1932

Abstract

Visual processing starts in the outer retina, where photoreceptor cells sense photons that trigger electrical responses. Retinal pigment epithelial cells are located external to the photoreceptor layer and have critical functions in supporting cell and tissue homeostasis and thus sustaining a healthy retina. The high level of specialization makes the retina vulnerable to alterations that promote retinal degeneration. In this review, we discuss opportunities and challenges in proposing whole-cell and -tissue simulations of the human outer retina. An implicit position taken throughout this review is that mapping diverse data sets onto integrative computational models is likely to be a pivotal approach to understanding complex disease and developing novel interventions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-080917-013356
2018-07-20
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/1/1/annurev-biodatasci-080917-013356.html?itemId=/content/journals/10.1146/annurev-biodatasci-080917-013356&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Hoon M, Okawa H, Della Santina L, Wong RO 2014. Functional architecture of the retina: development and disease. Prog. Retin. Eye Res. 42:44–84
    [Google Scholar]
  2. 2.  Palczewski K 2014. Chemistry and biology of the initial steps in vision: the Friedenwald lecture. Investig. Ophthalmol. Vis. Sci. 55:6651–72
    [Google Scholar]
  3. 3.  Strauss O 2005. The retinal pigment epithelium in visual function. Physiol. Rev. 85:845–81
    [Google Scholar]
  4. 4.  Sparrow JR, Hicks D, Hamel CP 2010. The retinal pigment epithelium in health and disease. Curr. Mol. Med. 10:802–23
    [Google Scholar]
  5. 5.  Kevany BM, Palczewski K 2010. Phagocytosis of retinal rod and cone photoreceptors. Physiology 25:8–15
    [Google Scholar]
  6. 6.  Cartwright RA, Schwartz RS, Merry AL, Howell MM 2017. The importance of selection in the evolution of blindness in cavefish. BMC Evol. Biol. 17:45
    [Google Scholar]
  7. 7.  Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS 2010. Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat. Rev. Genet. 11:273–84
    [Google Scholar]
  8. 8.  Kiel C, Lastrucci C, Luthert PJ, Serrano L 2017. Simple and complex retinal dystrophies are associated with profoundly different disease networks. Sci. Rep. 7:41835
    [Google Scholar]
  9. 9.  Tomita M 2001. Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol 19:205–10
    [Google Scholar]
  10. 10.  Roberts E 2014. Cellular and molecular structure as a unifying framework for whole-cell modeling. Curr. Opin. Struct. Biol. 25:86–91
    [Google Scholar]
  11. 11.  Goodsell DS 2005. Visual methods from atoms to cells. Structure 13:347–54
    [Google Scholar]
  12. 12.  Kitano H 2002. Computational systems biology. Nature 420:206–10
    [Google Scholar]
  13. 13.  Barabasi AL, Gulbahce N, Loscalzo J 2011. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12:56–68
    [Google Scholar]
  14. 14.  Hu JX, Thomas CE, Brunak S 2016. Network biology concepts in complex disease comorbidities. Nat. Rev. Genet. 17:615–29
    [Google Scholar]
  15. 15.  Tomita M, Hashimoto K, Takahashi K, Shimizu T, Matsuzaki Y et al. 1997. E-CELL: software environment for whole cell simulation. Workshop Genome Inform 8:147–55
    [Google Scholar]
  16. 16.  Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y et al. 1999. E-CELL: software environment for whole-cell simulation. Bioinformatics 15:72–84
    [Google Scholar]
  17. 17.  Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ 2007. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat. Protoc. 2:727–38
    [Google Scholar]
  18. 18.  Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM et al. 2012. A whole-cell computational model predicts phenotype from genotype. Cell 150:389–401
    [Google Scholar]
  19. 19.  Song Z, Postma M, Billings SA, Coca D, Hardie RC et al. 2012. Stochastic, adaptive sampling of information by microvilli in fly photoreceptors. Curr. Biol. 22:1371–80
    [Google Scholar]
  20. 20.  Song Z, Juusola M 2014. Refractory sampling links efficiency and costs of sensory encoding to stimulus statistics. J. Neurosci. 34:7216–37
