recent technological developments underpinned by computational methods have started to blur the lines between imaging and omics and have made their direct correlation and seamless integration an exciting possibility. As this trend continues rapidly, it will allow us to create comprehensive molecular profiles of living systems with spatial and temporal context and subcellular resolution. Key to achieving this ambitious goal will be novel computational methods and successfully dealing with the challenges of data integration and sharing as well as cloud-enabled big data analysis.
Article metrics loading...
Full text loading...
Literature Cited
Data & Media loading...