1932

Abstract

An interplay of experimental and computational methods is required to achieve a comprehensive understanding of protein–RNA interactions. UV crosslinking and immunoprecipitation (CLIP) identifies endogenous interactions by sequencing RNA fragments that copurify with a selected RNA-binding protein under stringent conditions. Here we focus on approaches for the analysis of the resulting data and appraise the methods for peak calling, visualization, analysis, and computational modeling of protein–RNA binding sites. We advocate that the sensitivity and specificity of data be assessed in combination for computational quality control. Moreover, we demonstrate the value of analyzing sequence motif enrichment in peaks assigned from CLIP data and of visualizing RNA maps, which examine the positional distribution of peaks around regulated landmarks in transcripts. We use these to assess how variations in CLIP data quality and in different peak calling methods affect the insights into regulatory mechanisms. We conclude by discussing future opportunities for the computational analysis of protein–RNA interaction experiments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-080917-013525
2018-07-20
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/1/1/annurev-biodatasci-080917-013525.html?itemId=/content/journals/10.1146/annurev-biodatasci-080917-013525&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Gerstberger S, Hafner M, Tuschl T 2014. A census of human RNA-binding proteins. Nat. Rev. Genet. 15:12829–45
    [Google Scholar]
  2. 2.  Beckmann BM, Castello A, Medenbach J 2016. The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions. Pflügers Arch 468:61029–40
    [Google Scholar]
  3. 3.  Lewis CJT, Pan T, Kalsotra A 2017. RNA modifications and structures cooperate to guide RNA–protein interactions. Nat. Rev. Mol. Cell Biol. 18:3202–10
    [Google Scholar]
  4. 4.  Jens M, Rajewsky N 2015. Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat. Rev. Genet. 16:2113–26
    [Google Scholar]
  5. 5.  Shetlar MD, Carbone J, Steady E, Hom K 1984. Photochemical addition of amino acids and peptides to polyuridylic acid. Photochem. Photobiol. 39:2141–44
    [Google Scholar]
  6. 6.  Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB 2003. CLIP identifies Nova-regulated RNA networks in the brain. Science 302:56481212–15
    [Google Scholar]
  7. 7.  Lee FCY, Ule J 2018. Advances in CLIP technologies for studies or protein-RNA interactions. Mol. Cell 69:3354–69
    [Google Scholar]
  8. 8.  Hentze MW, Castello A, Schwarzl T, Preiss T 2018. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19:327–41
    [Google Scholar]
  9. 9.  Yeo GW, Coufal NG, Liang TY, Peng GE, Fu X-D, Gage FH 2009. An RNA code for the FOX2 splicing regulator revealed by mapping RNA–protein interactions in stem cells. Nat. Struct. Mol. Biol. 16:2130–37
    [Google Scholar]
  10. 10.  Ule J, Stefani G, Mele A, Ruggiu M, Wang X et al. 2006. An RNA map predicting Nova-dependent splicing regulation. Nature 444:7119580–86
    [Google Scholar]
  11. 11.  Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M et al. 2008. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:7221464–69
    [Google Scholar]
  12. 12.  Sugimoto Y, König J, Hussain S, Zupan B, Curk T et al. 2012. Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biol 13:8R67
    [Google Scholar]
  13. 13.  Zhang C, Darnell RB 2011. Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat. Biotechnol. 29:7607–14
    [Google Scholar]
  14. 14.  Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J et al. 2010. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:1129–41
    [Google Scholar]
  15. 15.  König J, Zarnack K, Rot G, Curk T, Kayikci M et al. 2010. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17:7909–15
    [Google Scholar]
  16. 16.  Haberman N, Huppertz I, Attig J, König J, Wang Z et al. 2017. Insights into the design and interpretation of iCLIP experiments. Genome Biol 18:17