    [Google Scholar]
  21. 21.  Juusola MI, Dau A, Song Z, Solanki N, Rien D et al. 2017. Microsaccadic sampling of moving image information provides Drosophila hyperacute vision. eLife 6:e26117
    [Google Scholar]
  22. 22.  Wurstle ML, Zink E, Prehn JH, Rehm M 2014. From computational modelling of the intrinsic apoptosis pathway to a systems-based analysis of chemotherapy resistance: achievements, perspectives and challenges in systems medicine. Cell Death Dis 5:e1258
    [Google Scholar]
  23. 23.  Tikidji-Hamburyan A, Reinhard K, Storchi R, Dietter J, Seitter H, et al. 2017. Rods progressively escape saturation to drive visual responses in daylight conditions. Nat. Commun. 8:1813
    [Google Scholar]
  24. 24.  Sung CH, Chuang JZ 2010. The cell biology of vision. J. Cell Biol. 190:953–63
    [Google Scholar]
  25. 25.  Saari JC 2012. Vitamin A metabolism in rod and cone visual cycles. Annu. Rev. Nutr. 32:125–45
    [Google Scholar]
  26. 26.  Mazzoni F, Safa H, Finnemann SC 2014. Understanding photoreceptor outer segment phagocytosis: use and utility of RPE cells in culture. Exp. Eye Res. 126:51–60
    [Google Scholar]
  27. 27.  Taylor AW 2009. Ocular immune privilege. Eye 23:1885–89
    [Google Scholar]
  28. 28.  Koscielny G, An P, Carvalho-Silva D, Cham JA, Fumis L et al. 2017. Open Targets: a platform for therapeutic target identification and validation. Nucleic Acids Res 45:D985–94
    [Google Scholar]
  29. 29.  Whitmore SS, Wagner AH, DeLuca AP, Drack AV, Stone EM et al. 2014. Transcriptomic analysis across nasal, temporal, and macular regions of human neural retina and RPE/choroid by RNA-Seq. Exp. Eye Res. 129:93–106
    [Google Scholar]
  30. 30.  Farkas MH, Grant GR, White JA, Sousa ME, Consugar MB, Pierce EA 2013. Transcriptome analyses of the human retina identify unprecedented transcript diversity and 3.5 Mb of novel transcribed sequence via significant alternative splicing and novel genes. BMC Genom 14:486
    [Google Scholar]
  31. 31.  Rakoczy EP, Kiel C, McKeone R, Stricher F, Serrano L 2011. Analysis of disease-linked rhodopsin mutations based on structure, function, and protein stability calculations. J. Mol. Biol. 405:584–606
    [Google Scholar]
  32. 32.  Hartl FU 2016. Cellular homeostasis and aging. Annu. Rev. Biochem. 85:1–4
    [Google Scholar]
  33. 33.  Athanasiou D, Aguila M, Bevilacqua D, Novoselov SS, Parfitt DA, Cheetham ME 2013. The cell stress machinery and retinal degeneration. FEBS Lett 587:2008–17
    [Google Scholar]
  34. 34.  Wong-Riley MT 2010. Energy metabolism of the visual system. Eye Brain 2:99–116
    [Google Scholar]
  35. 35.  Ait-Ali N, Fridlich R, Millet-Puel G, Clerin E, Delalande F et al. 2015. Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell 161:817–32
    [Google Scholar]
  36. 36.  Adijanto J, Philp NJ 2014. Cultured primary human fetal retinal pigment epithelium (hfRPE) as a model for evaluating RPE metabolism. Exp. Eye Res. 126:77–84
    [Google Scholar]
  37. 37.  Green DR, Van Houten B 2011. SnapShot: mitochondrial quality control. Cell 147:950.e1
    [Google Scholar]
  38. 38.  Joyal JS, Sun Y, Gantner ML, Shao Z, Evans LP et al. 2016. Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1. Nat. Med. 22:439–45
    [Google Scholar]
  39. 39.  Volland S, Esteve-Rudd J, Hoo J, Yee C, Williams DS 2015. A comparison of some organizational characteristics of the mouse central retina and the human macula. PLOS ONE 10:e0125631
    [Google Scholar]
  40. 40.  Reyes-Reveles J, Dhingra A, Alexander D, Bragin A, Philp NJ, Boesze-Battaglia K 2017. Phagocytosis-dependent ketogenesis in retinal pigment epithelium. J. Biol. Chem. 292:8038–47
    [Google Scholar]
  41. 41.  Swainston N, Smallbone K, Hefzi H, Dobson PD, Brewer J et al. 2016. Recon 2.2: from reconstruction to model of human metabolism. Metabolomics 12:109
    [Google Scholar]
  42. 42.  Humphrey JD, Dufresne ER, Schwartz MA 2014. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15:802–12
    [Google Scholar]
  43. 43.  Gilmore AP 2005. Anoikis. Cell Death Differ 12:Suppl. 21473–77
