1932

Abstract

Fluorescence microscopy imaging has long been complementary to DNA sequencing- and mass spectrometry–based omics in biomedical research, but these approaches are now converging. On the one hand, omics methods are moving from in vitro methods that average across large cell populations to in situ molecular characterization tools with single-cell sensitivity. On the other hand, fluorescence microscopy imaging has moved from a morphological description of tissues and cells to quantitative molecular profiling with single-molecule resolution. Recent technological developments underpinned by computational methods have started to blur the lines between imaging and omics and have made their direct correlation and seamless integration an exciting possibility. As this trend continues rapidly, it will allow us to create comprehensive molecular profiles of living systems with spatial and temporal context and subcellular resolution. Key to achieving this ambitious goal will be novel computational methods and successfully dealing with the challenges of data integration and sharing as well as cloud-enabled big data analysis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-080917-013328
2019-07-20
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/2/1/annurev-biodatasci-080917-013328.html?itemId=/content/journals/10.1146/annurev-biodatasci-080917-013328&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Labbé RM, Irimia M, Currie KW, Lin A, Zhu SJ et al. 2012. A comparative transcriptomic analysis reveals conserved features of stem cell pluripotency in planarians and mammals. Stem Cells 30:1734–45
    [Google Scholar]
  2. 2. 
    Blattmann P, Schuberth C, Pepperkok R, Runz H 2013. RNAi-based functional profiling of loci from blood lipid genome-wide association studies identifies genes with cholesterol-regulatory function. PLOS Genet 9:e1003338
    [Google Scholar]
  3. 3. 
    Jansen IE, Ye H, Heetveld S, Lechler MC, Michels H et al. 2017. Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing. Genome Biol 18:22
    [Google Scholar]
  4. 4. 
    Zhu J-Y, Fu Y, Nettleton M, Richman A, Han Z 2017. High throughput in vivo functional validation of candidate congenital heart disease genes in Drosophila. eLife 6:e22617
    [Google Scholar]
  5. 5. 
    Hutchins JRA, Toyoda Y, Hegemann B, Poser I, Hériché J-K et al. 2010. Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science 328:593–99
    [Google Scholar]
  6. 6. 
    Tranchevent L-C, Capdevila FB, Nitsch D, De Moor B, De Causmaecker P, Moreau Y 2011. A guide to web tools to prioritize candidate genes. Brief. Bioinform. 12:22–32
    [Google Scholar]
  7. 7. 
    Gligorijević V, Pržulj N. 2015. Methods for biological data integration: perspectives and challenges. J. R. Soc. Interface 12:20150571
    [Google Scholar]
  8. 8. 
    Huang S, Chaudhary K, Garmire LX 2017. More is better: recent progress in multi-omics data integration methods. Front. Genet. 8:84
    [Google Scholar]
  9. 9. 
    Rojas AM, Santamaria A, Malik R, Jensen TS, Körner R et al. 2012. Uncovering the molecular machinery of the human spindle—an integration of wet and dry systems biology. PLOS ONE 7:e31813
    [Google Scholar]
  10. 10. 
    Deo RC, Musso G, Tasan M, Tang P, Poon A et al. 2014. Prioritizing causal disease genes using unbiased genomic features. Genome Biol 15:534
    [Google Scholar]
  11. 11. 
    Shawe-Taylor J, Cristianini N. 2004. Kernel Methods for Pattern Analysis Cambridge, UK: Cambridge Univ. Press
  12. 12. 
    Lanckriet GRG, De Bie T, Cristianini N, Jordan MI, Noble WS 2004. A statistical framework for genomic data fusion. Bioinformatics 20:2626–35
    [Google Scholar]
  13. 13. 
    De Bie T, Tranchevent L-C, van Oeffelen LMM, Moreau Y 2007. Kernel-based data fusion for gene prioritization. Bioinformatics 23:i125–32
    [Google Scholar]
  14. 14. 
    Hériché J-K, Lees JG, Morilla I, Walter T, Petrova B et al. 2014. Integration of biological data by kernels on graph nodes allows prediction of new genes involved in mitotic chromosome condensation. Mol. Biol. Cell 25:2522–36
    [Google Scholar]
  15. 15. 
    Guala D, Bernhem K, Blal HA, Jans D, Lundberg E et al. 2018. Experimental validation of predicted cancer genes using FRET. Methods Appl. Fluoresc. 6:035007
    [Google Scholar]
  16. 16. 
