1932

Abstract

Next-generation sequencing technologies have revolutionized our ability to catalog the landscape of somatic mutations in tumor genomes. These mutations can sometimes create so-called neoantigens, which allow the immune system to detect and eliminate tumor cells. However, efforts that stimulate the immune system to eliminate tumors based on their molecular differences have had less success than has been hoped for, and there are conflicting reports about the role of neoantigens in the success of this approach. Here we review some of the conflicting evidence in the literature and highlight key aspects of the tumor–immune interface that are emerging as major determinants of whether mutation-derived neoantigens will contribute to an immunotherapy response. Accounting for these factors is expected to improve success rates of future immunotherapy approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-092820-112713
2021-07-20
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/4/1/annurev-biodatasci-092820-112713.html?itemId=/content/journals/10.1146/annurev-biodatasci-092820-112713&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Schöne G. 1919. Die heteroplastische und homöoplastische Transplantation Berlin: Springer-Verlag
    [Google Scholar]
  2. 2. 
    Silverstein AM. 1989. Transplantation and immunogenetics. A History of Immunology275–304 San Diego, CA: Academic
    [Google Scholar]
  3. 3. 
    Gorer PA, Null N, Lyman S, Null N, Snell GD et al. 1948. Studies on the genetic and antigenic basis of tumour transplantation: linkage between a histocompatibility gene and “fused” in mice. Proc. R. Soc. B 135:881499–505
    [Google Scholar]
  4. 4. 
    Snell GD, Higgins GF. 1951. Alleles at the histocompatibility-2 locus in the mouse as determined by tumor transplantation. Genetics 36:3306–10
    [Google Scholar]
  5. 5. 
    Burnet M. 1969. Self and Not-Self: Cellular Immunology Book One Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  6. 6. 
    Kappler JW, Roehm N, Marrack P. 1987. T cell tolerance by clonal elimination in the thymus. Cell 49:2273–80
    [Google Scholar]
  7. 7. 
    Yu W, Jiang N, Ebert PJR, Kidd BA, Müller S et al. 2015. Clonal deletion prunes but does not eliminate self-specific αβ CD8+ T lymphocytes. Immunity 42:5929–41
    [Google Scholar]
  8. 8. 
    Burnet FM. 1970. The concept of immunological surveillance. Prog. Exp. Tumor Res. 13:1–27
    [Google Scholar]
  9. 9. 
    Old LJ. 2001. Cancer/testis (CT) antigens: a new link between gametogenesis and cancer. Cancer Immun 1:1
    [Google Scholar]
  10. 10. 
    Finn OJ. 2017. Human tumor antigens yesterday, today, and tomorrow. Cancer Immunol. Res. 5:5347–54
    [Google Scholar]
  11. 11. 
    Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. 2014. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer 14:2135–46
    [Google Scholar]
  12. 12. 
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. 2002. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3:11991–98
    [Google Scholar]
  13. 13. 
    Schreiber RD, Old LJ, Smyth MJ. 2011. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331:60241565–70
    [Google Scholar]
  14. 14. 
    Karlsson EK, Kwiatkowski DP, Sabeti PC. 2014. Natural selection and infectious disease in human populations. Nat. Rev. Genet. 15:6379–93
    [Google Scholar]
  15. 15. 
    Vogelstein B, Kinzler KW. 2004. Cancer genes and the pathways they control. Nat. Med. 10:8789–99
    [Google Scholar]
  16. 16. 
    Tomasetti C, Vogelstein B. 2015. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347:621778–81
    [Google Scholar]
  17. 17. 
    Vitiello A, Zanetti M. 2017. Neoantigen prediction and the need for validation. Nat. Biotechnol. 35:9815–17
    [Google Scholar]
  18. 18. 
    Kochan G, Escors D, Breckpot K, Guerrero-Setas D. 2013. Role of non-classical MHC class I molecules in cancer immunosuppression. OncoImmunology 2:11e26491
    [Google Scholar]
  19. 19. 