    [Google Scholar]
  44. 44.  Ishikawa M, Sawada Y, Yoshitomi T 2015. Structure and function of the interphotoreceptor matrix surrounding retinal photoreceptor cells. Exp. Eye Res. 133:3–18
    [Google Scholar]
  45. 45.  Roepman R, Wolfrum U 2007. Protein networks and complexes in photoreceptor cilia. Subcell. Biochem. 43:209–35
    [Google Scholar]
  46. 46.  Orhon I, Dupont N, Pampliega O, Cuervo AM, Codogno P 2015. Autophagy and regulation of cilia function and assembly. Cell Death Differ 22:389–97
    [Google Scholar]
  47. 47.  Liu Y, Levine B 2015. Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22:367–76
    [Google Scholar]
  48. 48.  Reme CE, Wolfrum U, Imsand C, Hafezi F, Williams TP 1999. Photoreceptor autophagy: effects of light history on number and opsin content of degradative vacuoles. Investig. Ophthalmol. Vis. Sci. 40:2398–404
    [Google Scholar]
  49. 49.  Behrends C, Sowa ME, Gygi SP, Harper JW 2010. Network organization of the human autophagy system. Nature 466:68–76
    [Google Scholar]
  50. 50.  Fliesler SJ, Bretillon L 2010. The ins and outs of cholesterol in the vertebrate retina. J. Lipid Res. 51:3399–413
    [Google Scholar]
  51. 51.  Albert AD, Boesze-Battaglia K 2005. The role of cholesterol in rod outer segment membranes. Prog. Lipid Res. 44:99–124
    [Google Scholar]
  52. 52.  Albert A, Alexander D, Boesze-Battaglia K 2016. Cholesterol in the rod outer segment: a complex role in a “simple” system. Chem. Phys. Lipids 199:94–105
    [Google Scholar]
  53. 53.  Rodriguez IR, Larrayoz IM 2010. Cholesterol oxidation in the retina: implications of 7KCh formation in chronic inflammation and age-related macular degeneration. J. Lipid Res. 51:2847–62
    [Google Scholar]
  54. 54.  Zekavat SM, Lu J, Maugeais C, Mazer NA 2017. An in silico model of retinal cholesterol dynamics (RCD model): insights into the pathophysiology of dry AMD. J. Lipid Res. 58:1325–37
    [Google Scholar]
  55. 55.  Xu H, Chen M 2016. Targeting the complement system for the management of retinal inflammatory and degenerative diseases. Eur. J. Pharmacol. 784:94–104
    [Google Scholar]
  56. 56.  Zewde N, Gorham RD Jr., Dorado A, Morikis D 2016. Quantitative modeling of the alternative pathway of the complement system. PLOS ONE 11:e0152337
    [Google Scholar]
  57. 57.  Toomey CB, Kelly U, Saban DR, Bowes Rickman C 2015. Regulation of age-related macular degeneration-like pathology by complement factor H. PNAS 112:E3040–49
    [Google Scholar]
  58. 58.  Schieber M, Chandel NS 2014. ROS function in redox signaling and oxidative stress. Curr. Biol. 24:R453–62
    [Google Scholar]
  59. 59.  Pereira EJ, Smolko CM, Janes KA 2016. Computational models of reactive oxygen species as metabolic byproducts and signal-transduction modulators. Front. Pharmacol. 7:457
    [Google Scholar]
  60. 60.  Mrschtik M, Ryan KM 2015. Lysosomal proteins in cell death and autophagy. FEBS J 282:1858–70
    [Google Scholar]
  61. 61.  Richards DM, Endres RG 2014. The mechanism of phagocytosis: two stages of engulfment. Biophys. J. 107:1542–53
    [Google Scholar]
  62. 62.  Kurihara T, Westenskow PD, Gantner ML, Usui Y, Schultz A et al. 2016. Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration. eLife 5:14319
    [Google Scholar]
  63. 63.  Zouache MA, Eames I, Klettner CA, Luthert PJ 2016. Form, shape and function: segmented blood flow in the choriocapillaris. Sci. Rep. 6:35754
    [Google Scholar]
  64. 64.  Ambati J, Fowler BJ 2012. Mechanisms of age-related macular degeneration. Neuron 75:26–39
    [Google Scholar]
  65. 65.  Southern J, Pitt-Francis J, Whiteley J, Stokeley D, Kobashi H et al. 2008. Multi-scale computational modelling in biology and physiology. Prog. Biophys. Mol. Biol. 96:60–89
    [Google Scholar]
  66. 66.  Arndt M, Juffmann T, Vedral V 2009. Quantum physics meets biology. HFSP J 3:386–400
    [Google Scholar]
  67. 67.  Tan SZ, Begley P, Mullard G, Hollywood KA, Bishop PN 2016. Introduction to metabolomics and its applications in ophthalmology. Eye 30:773–83
    [Google Scholar]