    Moreau Y, Tranchevent L-C. 2012. Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat. Rev. Genet. 13:523–36
    [Google Scholar]
  17. 17. 
    Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A et al. 2017. A subcellular map of the human proteome. Science 356:eaal3321
    [Google Scholar]
  18. 18. 
    Mohr SE, Smith JA, Shamu CE, Neumüller RA, Perrimon N 2014. RNAi screening comes of age: improved techniques and complementary approaches. Nat. Rev. Mol. Cell Biol. 15:591–600
    [Google Scholar]
  19. 19. 
    Jing LS, Shah FFM, Mohamad MS, Moorthy K, Deris S et al. 2015. A review on bioinformatics enrichment analysis tools towards functional analysis of high throughput gene set data. Curr. Proteom. 12:14–27
    [Google Scholar]
  20. 20. 
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al. 2000. Gene ontology: tool for the unification of biology. Nat. Genet. 25:25–29
    [Google Scholar]
  21. 21. 
    Gene Ontol. Consort 2017. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res 45:D331–38
    [Google Scholar]
  22. 22. 
    Smith CL, Eppig JT. 2012. The Mammalian Phenotype Ontology as a unifying standard for experimental and high-throughput phenotyping data. Mamm. Genome 23:653–68
    [Google Scholar]
  23. 23. 
    Jupp S, Malone J, Burdett T, Heriche J-K, Williams E et al. 2016. The cellular microscopy phenotype ontology. J. Biomed. Semantics 7:28
    [Google Scholar]
  24. 24. 
    Serrano-Solano B, Díaz Ramos A, Hériché J-K, Ranea JAG 2017. How can functional annotations be derived from profiles of phenotypic annotations. BMC Bioinform 18:96
    [Google Scholar]
  25. 25. 
    Bersanelli M, Mosca E, Remondini D, Giampieri E, Sala C et al. 2016. Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinform 17:Suppl. 215
    [Google Scholar]
  26. 26. 
    Yuan Y, Failmezger H, Rueda OM, Ali HR, Gräf S et al. 2012. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci. Transl. Med. 4:157ra143
    [Google Scholar]
  27. 27. 
    Wang C, Su H, Yang L, Huang K 2017. Integrative analysis for lung adenocarcinoma predicts morphological features associated with genetic variations. Pac. Symp. Biocomput. 22:82–93
    [Google Scholar]
  28. 28. 
    Tomczak K, Czerwińska P, Wiznerowicz M 2015. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. 19:A68–77
    [Google Scholar]
  29. 29. 
    Simm J, Klambauer G, Arany A, Steijaert M, Wegner JK et al. 2018. Repurposing high-throughput image assays enables biological activity prediction for drug discovery. Cell Chem. Biol. 25:611–18.e3
    [Google Scholar]
  30. 30. 
    Papalexakis EE, Faloutsos C, Sidiropoulos ND 2017. Tensors for data mining and data fusion: models, applications, and scalable algorithms. ACM Trans. Intell. Syst. Technol. 8:16
    [Google Scholar]
  31. 31. 
    Cichocki A, Zdunek R, Phan AH, Amari S-I 2009. Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation Cichester, UK: Wiley
  32. 32. 
    Kolda TG, Bader BW. 2009. Tensor decompositions and applications. SIAM Rev 51:455–500
    [Google Scholar]
  33. 33. 
    Omberg L, Golub GH, Alter O 2007. A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies. PNAS 104:18371–76
    [Google Scholar]
  34. 34. 
    Zhang S, Liu C-C, Li W, Shen H, Laird PW, Zhou XJ 2012. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res 40:9379–91
    [Google Scholar]
  35. 35. 
    Chalise P, Fridley BL. 2017. Integrative clustering of multi-level 'omic data based on non-negative matrix factorization algorithm. PLOS ONE 12:e0176278
    [Google Scholar]
  36. 36. 
    Zitnik M, Zupan B. 2014. Matrix factorization-based data fusion for gene function prediction in baker's yeast and slime mold. Pac. Symp. Biocomput 19:400–11
    [Google Scholar]
  37. 37. 
    Žitnik M, Zupan B. 2015. Data fusion by matrix factorization. IEEE Trans. Pattern Anal. Mach. Intell. 37:41–53
    [Google Scholar]
  38. 38. 