    [Google Scholar]
  17. 17.  Van Nostrand EL, Pratt GA, Shishkin AA, Gelboin-Burkhart C, Fang MY et al. 2016. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13:6508–14
    [Google Scholar]
  18. 18.  Zarnegar BJ, Flynn RA, Shen Y, Do BT, Chang HY, Khavari PA 2016. irCLIP platform for efficient characterization of protein–RNA interactions. Nat. Methods 13:6489–92
    [Google Scholar]
  19. 19.  Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM et al. 2012. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:61393–406
    [Google Scholar]
  20. 20.  Huppertz I, Attig J, D'Ambrogio A, Easton LE, Sibley CR et al. 2014. iCLIP: protein–RNA interactions at nucleotide resolution. Methods 65:3274–87
    [Google Scholar]
  21. 21.  Sugimoto Y, Vigilante A, Darbo E, Zirra A, Militti C et al. 2015. hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 519:7544491–94
    [Google Scholar]
  22. 22.  Baruzzo G, Hayer KE, Kim EJ, Di Camillo B, FitzGerald GA, Grant GR 2017. Simulation-based comprehensive benchmarking of RNA-seq aligners. Nat. Methods 14:2135–39
    [Google Scholar]
  23. 23.  Zarnack K, König J, Tajnik M, Martincorena I, Eustermann S et al. 2013. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 152:3453–66
    [Google Scholar]
  24. 24.  Attig J, Ruiz de los Mozos I, Haberman N, Wang Z, Emmett W et al. 2016. Splicing repression allows the gradual emergence of new Alu-exons in primate evolution. eLife 5:e19545
    [Google Scholar]
  25. 25.  Van Nostrand EL, Freese P, Pratt GA, Wang X, Wei X et al. 2017. A large-scale binding and functional map of human RNA binding proteins. bioRxiv 179648. https://doi.org/10.1101/179648
    [Crossref]
  26. 26.  Zhang Z, Xing Y 2017. CLIP-seq analysis of multi-mapped reads discovers novel functional RNA regulatory sites in the human transcriptome. Nucleic Acids Res 45:169260–71
    [Google Scholar]
  27. 27.  Shah A, Qian Y, Weyn-Vanhentenryck SM, Zhang C 2017. CLIP Tool Kit (CTK): a flexible and robust pipeline to analyze CLIP sequencing data. Bioinformatics 33:4566–67
    [Google Scholar]
  28. 28.  König J, Zarnack K, Luscombe NM, Ule J 2012. Protein–RNA interactions: new genomic technologies and perspectives. Nat. Rev. Genet. 13:277–83
    [Google Scholar]
  29. 29.  Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS et al. 2013. A compendium of RNA-binding motifs for decoding gene regulation. Nature 499:7457172–77
    [Google Scholar]
  30. 30.  Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M 2011. A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat. Methods 8:7559–64
    [Google Scholar]
  31. 31.  Hauer C, Curk T, Anders S, Schwarzl T, Alleaume A-M et al. 2015. Improved binding site assignment by high-resolution mapping of RNA–protein interactions using iCLIP. Nat. Commun. 6:7921
    [Google Scholar]
  32. 32.  Jankowsky E, Harris ME 2015. Specificity and nonspecificity in RNA–protein interactions. Nat. Rev. Mol. Cell Biol. 16:9533–44
    [Google Scholar]
  33. 33.  De S, Gorospe M 2017. Bioinformatic tools for analysis of CLIP ribonucleoprotein data. Wiley Interdiscip. Rev. RNA 8:4e1404
    [Google Scholar]
  34. 34.  Uhl M, Houwaart T, Corrado G, Wright PR, Backofen R 2017. Computational analysis of CLIP-seq data. Methods 118–19:60–72
    [Google Scholar]
  35. 35.  Bottini S, Hamouda-Tekaya N, Tanasa B, Zaragosi L-E, Grandjean V et al. 2017. From benchmarking HITS-CLIP peak detection programs to a new method for identification of miRNA-binding sites from Ago2-CLIP data. Nucleic Acids Res 45:9e71
    [Google Scholar]
  36. 36.  Corcoran DL, Georgiev S, Mukherjee N, Gottwein E, Skalsky RL et al. 2011. PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol 12:8R79
    [Google Scholar]
  37. 37.  Chen B, Yun J, Kim MS, Mendell JT, Xie Y 2014. PIPE-CLIP: a comprehensive online tool for CLIP-seq data analysis. Genome Biol 15:1R18
    [Google Scholar]