    D'Souza MP, Adams E, Altman JD, Birnbaum ME, Boggiano C et al. 2019. Casting a wider net: immunosurveillance by nonclassical MHC molecules. PLOS Pathog 15:2e1007567
    [Google Scholar]
  20. 20. 
    Scarabel L, Garziera M, Fortuna S, Asaro F, Toffoli G, Geremia S. 2020. Soluble HLA-G expression levels and HLA-G/irinotecan association in metastatic colorectal cancer treated with irinotecan-based strategy. Sci. Rep. 10:8773
    [Google Scholar]
  21. 21. 
    Lin A, Yan W-H. 2018. Heterogeneity of HLA-G expression in cancers: facing the challenges. Front. Immunol. 9:2164
    [Google Scholar]
  22. 22. 
    Axelrod ML, Cook RS, Johnson DB, Balko JM. 2019. Biological consequences of MHC-II expression by tumor cells in cancer. Clin. Cancer Res. 25:82392–402
    [Google Scholar]
  23. 23. 
    Rock KL, Reits E, Neefjes J. 2016. Present yourself! By MHC class I and MHC class II molecules. Trends Immunol 37:11724–37
    [Google Scholar]
  24. 24. 
    Colbert JD, Cruz FM, Rock KL. 2020. Cross-presentation of exogenous antigens on MHC I molecules. Curr. Opin. Immunol. 64:1–8
    [Google Scholar]
  25. 25. 
    Sánchez-Paulete AR, Teijeira A, Cueto FJ, Garasa S, Pérez-Gracia JL et al. 2017. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Ann. Oncol. 28:Suppl. 1244–55
    [Google Scholar]
  26. 26. 
    Sliwkowski MX, Mellman I. 2013. Antibody therapeutics in cancer. Science 341:61511192–98
    [Google Scholar]
  27. 27. 
    Rosenberg SA, Restifo NP. 2015. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348:623062–68
    [Google Scholar]
  28. 28. 
    Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J et al. 2015. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348:6236803–8
    [Google Scholar]
  29. 29. 
    Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J et al. 2017. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547:7662217–21
    [Google Scholar]
  30. 30. 
    Sahin U, Derhovanessian E, Miller M, Kloke B-P, Simon P et al. 2017. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547:7662222–26
    [Google Scholar]
  31. 31. 
    Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S et al. 2019. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565:7738240–45
    [Google Scholar]
  32. 32. 
    Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND et al. 2019. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565:7738234–39
    [Google Scholar]
  33. 33. 
    Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM et al. 2014. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371:232189–99
    [Google Scholar]
  34. 34. 
    Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA et al. 2019. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann. Oncol. 30:144–56
    [Google Scholar]
  35. 35. 
    Samstein RM, Lee C-H, Shoushtari AN, Hellmann MD, Shen R et al. 2019. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51:2202–6
    [Google Scholar]
  36. 36. 
    Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM et al. 2017. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9:34
    [Google Scholar]
  37. 37. 
    Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P et al. 2018. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J. Clin. Oncol. 36:7633–41
    [Google Scholar]
  38. 38. 
    Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C et al. 2015. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350:6257207–11
    [Google Scholar]
  39. 39. 
    Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V et al. 2015. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:6230124–28
    [Google Scholar]
  40. 40. 
    Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV et al. 2016. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387:100311909–20
    [Google Scholar]
  41. 41. 
    Cristescu R, Mogg R, Ayers M, Albright A, Murphy E et al. 2018. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362:6411eaar3593 Erratum. 2019. Science 363(6430):eaax1384
    [Google Scholar]
  42. 42. 
    Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim S-W et al. 2019. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N. Engl. J. Med. 381:212020–31
    [Google Scholar]
  43. 43. 
    Garassino M, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E et al. 2019. Evaluation of TMB in KEYNOTE-189: pembrolizumab plus chemotherapy versus placebo plus chemotherapy for nonsquamous NSCLC. J. Thorac. Oncol. 14:10S216–17 Oral Abstr. 04.06 )
    [Google Scholar]
  44. 44. 