    Acar E, Papalexakis EE, Gürdeniz G, Rasmussen MA, Lawaetz AJ et al. 2014. Structure-revealing data fusion. BMC Bioinform 15:239
    [Google Scholar]
  39. 39. 
    Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T et al. 2018. Multi-omics factor analysis—a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 14:e8124
    [Google Scholar]
  40. 40. 
    Vasilescu MAO, Terzopoulos D. 2002. Multilinear image analysis for facial recognition. Proceedings of the 16th International Conference on Pattern Recognition R Kasturi, D Laurendeau, C Suen511–14 Los Alamitos, CA: IEEE Comput. Soc.
    [Google Scholar]
  41. 41. 
    Shashua A, Hazan T. 2005. Non-negative tensor factorization with applications to statistics and computer vision. ICML '05: Proceedings of the 22nd International Conference on Machine Learning792–99 New York: Assoc. Comput. Mach.
    [Google Scholar]
  42. 42. 
    Karahan E, Rojas-López PA, Bringas-Vega ML, Valdés-Hernández PA, Valdes-Sosa PA 2015. Tensor analysis and fusion of multimodal brain images. Proc. IEEE 103:1531–59
    [Google Scholar]
  43. 43. 
    Otsuka S, Steyer AM, Schorb M, Hériché J-K, Hossain MJ et al. 2018. Postmitotic nuclear pore assembly proceeds by radial dilation of small membrane openings. Nat. Struct. Mol. Biol. 25:21–28
    [Google Scholar]
  44. 44. 
    Cai Y, Hossain MJ, Hériché J-K, Politi AZ, Walther N et al. 2018. Experimental and computational framework for a dynamic protein atlas of human cell division. Nature 561:411–15
    [Google Scholar]
  45. 45. 
    Angermueller C, Pärnamaa T, Parts L, Stegle O 2016. Deep learning for computational biology. Mol. Syst. Biol. 12:878
    [Google Scholar]
  46. 46. 
    Jones W, Alasoo K, Fishman D, Parts L 2017. Computational biology: deep learning. Emerg. Top. Life Sci. 1:257–74
    [Google Scholar]
  47. 47. 
    Kim D, Li R, Dudek SM, Ritchie MD 2013. ATHENA: identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network. BioData Min 6:23
    [Google Scholar]
  48. 48. 
    Chaudhary K, Poirion OB, Lu L, Garmire LX 2018. Deep learning–based multi-omics integration robustly predicts survival in liver cancer. Clin. Cancer Res. 24:1248–59
    [Google Scholar]
  49. 49. 
    Zhang C, Bengio S, Hardt M, Recht B, Vinyals O 2016. Understanding deep learning requires rethinking generalization. arXiv:1611.03530 [cs.LG]
  50. 50. 
    Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT et al. 2018. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15:20170387
    [Google Scholar]
  51. 51. 
    Su J, Vargas DV, Kouichi S 2017. One pixel attack for fooling deep neural networks. arXiv:1710.08864 [cs.LG]
  52. 52. 
    Hériché J-K. 2014. Systematic cell phenotyping. Phenomics JM Hancock86–110 Boca Raton, FL: CRC
    [Google Scholar]
  53. 53. 
    Oode K, Furuya T, Harada K, Kawauchi S, Yamamoto K et al. 2000. The development of a cell array and its combination with laser-scanning cytometry allows a high-throughput analysis of nuclear DNA content. Am. J. Pathol. 157:723–28
    [Google Scholar]
  54. 54. 
    Geusebroek JM, Cornelissen F, Smeulders AW, Geerts H 2000. Robust autofocusing in microscopy. Cytometry 39:1–9
    [Google Scholar]
  55. 55. 
    Shen F, Hodgson L, Hahn K 2006. Digital autofocus methods for automated microscopy. Methods Enzymol 414:620–32
    [Google Scholar]
  56. 56. 
    Fuchs F, Pau G, Kranz D, Sklyar O, Budjan C et al. 2010. Clustering phenotype populations by genome-wide RNAi and multiparametric imaging. Mol. Syst. Biol. 6:370
    [Google Scholar]
  57. 57. 
    Neumann B, Walter T, Hériché J-K, Bulkescher J, Erfle H et al. 2010. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464:721–27
    [Google Scholar]
  58. 58. 