  38. 38.  Sievers C, Schlumpf T, Sawarkar R, Comoglio F, Paro R 2012. Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP data. Nucleic Acids Res 40:20e160
    [Google Scholar]
  39. 39.  Comoglio F, Sievers C, Paro R 2015. Sensitive and highly resolved identification of RNA-protein interaction sites in PAR-CLIP data. BMC Bioinform 16:32
    [Google Scholar]
  40. 40.  Wang T, Xiao G, Chu Y, Zhang MQ, Corey DR, Xie Y 2015. Design and bioinformatics analysis of genome-wide CLIP experiments. Nucleic Acids Res 43:115263–74
    [Google Scholar]
  41. 41.  Kucukural A, Özadam H, Singh G, Moore MJ, Cenik C 2013. ASPeak: an abundance sensitive peak detection algorithm for RIP-Seq. Bioinformatics 29:192485–86
    [Google Scholar]
  42. 42.  Uren PJ, Bahrami-Samani E, Burns SC, Qiao M, Karginov FV et al. 2012. Site identification in high-throughput RNA–protein interaction data. Bioinformatics 28:233013–20
    [Google Scholar]
  43. 43.  Althammer S, González-Vallinas J, Ballaré C, Beato M, Eyras E 2011. Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data. Bioinformatics 27:243333–40
    [Google Scholar]
  44. 44.  Lovci MT, Ghanem D, Marr H, Arnold J, Gee S et al. 2013. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat. Struct. Mol. Biol. 20:121434–42
    [Google Scholar]
  45. 45.  Takeda J-I, Masuda A, Ohno K 2017. Six GU-rich (6GUR) FUS-binding motifs detected by normalization of CLIP-seq by Nascent-seq. Gene 618:57–64
    [Google Scholar]
  46. 46.  Ule J, Jensen K, Mele A, Darnell RB 2005. CLIP: a method for identifying protein–RNA interaction sites in living cells. Methods 37:4376–86
    [Google Scholar]
  47. 47.  Ameur A, Zaghlool A, Halvardson J, Wetterbom A, Gyllensten U et al. 2011. Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain. Nat. Struct. Mol. Biol. 18:121435–40
    [Google Scholar]
  48. 48.  Sibley CR, Emmett W, Blazquez L, Faro A, Haberman N et al. 2015. Recursive splicing in long vertebrate genes. Nature 521:7552371–75
    [Google Scholar]
  49. 49.  Rogelj B, Easton LE, Bogu GK, Stanton LW, Rot G et al. 2012. Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain. Sci. Rep. 2:603
    [Google Scholar]
  50. 50.  Lagier-Tourenne C, Polymenidou M, Hutt KR, Vu AQ, Baughn M et al. 2012. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat. Neurosci. 15:111488–97
    [Google Scholar]
  51. 51.  Brugiolo M, Botti V, Liu N, Müller-McNicoll M, Neugebauer KM 2017. Fractionation iCLIP detects persistent SR protein binding to conserved, retained introns in chromatin, nucleoplasm and cytoplasm. Nucleic Acids Res 45:1810452–65
    [Google Scholar]
  52. 52.  Sanford JR, Coutinho P, Hackett JA, Wang X, Ranahan W, Caceres JF 2008. Identification of nuclear and cytoplasmic mRNA targets for the shuttling protein SF2/ASF. PLOS ONE 3:10e3369
    [Google Scholar]
  53. 53.  Hussain S, Sajini AA, Blanco S, Dietmann S, Lombard P et al. 2013. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep 4:2255–61
    [Google Scholar]
  54. 54.  Krakau S, Richard H, Marsico A 2017. PureCLIP: capturing target-specific protein–RNA interaction footprints from single-nucleotide CLIP-seq data. Genome Biol 18:240
    [Google Scholar]
  55. 55.  Drewe-Boss P, Wessels H-H, Ohler U 2017. omniCLIP: Bayesian identification of protein-RNA interactions from CLIP-Seq data. bioRxiv 161877. http://doi.org/10.1101/161877
    [Crossref]
  56. 56.  Li Q, Brown JB, Huang H, Bickel PJ 2011. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5:31752–79
    [Google Scholar]
  57. 57.  Bailey TL 2011. DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27:121653–59
    [Google Scholar]
  58. 58.  Heinz S, Benner C, Spann N, Bertolino E, Lin YC et al. 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell. 38:4576–89
    [Google Scholar]
  59. 59.  Liu SS, Hockenberry AJ, Lancichinetti A, Jewett MC, Amaral LAN 2016. NullSeq: a tool for generating random coding sequences with desired amino acid and GC contents. PLOS Comput. Biol. 12:11e1005184