    Langer C, Gadgeel S, Borghaei H, Patnaik A, Powell S et al. 2019. KEYNOTE-021: TMB and outcomes for carboplatin and pemetrexed with or without pembrolizumab for nonsquamous NSCLC. J. Thorac. Oncol. 14:10S216 Oral Abstr. 04.05 )
    [Google Scholar]
  45. 45. 
    Wood MA, Weeder BR, David JK, Nellore A, Thompson RF. 2020. Burden of tumor mutations, neoepitopes, and other variants are weak predictors of cancer immunotherapy response and overall survival. Genome Med 12:33
    [Google Scholar]
  46. 46. 
    Keenan TE, Burke KP, Van Allen EM. 2019. Genomic correlates of response to immune checkpoint blockade. Nat. Med. 25:3389–402
    [Google Scholar]
  47. 47. 
    Havel JJ, Chowell D, Chan TA. 2019. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19:3133–50
    [Google Scholar]
  48. 48. 
    Yi M, Jiao D, Xu H, Liu Q, Zhao W et al. 2018. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol. Cancer 17:129
    [Google Scholar]
  49. 49. 
    Aguiar VRC, César J, Delaneau O, Dermitzakis ET, Meyer D. 2019. Expression estimation and eQTL mapping for HLA genes with a personalized pipeline. PLOS Genet 15:4e1008091
    [Google Scholar]
  50. 50. 
    Shukla SA, Rooney MS, Rajasagi M, Tiao G, Dixon PM et al. 2015. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat. Biotechnol. 33:111152–58
    [Google Scholar]
  51. 51. 
    Xie C, Yeo ZX, Wong M, Piper J, Long T et al. 2017. Fast and accurate HLA typing from short-read next-generation sequence data with xHLA. PNAS 114:308059–64
    [Google Scholar]
  52. 52. 
    Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O. 2014. OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics 30:233310–16
    [Google Scholar]
  53. 53. 
    Kawaguchi S, Higasa K, Shimizu M, Yamada R, Matsuda F. 2017. HLA-HD: an accurate HLA typing algorithm for next-generation sequencing data. Hum. Mutat. 38:7788–97
    [Google Scholar]
  54. 54. 
    McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK et al. 2017. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171:61259–71.e11
    [Google Scholar]
  55. 55. 
    Cabrera T, Maleno I, Lopez-Nevot MA, Redondo M, Fernandez MA et al. 2003. High frequency of HLA-B44 allelic losses in human solid tumors. Hum. Immunol. 64:10941–50
    [Google Scholar]
  56. 56. 
    Watkins TBK, Lim EL, Petkovic M, Elizalde S, Birkbak NJ et al. 2020. Pervasive chromosomal instability and karyotype order in tumour evolution. Nature 587:126–32
    [Google Scholar]
  57. 57. 
    Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M et al. 2017. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8:1136
    [Google Scholar]
  58. 58. 
    Ben-Shmuel A, Biber G, Barda-Saad M. 2020. Unleashing natural killer cells in the tumor microenvironment—the next generation of immunotherapy?. Front. Immunol. 11:275
    [Google Scholar]
  59. 59. 
    Castro A, Ozturk K, Pyke RM, Xian S, Zanetti M, Carter H. 2019. Elevated neoantigen levels in tumors with somatic mutations in the HLA-A, HLA-B, HLA-C and B2M genes. BMC Med. Genom. 12:Suppl. 6107
    [Google Scholar]
  60. 60. 
    Le DT, Durham JN, Smith KN, Wang H, Bartlett BR et al. 2017. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:6349409–13
    [Google Scholar]
  61. 61. 
    Grasso CS, Giannakis M, Wells DK, Hamada T, Mu XJ et al. 2018. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov 8:6730–49
    [Google Scholar]
  62. 62. 
    Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA. 1996. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J. Natl. Cancer Inst. 88:2100–8
    [Google Scholar]
  63. 63. 
    Paulson KG, Voillet V, McAfee MS, Hunter DS, Wagener FD et al. 2018. Acquired cancer resistance to combination immunotherapy from transcriptional loss of class I HLA. Nat. Commun. 9:3868
    [Google Scholar]
  64. 64. 