    Sommer C, Gerlich DW. 2013. Machine learning in cell biology—teaching computers to recognize phenotypes. J. Cell Sci. 126:5529–39
    [Google Scholar]
  59. 59. 
    Grys BT, Lo DS, Sahin N, Kraus OZ, Morris Q et al. 2017. Machine learning and computer vision approaches for phenotypic profiling. J. Cell Biol. 216:65–71
    [Google Scholar]
  60. 60. 
    Caicedo JC, Cooper S, Heigwer F, Warchal S, Qiu P et al. 2017. Data-analysis strategies for image-based cell profiling. Nat. Methods 14:849–63
    [Google Scholar]
  61. 61. 
    Tischer C, Hilsenstein V, Hanson K, Pepperkok R 2014. Adaptive fluorescence microscopy by online feedback image analysis. Methods Cell Biol 123:489–503
    [Google Scholar]
  62. 62. 
    Conrad C, Wünsche A, Tan TH, Bulkescher J, Sieckmann F et al. 2011. Micropilot: automation of fluorescence microscopy–based imaging for systems biology. Nat. Methods 8:246–49
    [Google Scholar]
  63. 63. 
    Boutros M, Heigwer F, Laufer C 2015. Microscopy-based high-content screening. Cell 163:1314–25
    [Google Scholar]
  64. 64. 
    Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T 2017. Transcriptomics technologies. PLOS Comput. Biol. 13:e1005457
    [Google Scholar]
  65. 65. 
    Cox J, Mann M. 2011. Quantitative, high-resolution proteomics for data-driven systems biology. Annu. Rev. Biochem. 80:273–99
    [Google Scholar]
  66. 66. 
    Koch B, Nijmeijer B, Kueblbeck M, Cai Y, Walther N, Ellenberg J 2018. Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing. Nat. Protoc. 13:1465–87
    [Google Scholar]
  67. 67. 
    Hirschberg K, Miller CM, Ellenberg J, Presley JF, Siggia ED et al. 1998. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J. Cell Biol. 143:1485–503
    [Google Scholar]
  68. 68. 
    Rabut G, Doye V, Ellenberg J 2004. Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat. Cell Biol. 6:1114–21
    [Google Scholar]
  69. 69. 
    Ries J, Schwille P. 2012. Fluorescence correlation spectroscopy. Bioessays 34:361–68
    [Google Scholar]
  70. 70. 
    Wachsmuth M, Conrad C, Bulkescher J, Koch B, Mahen R et al. 2015. High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells. Nat. Biotechnol. 33:384–89
    [Google Scholar]
  71. 71. 
    Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J et al. 2007. The molecular architecture of the nuclear pore complex. Nature 450:695–701
    [Google Scholar]
  72. 72. 
    Szymborska A, de Marco A, Daigle N, Cordes VC, Briggs JAG, Ellenberg J 2013. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341:655–58
    [Google Scholar]
  73. 73. 
    Baddeley D, Bewersdorf J. 2018. Biological insight from super-resolution microscopy: what we can learn from localization-based images. Annu. Rev. Biochem. 87:965–89
    [Google Scholar]
  74. 74. 
    Mund M, van der Beek JA, Deschamps J, Dmitrieff S, Hoess P et al. 2018. Systematic nanoscale analysis of endocytosis links efficient vesicle formation to patterned actin nucleation. Cell 174:884–96.e17
    [Google Scholar]
  75. 75. 
    Walther N, Hossain MJ, Politi AZ, Koch B, Kueblbeck M et al. 2018. A quantitative map of human Condensins provides new insights into mitotic chromosome architecture. J. Cell Biol. 217:2309–28
    [Google Scholar]
  76. 76. 
    Jungmann R, Avendaño MS, Woehrstein JB, Dai M, Shih WM, Yin P 2014. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11:313–18
    [Google Scholar]
  77. 77. 
    Coltharp C, Yang X, Xiao J 2014. Quantitative analysis of single-molecule superresolution images. Curr. Opin. Struct. Biol. 28:112–21
    [Google Scholar]
  78. 78. 
    Owen DM, Williamson DJ, Boelen L, Magenau A, Rossy J, Gaus K 2013. Quantitative analysis of three-dimensional fluorescence localization microscopy data. Biophys. J. 105:L5–7
    [Google Scholar]
  79. 79. 
    Xiang W, Roberti MJ, Hériché J-K, Huet S, Alexander S, Ellenberg J 2018. Correlative live and super-resolution imaging reveals the dynamic structure of replication domains. J. Cell Biol. 217:1973–84
    [Google Scholar]
  80. 80. 