    [Google Scholar]
  60. 60.  Wu X, Bartel DP 2017. kpLogo: Positional k-mer analysis reveals hidden specificity in biological sequences. Nucleic Acids Res 45:W534–38
    [Google Scholar]
  61. 61.  Grant CE, Bailey TL, Noble WS 2011. FIMO: scanning for occurrences of a given motif. Bioinformatics 27:71017–18
    [Google Scholar]
  62. 62.  Dominguez D, Freese P, Alexis MS, Su A, Hochman M et al. 2017. Sequence, structure and context preferences of human RNA binding proteins. bioRxiv 201996. http://doi.org/10.1101/201996
    [Crossref]
  63. 63.  Lambert N, Robertson A, Jangi M, McGeary S, Sharp PA, Burge CB 2014. RNA Bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins. Mol. Cell. 54:5887–900
    [Google Scholar]
  64. 64.  Fukunaga T, Ozaki H, Terai G, Asai K, Iwasaki W, Kiryu H 2014. CapR: revealing structural specificities of RNA-binding protein target recognition using CLIP-seq data. Genome Biol 15:1R16
    [Google Scholar]
  65. 65.  Li X, Quon G, Lipshitz HD, Morris Q 2010. Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure. RNA 16:61096–107
    [Google Scholar]
  66. 66.  Hiller M, Pudimat R, Busch A, Backofen R 2006. Using RNA secondary structures to guide sequence motif finding towards single-stranded regions. Nucleic Acids Res 34:17e117
    [Google Scholar]
  67. 67.  Bahrami-Samani E, Penalva LOF, Smith AD, Uren PJ 2015. Leveraging cross-link modification events in CLIP-seq for motif discovery. Nucleic Acids Res 43:195–103
    [Google Scholar]
  68. 68.  Kazan H, Ray D, Chan ET, Hughes TR, Morris Q 2010. RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins. PLOS Comput. Biol. 6:e1000832
    [Google Scholar]
  69. 69.  Heller D, Krestel R, Ohler U, Vingron M, Marsico A 2017. ssHMM: extracting intuitive sequence-structure motifs from high-throughput RNA-binding protein data. Nucleic Acids Res 45:1911004–18
    [Google Scholar]
  70. 70.  Maticzka D, Lange SJ, Costa F, Backofen R 2014. GraphProt: modeling binding preferences of RNA-binding proteins. Genome Biol 15:1R17
    [Google Scholar]
  71. 71.  Li S, Dong F, Wu Y, Zhang S, Zhang C et al. 2017. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data. Nucleic Acids Res 45:14e129
    [Google Scholar]
  72. 72.  Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B et al. 2015. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519:7544486–90
    [Google Scholar]
  73. 73.  Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS 2014. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. . Nature 505:7485701–5
    [Google Scholar]
  74. 74.  Zubradt M, Gupta P, Persad S, Lambowitz AM, Weissman JS, Rouskin S 2017. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. . Methods 14:175–82
    [Google Scholar]
  75. 75.  Ding Y, Kwok CK, Tang Y, Bevilacqua PC, Assmann SM 2015. Genome-wide profiling of in vivo RNA structure at single-nucleotide resolution using structure-seq. Nat. Protoc. 10:71050–66
    [Google Scholar]
  76. 76.  Ritchey LE, Su Z, Tang Y, Tack DC, Assmann SM, Bevilacqua PC 2017. Structure-seq2: sensitive and accurate genome-wide profiling of RNA structure in vivo. Nucleic Acids Res 45:14e135
    [Google Scholar]
  77. 77.  Lu Z, Zhang QC, Lee B, Flynn RA, Smith MA et al. 2016. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165:51267–79
    [Google Scholar]
  78. 78.  Sharma E, Sterne-Weiler T, O'Hanlon D, Blencowe BJ 2016. Global mapping of human RNA-RNA interactions. Mol. Cell. 62:4618–26
    [Google Scholar]
  79. 79.  Aw JGA, Shen Y, Wilm A, Sun M, Lim XN et al. 2016. In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell. 62:4603–17
    [Google Scholar]
  80. 80.  Babak T, Blencowe BJ, Hughes TR 2007. Considerations in the identification of functional RNA structural elements in genomic alignments. BMC Bioinform 8:33
    [Google Scholar]
  81. 81.  Eddy SR 2014. Computational analysis of conserved RNA secondary structure in transcriptomes and genomes. Annu. Rev. Biophys. 43:433–56