    Huang L, Malu S, McKenzie JA, Andrews MC, Talukder AH et al. 2018. The RNA-binding protein MEX3B mediates resistance to cancer immunotherapy by downregulating HLA-A expression. Clin. Cancer Res. 24:143366–76
    [Google Scholar]
  65. 65. 
    Bernards R, Dessain SK, Weinberg RA. 1986. N-myc amplification causes down-modulation of MHC class I antigen expression in neuroblastoma. Cell 47:5667–74
    [Google Scholar]
  66. 66. 
    Burr ML, Sparbier CE, Chan KL, Chan Y-C, Kersbergen A et al. 2019. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell 36:4385–401.e8
    [Google Scholar]
  67. 67. 
    Bradley SD, Chen Z, Melendez B, Talukder A, Khalili JS et al. 2015. BRAFV600E co-opts a conserved MHC class I internalization pathway to diminish antigen presentation and CD8+ T-cell recognition of melanoma. Cancer Immunol. Res. 3:6602–9
    [Google Scholar]
  68. 68. 
    Miyadera H, Ohashi J, Lernmark Å, Kitamura T, Tokunaga K. 2015. Cell-surface MHC density profiling reveals instability of autoimmunity-associated HLA. J. Clin. Investig. 125:1275–91
    [Google Scholar]
  69. 69. 
    Liu GY, Fairchild PJ, Smith RM, Prowle JR, Kioussis D, Wraith DC. 1995. Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity 3:4407–15
    [Google Scholar]
  70. 70. 
    Sercarz EE, Lehmann PV, Ametani A, Benichou G, Miller A, Moudgil K. 1993. Dominance and crypticity of T cell antigenic determinants. Annu. Rev. Immunol. 11:729–66
    [Google Scholar]
  71. 71. 
    Zamora AE, Crawford JC, Thomas PG. 2018. Hitting the target: how T cells detect and eliminate tumors. J. Immunol. 200:2392–99
    [Google Scholar]
  72. 72. 
    Schreiber H, Wu TH, Nachman J, Kast WM. 2002. Immunodominance and tumor escape. Semin. Cancer Biol. 12:125–31
    [Google Scholar]
  73. 73. 
    Messaoudi I, Guevara Patiño JA, Dyall R, LeMaoult J, Nikolich-Zugich J. 2002. Direct link between mhc polymorphism, T cell avidity, and diversity in immune defense. Science 298:55991797–800
    [Google Scholar]
  74. 74. 
    Chowell D, Morris LGT, Grigg CM, Weber JK, Samstein RM et al. 2018. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359:6375582–87
    [Google Scholar]
  75. 75. 
    Chowell D, Krishna C, Pierini F, Makarov V, Rizvi NA et al. 2019. Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy. Nat. Med. 25:111715–20
    [Google Scholar]
  76. 76. 
    Negrao MV, Lam VK, Reuben A, Rubin ML, Landry LL et al. 2019. PD-L1 expression, tumor mutational burden, and cancer gene mutations are stronger predictors of benefit from immune checkpoint blockade than HLA class I genotype in non-small cell lung cancer. J. Thorac. Oncol. 14:61021–31
    [Google Scholar]
  77. 77. 
    Cummings AL, Gukasyan J, Lu HY, Grogan T, Sunga G et al. 2020. Mutational landscape influences immunotherapy outcomes among patients with non-small-cell lung cancer with human leukocyte antigen supertype B44. Nat. Cancer 1:116775
    [Google Scholar]
  78. 78. 
    Nielsen JS, Chang AR, Wick DA, Sedgwick CG, Zong Z et al. 2017. Mapping the human T cell repertoire to recurrent driver mutations in MYD88 and EZH2 in lymphoma. OncoImmunology 6:7e1321184
    [Google Scholar]
  79. 79. 
    Hellmann MD, Nathanson T, Rizvi H, Creelan BC, Sanchez-Vega F et al. 2018. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell 33:5843–52.e4
    [Google Scholar]
  80. 80. 
    Schumacher TN, Schreiber RD. 2015. Neoantigens in cancer immunotherapy. Science 348:623069–74
    [Google Scholar]
  81. 81. 
    Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ et al. 2017. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171:4934–49.e16
    [Google Scholar]
  82. 82. 
    Yamashita H, Nakayama K, Ishikawa M, Nakamura K, Ishibashi T et al. 2018. Microsatellite instability is a biomarker for immune checkpoint inhibitors in endometrial cancer. Oncotarget 9:55652–64
    [Google Scholar]
  83. 83. 
    Schrock AB, Ouyang C, Sandhu J, Sokol E, Jin D et al. 2019. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann. Oncol. 30:71096–103
    [Google Scholar]
  84. 84. 
    Turajlic S, Litchfield K, Xu H, Rosenthal R, McGranahan N et al. 2017. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol 18:81009–21
    [Google Scholar]
  85. 85. 
    McGranahan N, Swanton C. 2019. Neoantigen quality, not quantity. Sci. Transl. Med. 11:506eaax7918
    [Google Scholar]
  86. 86. 
    Balachandran VP, Łuksza M, Zhao JN, Makarov V, Moral JA et al. 2017. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551:7681512–16
    [Google Scholar]
  87. 87. 
    Goodman AM, Castro A, Pyke RM, Okamura R, Kato S et al. 2020. MHC-I genotype and tumor mutational burden predict response to immunotherapy. Genome Med 12:45
    [Google Scholar]
  88. 88. 
    Ghorani E, Reading JL, Henry JY, de Massy MR, Rosenthal R et al. 2020. The T cell differentiation landscape is shaped by tumour mutations in lung cancer. Nat. Cancer 1:5546–61
    [Google Scholar]
  89. 89. 
    Shim JH, Kim HS, Cha H, Kim S, Kim TM et al. 2020. HLA-corrected tumor mutation burden and homologous recombination deficiency for the prediction of response to PD-(L)1 blockade in advanced non-small-cell lung cancer patients. Ann. Oncol. 31:7902–11
    [Google Scholar]
  90. 90. 
    McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R et al. 2016. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351:62801463–69
    [Google Scholar]
  91. 91. 
    Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R et al. 2017. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov 7:3264–76
    [Google Scholar]
  92. 92. 
    Nielsen M, Andreatta M, Peters B, Buus S. 2020. Immunoinformatics: predicting peptide–MHC binding. Annu. Rev. Biomed. Data Sci. 3:191–215
    [Google Scholar]
  93. 93. 
    Marty R, Kaabinejadian S, Rossell D, Slifker MJ, van de Haar J et al. 2017. MHC-I genotype restricts the oncogenic mutational landscape. Cell 171:61272–83.e15
    [Google Scholar]
  94. 94. 
    Marty Pyke R, Thompson WK, Salem RM, Font-Burgada J, Zanetti M, Carter H 2018. Evolutionary pressure against MHC class II binding cancer mutations. Cell 175:2416–28.e13
    [Google Scholar]
  95. 95. 
    Abelin JG, Keskin DB, Sarkizova S, Hartigan CR, Zhang W et al. 2017. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 46:2315–26
    [Google Scholar]
  96. 96. 
    Harndahl M, Rasmussen M, Roder G, Dalgaard Pedersen I, Sørensen M et al. 2012. Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur. J. Immunol. 42:61405–16
    [Google Scholar]
  97. 97. 
    Silva Z, Ferro T, Almeida D, Soares H, Ferreira JA et al. 2020. MHC class I stability is modulated by cell surface sialylation in human dendritic cells. Pharmaceutics 12:3249
    [Google Scholar]
  98. 98. 
    Abelin JG, Harjanto D, Malloy M, Suri P, Colson T et al. 2019. Defining HLA-II ligand processing and binding rules with mass spectrometry enhances cancer epitope prediction. Immunity 51:4766–79.e17
    [Google Scholar]
  99. 99. 
    Duan F, Duitama J, Al Seesi S, Ayres CM, Corcelli SA et al. 2014. Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J. Exp. Med. 211:112231–48
    [Google Scholar]
  100. 100. 
    Łuksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD et al. 2017. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551:7681517–20
    [Google Scholar]
  101. 101. 