    Rubin-Delanchy P, Burn GL, Griffié J, Williamson DJ, Heard NA et al. 2015. Bayesian cluster identification in single-molecule localization microscopy data. Nat. Methods 12:1072–76
    [Google Scholar]
  81. 81. 
    Schnitzbauer J, Wang Y, Zhao S, Bakalar M, Nuwal T et al. 2018. Correlation analysis framework for localization-based superresolution microscopy. PNAS 115:3219–24
    [Google Scholar]
  82. 82. 
    Broeken J, Johnson H, Lidke DS, Liu S, Nieuwenhuizen RPJ et al. 2015. Resolution improvement by 3D particle averaging in localization microscopy. Methods Appl. Fluoresc. 3:014003
    [Google Scholar]
  83. 83. 
    Verdier T, Gunzenhauser J, Manley S, Castelnovo M 2017. Single particle maximum likelihood reconstruction from superresolution microscopy images. PLOS ONE 12:e0172943
    [Google Scholar]
  84. 84. 
    Hofmann A, Krufczik M, Heermann DW, Hausmann M 2018. Using persistent homology as a new approach for super-resolution localization microscopy data analysis and classification of γH2AX foci/clusters. Int. J. Mol. Sci. 19:2263
    [Google Scholar]
  85. 85. 
    Tang F, Barbacioru C, Nordman E, Bao S, Lee C et al. 2011. Deterministic and stochastic allele specific gene expression in single mouse blastomeres. PLOS ONE 6:e21208
    [Google Scholar]
  86. 86. 
    Yan L, Yang M, Guo H, Yang L, Wu J et al. 2013. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20:1131–39
    [Google Scholar]
  87. 87. 
    Achim K, Pettit J-B, Saraiva LR, Gavriouchkina D, Larsson T et al. 2015. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Biotechnol. 33:503–9
    [Google Scholar]
  88. 88. 
    Satija R, Farrell JA, Gennert D, Schier AF, Regev A 2015. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33:495–502
    [Google Scholar]
  89. 89. 
    Bock C, Farlik M, Sheffield NC 2016. Multi-omics of single cells: strategies and applications. Trends Biotechnol 34:605–8
    [Google Scholar]
  90. 90. 
    Ibarra-Soria X, Jawaid W, Pijuan-Sala B, Ladopoulos V, Scialdone A et al. 2018. Defining murine organogenesis at single-cell resolution reveals a role for the leukotriene pathway in regulating blood progenitor formation. Nat. Cell Biol. 20:127–34
    [Google Scholar]
  91. 91. 
    Plass M, Solana J, Wolf FA, Ayoub S, Misios A et al. 2018. Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science 360:eaaq1723
    [Google Scholar]
  92. 92. 
    Caprioli RM, Farmer TB, Gile J 1997. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69:4751–60
    [Google Scholar]
  93. 93. 
    Römpp A, Spengler B. 2013. Mass spectrometry imaging with high resolution in mass and space. Histochem. Cell Biol. 139:759–83
    [Google Scholar]
  94. 94. 
    Kaddi CD, Wang MD. 2017. Computational methods for mass spectrometry imaging: challenges, progress, and opportunities. Health Informatics Data Analysis D Xu, MD Wang, F Zhou, Y Cai37–49 Cham, Switz.: Springer
    [Google Scholar]
  95. 95. 
    Klerk LA, Broersen A, Fletcher IW, van Liere R, Heeren RM 2007. Extended data analysis strategies for high resolution imaging MS: new methods to deal with extremely large image hyperspectral datasets. Int. J. Mass Spectrom. 260:222–36
    [Google Scholar]
  96. 96. 
    Thomas SA, Race AM, Steven RT, Gilmore IS, Bunch J 2016. Dimensionality reduction of mass spectrometry imaging data using autoencoders. Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI) New York: IEEE
    [Google Scholar]
  97. 97. 
    Behrmann J, Etmann C, Boskamp T, Casadonte R, Kriegsmann J, Maaß P 2018. Deep learning for tumor classification in imaging mass spectrometry. Bioinformatics 34:1215–23
    [Google Scholar]
  98. 98. 
    Lovatt D, Ruble BK, Lee J, Dueck H, Kim TK et al. 2014. Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nat. Methods 11:190–96
    [Google Scholar]
  99. 99. 
    Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL et al. 2014. Highly multiplexed subcellular RNA sequencing in situ. Science 343:1360–63
    [Google Scholar]
  100. 100. 
    Schubert W, Bonnekoh B, Pommer AJ, Philipsen L, Böckelmann R et al. 2006. Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat. Biotechnol. 24:1270
    [Google Scholar]
  101. 101. 
    Lubeck E, Cai L. 2012. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods 9:743–48
    [Google Scholar]
  102. 102. 
    Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L 2014. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11:360–61
    [Google Scholar]
  103. 103. 
    Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X 2015. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:aaa6090
    [Google Scholar]
  104. 104. 
    Williams E, Moore J, Li SW, Rustici G, Tarkowska A et al. 2017. The Image Data Resource: a bioimage data integration and publication platform. Nat. Methods 14:775–81
    [Google Scholar]
  105. 105. 
    Ellenberg J, Swedlow JR, Barlow M, Cook CE, Patwardhan A et al. 2018. Public archives for biological image data. arXiv:1801.10189 [q-bio.QM]
  106. 106. 
    Linkert M, Rueden CT, Allan C, Burel J-M, Moore W et al. 2010. Metadata matters: access to image data in the real world. J. Cell Biol. 189:777–82
    [Google Scholar]
  107. 107. 
    Saalfeld S, Cardona A, Hartenstein V, Tomancak P 2009. CATMAID: collaborative annotation toolkit for massive amounts of image data. Bioinformatics 25:1984–86
    [Google Scholar]
  108. 108. 
    Walter T, Shattuck DW, Baldock R, Bastin ME, Carpenter AE et al. 2010. Visualization of image data from cells to organisms. Nat. Methods 7:S26–41
    [Google Scholar]
  109. 109. 
    Balazs B, Deschamps J, Albert M, Ries J, Hufnagel L 2017. A real-time compression library for microscopy images. bioRxiv:164624. https://doi.org/10.1101/164624
    [Crossref]
  110. 110. 
    Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE et al. 2017. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform 18:529
    [Google Scholar]
  111. 111. 
    Aeffner F, Wilson K, Martin NT, Black JC, Hendriks CLL et al. 2017. The gold standard paradox in digital image analysis: manual versus automated scoring as ground truth. Arch. Pathol. Lab. Med. 141:1267–75
    [Google Scholar]
  112. 112. 
    Sadanandan SK, Ranefall P, Le Guyader S, Wählby C 2017. Automated training of deep convolutional neural networks for cell segmentation. Sci. Rep. 7:7860
    [Google Scholar]
  113. 113. 
    Sullivan DP, Winsnes CF, Åkesson L, Hjelmare M, Wiking M et al. 2018. Deep learning is combined with massive-scale citizen science to improve large-scale image classification. Nat. Biotechnol. 36:820–28
    [Google Scholar]
  114. 114. 
    Alpert A, Moore LS, Dubovik T, Shen-Orr SS 2018. Alignment of single-cell trajectories to compare cellular expression dynamics. Nat. Methods 15:267–70
    [Google Scholar]
  115. 115. 
    Haynes WA, Tomczak A, Khatri P 2018. Gene annotation bias impedes biomedical research. Sci. Rep. 8:1362
    [Google Scholar]
  116. 116. 
    Afgan E, Baker D, Batut B, van den Beek M, Bouvier D et al. 2018. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46:W537–44
    [Google Scholar]
  117. 117. 
    Hitchcock FL. 1927. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6:164–89
    [Google Scholar]
  118. 118. 
    Guo W, Kotsia I, Patras I 2012. Tensor learning for regression. IEEE Trans. Image Process. 21:816–27
    [Google Scholar]
  119. 119. 
    Wimalawarne K, Tomioka R, Sugiyama M 2016. Theoretical and experimental analyses of tensor-based regression and classification. Neural Comput 28:686–715
    [Google Scholar]
  120. 120. 
    Edelsbrunner H, Harer J. 2010. Computational Topology: An Introduction Providence, RI: Am. Math. Soc.
  121. 121. 
    Otter N, Porter MA, Tillmann U, Grindrod P, Harrington HA 2017. A roadmap for the computation of persistent homology. EPJ Data Sci 6:17
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-080917-013328
Loading
/content/journals/10.1146/annurev-biodatasci-080917-013328
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error