    [Google Scholar]
  82. 82.  Lorenz R, Luntzer D, Hofacker IL, Stadler PF, Wolfinger MT 2016. SHAPE directed RNA folding. Bioinformatics 32:1145–47
    [Google Scholar]
  83. 83.  Stražar M, Žitnik M, Zupan B, Ule J, Curk T 2016. Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins. Bioinformatics 32:101527–35
    [Google Scholar]
  84. 84.  Pan X, Shen H-B 2017. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach. BMC Bioinform. 18:1136
    [Google Scholar]
  85. 85.  Pan X, Rijnbeek P, Yan J, Shen H-B 2017. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks. bioRxiv 146175. http://doi.org/10.1101/146175
    [Crossref]
  86. 86.  Coelho MB, Attig J, Bellora N, König J, Hallegger M et al. 2015. Nuclear matrix protein Matrin3 regulates alternative splicing and forms overlapping regulatory networks with PTB. EMBO J 34:5653–68
    [Google Scholar]
  87. 87.  Blin K, Dieterich C, Wurmus R, Rajewsky N, Landthaler M, Akalin A 2015. DoRiNA 2.0–upgrading the doRiNA database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res 43:D160–67
    [Google Scholar]
  88. 88.  Hu B, Yang Y-CT, Huang Y, Zhu Y, Lu ZJ 2017. POSTAR: a platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins. Nucleic Acids Res 45:D1D104–14
    [Google Scholar]
  89. 89.  Li YE, Xiao M, Shi B, Yang Y-CT, Wang D et al. 2017. Identification of high-confidence RNA regulatory elements by combinatorial classification of RNA-protein binding sites. Genome Biol 18:1169
    [Google Scholar]
  90. 90.  Witten JT, Ule J 2011. Understanding splicing regulation through RNA splicing maps. Trends Genet 27:389–97
    [Google Scholar]
  91. 91.  Brannan KW, Jin W, Huelga SC, Banks CAS, Gilmore JM et al. 2016. SONAR discovers RNA-binding proteins from analysis of large-scale protein-protein interactomes. Mol. Cell. 64:2282–93
    [Google Scholar]
  92. 92.  Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A et al. 2017. A subcellular map of the human proteome. Science 356:6340eaal3321
    [Google Scholar]
  93. 93.  Nussbacher JK, Batra R, Lagier-Tourenne C, Yeo GW 2015. RNA-binding proteins in neurodegeneration: Seq and you shall receive. Trends Neurosci 38:4226–36
    [Google Scholar]
  94. 94.  Pereira B, Billaud M, Almeida R 2017. RNA-binding proteins in cancer: old players and new actors. Trends Cancer Res 3:7506–28
    [Google Scholar]
  95. 95.  Cartegni L, Krainer AR 2002. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat. Genet. 30:4377–84
    [Google Scholar]
  96. 96.  Mercuri E, Finkel R, Kirschner J, Chiriboga CA, Kuntz N et al. 2017. Interim analysis of the phase 3 CHERISH study evaluating nusinersen in patients with later-onset spinal muscular atrophy (SMA): primary and descriptive secondary endpoints. Eur. J. Paediatr. Neurol. 21:Suppl. 1e15
    [Google Scholar]
  97. 97.  Rot G, Wang Z, Huppertz I, Modic M, Lenče T et al. 2017. High-resolution RNA maps suggest common principles of splicing and polyadenylation regulation by TDP-43. Cell Rep 19:51056–67
    [Google Scholar]
  98. 98.  Park JW, Jung S, Rouchka EC, Tseng Y-T, Xing Y 2016. rMAPS: RNA map analysis and plotting server for alternative exon regulation. Nucleic Acids Res 44:W1W333–38
    [Google Scholar]
  99. 99.  Cereda M, Pozzoli U, Rot G, Juvan P, Schweitzer A et al. 2014. RNAmotifs: prediction of multivalent RNA motifs that control alternative splicing. Genome Biol 15:1R20
    [Google Scholar]
  100. 100.  Xue Y, Zhou Y, Wu T, Zhu T, Ji X et al. 2009. Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping. Mol. Cell. 36:6996–1006
    [Google Scholar]
  101. 101.  Shen S, Park JW, Lu Z-X, Lin L, Henry MD et al. 2014. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. PNAS 111:51E5593–601
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-080917-013525
Loading
/content/journals/10.1146/annurev-biodatasci-080917-013525
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error