    Wells DK, van Buuren MM, Dang KK, Hubbard-Lucey VM, Sheehan KCF et al. 2020. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell 183:3818–34.e13
    [Google Scholar]
  102. 102. 
    Ghorani E, Rosenthal R, McGranahan N, Reading JL, Lynch M et al. 2018. Differential binding affinity of mutated peptides for MHC class I is a predictor of survival in advanced lung cancer and melanoma. Ann. Oncol. 29:1271–79
    [Google Scholar]
  103. 103. 
    Birnbaum ME, Mendoza JL, Sethi DK, Dong S, Glanville J et al. 2014. Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157:51073–87
    [Google Scholar]
  104. 104. 
    Chowell D, Krishna S, Becker PD, Cocita C, Shu J et al. 2015. TCR contact residue hydrophobicity is a hallmark of immunogenic CD8+ T cell epitopes. PNAS 112:14E1754–62
    [Google Scholar]
  105. 105. 
    Calis JJA, Maybeno M, Greenbaum JA, Weiskopf D, De Silva AD et al. 2013. Properties of MHC class I presented peptides that enhance immunogenicity. PLOS Comput. Biol. 9:10e1003266
    [Google Scholar]
  106. 106. 
    Capietto A-H, Jhunjhunwala S, Pollock SB, Lupardus P, Wong J et al. 2020. Mutation position is an important determinant for predicting cancer neoantigens. J. Exp. Med. 217:4e20190179
    [Google Scholar]
  107. 107. 
    Glanville J, Huang H, Nau A, Hatton O, Wagar LE et al. 2017. Identifying specificity groups in the T cell receptor repertoire. Nature 547:766194–98
    [Google Scholar]
  108. 108. 
    Alspach E, Lussier DM, Miceli AP, Kizhvatov I, DuPage M et al. 2019. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574:7780696–701
    [Google Scholar]
  109. 109. 
    Anagnostou V, Bruhm DC, Niknafs N, White JR, Shao XM et al. 2020. Integrative tumor and immune cell multi-omic analyses predict response to immune checkpoint blockade in melanoma. Cell Rep. Med. 1:8100139
    [Google Scholar]
  110. 110. 
    Chen Y, Zhang Y, Guo X. 2017. Proteasome dysregulation in human cancer: implications for clinical therapies. Cancer Metastasis Rev 36:4703–16
    [Google Scholar]
  111. 111. 
    Ling A, Löfgren-Burström A, Larsson P, Li X, Wikberg ML et al. 2017. TAP1 down-regulation elicits immune escape and poor prognosis in colorectal cancer. OncoImmunology 6:11e1356143
    [Google Scholar]
  112. 112. 
    Sokol L, Koelzer VH, Rau TT, Karamitopoulou E, Zlobec I, Lugli A. 2015. Loss of tapasin correlates with diminished CD8+ T-cell immunity and prognosis in colorectal cancer. J. Transl. Med. 13:279
    [Google Scholar]
  113. 113. 
    Presotto D, Erdes E, Duong MN, Allard M, Regamey P-O et al. 2017. Fine-tuning of optimal TCR signaling in tumor-redirected CD8 T cells by distinct TCR affinity-mediated mechanisms. Front. Immunol. 8:1564
    [Google Scholar]
  114. 114. 
    Conley JM, Gallagher MP, Berg LJ. 2016. T cells and gene regulation: the switching on and turning up of genes after T cell receptor stimulation in CD8 T cells. Front. Immunol. 7:76
    [Google Scholar]
  115. 115. 
    Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P et al. 2015. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:6237880–86
    [Google Scholar]
  116. 116. 
    Martínez-Jiménez F, Muiños F, Sentís I, Deu-Pons J, Reyes-Salazar I et al. 2020. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20:555–72
    [Google Scholar]
  117. 117. 
    Kryazhimskiy S, Plotkin JB. 2008. The population genetics of dN/dS. PLOS Genet 4:12e1000304
    [Google Scholar]
  118. 118. 
    Cvijović I, Good BH, Desai MM. 2018. The effect of strong purifying selection on genetic diversity. Genetics 209:41235–78
    [Google Scholar]
  119. 119. 
    Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K et al. 2017. Universal patterns of selection in cancer and somatic tissues. Cell 171:51029–41.e21
    [Google Scholar]
  120. 120. 
    Van den Eynden J, Jiménez-Sánchez A, Miller ML, Larsson E. 2019. Lack of detectable neoantigen depletion signals in the untreated cancer genome. Nat. Genet. 51:121741–48
    [Google Scholar]
  121. 121. 
    Weghorn D, Sunyaev S. 2017. Bayesian inference of negative and positive selection in human cancers. Nat. Genet. 49:121785–88
    [Google Scholar]
  122. 122. 
    Bakhoum SF, Landau DA. 2017. Cancer evolution: no room for negative selection. Cell 171:5987–89
    [Google Scholar]
  123. 123. 
    Zhang AW, McPherson A, Milne K, Kroeger DR, Hamilton PT et al. 2018. Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell 173:71755–69.e22
    [Google Scholar]
  124. 124. 
    Milo I, Bedora-Faure M, Garcia Z, Thibaut R, Périé L et al. 2018. The immune system profoundly restricts intratumor genetic heterogeneity. Sci. Immunol. 3:29eaat1435
    [Google Scholar]
  125. 125. 
    Castro A, Pyke RM, Zhang X, Thompson WK, Day C-P et al. 2020. Strength of immune selection in tumors varies with sex and age. Nat. Commun. 11:4128
    [Google Scholar]
  126. 126. 
    Klein SL, Flanagan KL. 2016. Sex differences in immune responses. Nat. Rev. Immunol. 16:10626–38
    [Google Scholar]
  127. 127. 
    Conforti F, Pala L, Bagnardi V, De Pas T, Martinetti M et al. 2018. Cancer immunotherapy efficacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol 19:6737–46
    [Google Scholar]
  128. 128. 
    Zhang T, Jia H, Wu Z. 2018. Sex as a predictor of response to cancer immunotherapy. Lancet Oncol. 19:8e374
    [Google Scholar]
  129. 129. 
    Ye Y, Jing Y, Li L, Mills GB, Diao L et al. 2020. Sex-associated molecular differences for cancer immunotherapy. Nat. Commun. 11:1779
    [Google Scholar]
  130. 130. 
    Yang F, Kim D-K, Nakagawa H, Hayashi S, Imoto S et al. 2019. Quantifying immune-based counter-selection of somatic mutations. PLOS Genet 15:7e1008227
    [Google Scholar]
  131. 131. 
    Nejo T, Matsushita H, Karasaki T, Nomura M, Saito K et al. 2019. Reduced neoantigen expression revealed by longitudinal multiomics as a possible immune evasion mechanism in glioma. Cancer Immunol. Res. 7:71148–61
    [Google Scholar]
  132. 132. 
    Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA et al. 2019. Neoantigen-directed immune escape in lung cancer evolution. Nature 567:7749479–85
    [Google Scholar]
  133. 133. 
    Mauriello A, Zeuli R, Cavalluzzo B, Petrizzo A, Tornesello ML et al. 2019. High somatic mutation and neoantigen burden do not correlate with decreased progression-free survival in HCC patients not undergoing immunotherapy. Cancers 11:121824
    [Google Scholar]
  134. 134. 
    Badalamenti G, Fanale D, Incorvaia L, Barraco N, Listì A et al. 2019. Role of tumor-infiltrating lymphocytes in patients with solid tumors: Can a drop dig a stone?. Cell Immunol 343:103753
    [Google Scholar]
  135. 135. 
    Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA et al. 2019. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37:7773–82
    [Google Scholar]
  136. 136. 
    Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. 2017. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. eLife 6:e26476
    [Google Scholar]
  137. 137. 
    Aran D, Hu Z, Butte AJ. 2017. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18:220
    [Google Scholar]
  138. 138. 
    van der Leun AM, Thommen DS, Schumacher TN. 2020. CD8+ T cell states in human cancer: insights from single-cell analysis. Nat. Rev. Cancer 20:4218–32
    [Google Scholar]
  139. 139. 