  68. 68.  Yang HJ, Ratnapriya R, Cogliati T, Kim JW, Swaroop A 2015. Vision from next generation sequencing: multi-dimensional genome-wide analysis for producing gene regulatory networks underlying retinal development, aging and disease. Prog. Retin. Eye Res. 46:1–30
    [Google Scholar]
  69. 69.  Tian L, Kazmierkiewicz KL, Bowman AS, Li M, Curcio CA, Stambolian DE 2015. Transcriptome of the human retina, retinal pigmented epithelium and choroid. Genomics 105:253–64
    [Google Scholar]
  70. 70.  Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K et al. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–14
    [Google Scholar]
  71. 71.  Hongisto H, Jylha A, Nattinen J, Rieck J, Ilmarinen T et al. 2017. Comparative proteomic analysis of human embryonic stem cell-derived and primary human retinal pigment epithelium. Sci. Rep. 7:6016
    [Google Scholar]
  72. 72.  Yao Z, Petschnigg J, Ketteler R, Stagljar I 2015. Application guide for omics approaches to cell signaling. Nat. Chem. Biol. 11:387–97
    [Google Scholar]
  73. 73.  Kiel C, Vogt A, Campagna A, Chatr-aryamontri A, Swiatek-de Lange M et al. 2011. Structural and functional protein network analyses predict novel signaling functions for rhodopsin. Mol. Syst. Biol. 7:551
    [Google Scholar]
  74. 74.  Smith JJ, Aitchison JD 2013. Peroxisomes take shape. Nat. Rev. Mol. Cell Biol. 14:803–17
    [Google Scholar]
  75. 75.  Schiapparelli LM, McClatchy DB, Liu HH, Sharma P, Yates JR, Cline HT 2014. Direct detection of biotinylated proteins by mass spectrometry. J. Proteome Res. 13:3966–78
    [Google Scholar]
  76. 76.  Hurley JB, Lindsay KJ, Du J 2015. Glucose, lactate, and shuttling of metabolites in vertebrate retinas. J. Neurosci. Res. 93:1079–92
    [Google Scholar]
  77. 77.  Bordas R, Gillow K, Lou Q, Efimov IR, Gavaghan D et al. 2011. Rabbit-specific ventricular model of cardiac electrophysiological function including specialized conduction system. Prog. Biophys. Mol. Biol. 107:90–100
    [Google Scholar]
  78. 78.  Lewis NE, Schramm G, Bordbar A, Schellenberger J, Andersen MP et al. 2010. Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat. Biotechnol. 28:1279–85
    [Google Scholar]
  79. 79.  Invergo BM, Montanucci L, Koch KW, Bertranpetit J, Dell'Orco D 2013. Exploring the rate-limiting steps in visual phototransduction recovery by bottom-up kinetic modeling. Cell Commun. Signal. 11:36
    [Google Scholar]
  80. 80.  Okawa H, Sampath AP, Laughlin SB, Fain GL 2008. ATP consumption by mammalian rod photoreceptors in darkness and in light. Curr. Biol. 18:1917–21
    [Google Scholar]
  81. 81.  Roberts PA, Gaffney EA, Luthert PJ, Foss AJ, Byrne HM 2016. Retinal oxygen distribution and the role of neuroglobin. J. Math. Biol. 73:1–38
    [Google Scholar]
  82. 82.  Yu DY, Cringle SJ, Yu PK, Su EN 2007. Intraretinal oxygen distribution and consumption during retinal artery occlusion and graded hyperoxic ventilation in the rat. Investig. Ophthalmol. Vis. Sci. 48:2290–96
    [Google Scholar]
  83. 83.  Perilla JR, Schulten K 2017. Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations. Nat. Commun. 8:15959
    [Google Scholar]
  84. 84.  Cooling MT, Nickerson DP, Nielsen PM, Hunter PJ 2016. Modular modelling with Physiome standards. J. Physiol. 594:6817–31
    [Google Scholar]
  85. 85.  de Bono B, Grenon P, Sammut SJ 2012. ApiNATOMY: a novel toolkit for visualizing multiscale anatomy schematics with phenotype-related information. Hum. Mutat. 33:837–48
    [Google Scholar]
  86. 86.  Fenner JW, Brook B, Clapworthy G, Coveney PV, Feipel V et al. 2008. The EuroPhysiome, STEP and a roadmap for the virtual physiological human. Philos. Trans. R. Soc. A 366:2979–99
    [Google Scholar]
  87. 87.  Kohler S, Vasilevsky NA, Engelstad M, Foster E, McMurry J et al. 2017. The Human Phenotype Ontology in 2017. Nucleic Acids Res 45:D865–76
    [Google Scholar]
  88. 88.  Clapworthy G, Viceconti M, Coveney PV, Kohl P 2008. Editorial. Philos. Trans. R. Soc. A 366:2975–78
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-080917-013356
Loading
/content/journals/10.1146/annurev-biodatasci-080917-013356
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error