    Thommen DS, Schumacher TN. 2018. T cell dysfunction in cancer. Cancer Cell 33:4547–62
    [Google Scholar]
  140. 140. 
    Plesca I, Tunger A, Müller L, Wehner R, Lai X et al. 2020. Characteristics of tumor-infiltrating lymphocytes prior to and during immune checkpoint inhibitor therapy. Front. Immunol. 11:364
    [Google Scholar]
  141. 141. 
    Jiang P, Gu S, Pan D, Fu J, Sahu A et al. 2018. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24:101550–58
    [Google Scholar]
  142. 142. 
    Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. 2015. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:1–248–61
    [Google Scholar]
  143. 143. 
    Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M et al. 2017. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18:1248–62
    [Google Scholar]
  144. 144. 
    Galon J, Mlecnik B, Bindea G, Angell HK, Berger A et al. 2014. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J. Pathol. 232:2199–209
    [Google Scholar]
  145. 145. 
    Arakawa A, Vollmer S, Tietze J, Galinski A, Heppt MV et al. 2019. Clonality of CD4+ blood T cells predicts longer survival with CTLA4 or PD-1 checkpoint inhibition in advanced melanoma. Front. Immunol. 10:1336
    [Google Scholar]
  146. 146. 
    Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M et al. 2015. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520:7549692–96
    [Google Scholar]
  147. 147. 
    Richters MM, Xia H, Campbell KM, Gillanders WE, Griffith OL, Griffith M. 2019. Best practices for bioinformatic characterization of neoantigens for clinical utility. Genome Med 11:56
    [Google Scholar]
  148. 148. 
    Wang S, He Z, Wang X, Li H, Liu X-S. 2019. Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction. eLife 8:e49020
    [Google Scholar]
  149. 149. 
    Şenbabaoğlu Y, Gejman RS, Winer AG, Liu M, Van Allen EM et al. 2016. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol 17:231
    [Google Scholar]
  150. 150. 
    Hausser J, Alon U. 2020. Tumour heterogeneity and the evolutionary trade-offs of cancer. Nat. Rev. Cancer 20:4247–57
    [Google Scholar]
  151. 151. 
    Creixell P, Schoof EM, Erler JT, Linding R. 2012. Navigating cancer network attractors for tumor-specific therapy. Nat. Biotechnol. 30:9842–48
    [Google Scholar]
  152. 152. 
    Williams JB, Li S, Higgs EF, Cabanov A, Wang X et al. 2020. Tumor heterogeneity and clonal cooperation influence the immune selection of IFN-γ-signaling mutant cancer cells. Nat. Commun. 11:602
    [Google Scholar]
  153. 153. 
    Pieper R, Christian RE, Gonzales MI, Nishimura MI, Gupta G et al. 1999. Biochemical identification of a mutated human melanoma antigen recognized by CD4+ T cells. J. Exp. Med. 189:5757–66
    [Google Scholar]
  154. 154. 
    Wang R-F, Wang X, Rosenberg SA 1999. Identification of a novel major histocompatibility complex class II–restricted tumor antigen resulting from a chromosomal rearrangement recognized by CD4+ T cells. J. Exp. Med. 189:101659–68
    [Google Scholar]
  155. 155. 
    Wang RF, Wang X, Atwood AC, Topalian SL, Rosenberg SA. 1999. Cloning genes encoding MHC class II-restricted antigens: mutated CDC27 as a tumor antigen. Science 284:54181351–54
    [Google Scholar]
  156. 156. 
    Yotnda P, Firat H, Garcia-Pons F, Garcia Z, Gourru G et al. 1998. Cytotoxic T cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia. J. Clin. Investig. 101:102290–96
    [Google Scholar]
  157. 157. 
    Yotnda P, Garcia F, Peuchmaur M, Grandchamp B, Duval M et al. 1998. Cytotoxic T cell response against the chimeric ETV6-AML1 protein in childhood acute lymphoblastic leukemia. J. Clin. Investig. 102:2455–62
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-092820-112713
Loading
/content/journals/10.1146/annurev-biodatasci-092820-112713
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error