1932

Abstract

Despite monumental advances in molecular technology to generate genome sequence data at scale, there is still a considerable proportion of heritability in most complex diseases that remains unexplained. Because many of the discoveries have been single-nucleotide variants with small to moderate effects on disease, the functional implication of many of the variants is still unknown and, thus, we have limited new drug targets and therapeutics. We, and many others, posit that one primary factor that has limited our ability to identify novel drug targets from genome-wide association studies may be due to gene interactions (epistasis), gene–environment interactions, network/pathway effects, or multiomic relationships. We propose that many of these complex models explain much of the underlying genetic architecture of complex disease. In this review, we discuss the evidence from multiple research avenues, ranging from pairs of alleles to multiomic integration studies and pharmacogenomics, that supports the need for further investigation of gene interactions (or epistasis) in genetic and genomic studies of human disease. Our goal is to catalog the mounting evidence for epistasis in genetic studies and the connections between genetic interactions and human health and disease that could enable precision medicine of the future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-102022-120818
2023-08-10
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/6/1/annurev-biodatasci-102022-120818.html?itemId=/content/journals/10.1146/annurev-biodatasci-102022-120818&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bateson W. 1909. Discussion on the influence of heredity on disease, with special reference to tuberculosis, cancer, and diseases of the nervous system: introductory address. Proc. R. J. Med. 2:22–30
    [Google Scholar]
  2. 2.
    Moore JH, Williams SM. 2005. Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. Bioessays 27:6637–46
    [Google Scholar]
  3. 3.
    Moore JH. 2003. The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum. Hered. 56:1–373–82
    [Google Scholar]
  4. 4.
    Fisher RA. 1919. The causes of human variability. Eugen. Rev. 10:4213–20
    [Google Scholar]
  5. 5.
    Bridges C. 1919. Specific modifiers of eosin eye color in Drosophila melanogaster. J. Exp. Zool. 28:337–84
    [Google Scholar]
  6. 6.
    Lloyd V, Ramaswami M, Krämer H. 1998. Not just pretty eyes: Drosophila eye-colour mutations and lysosomal delivery. Trends Cell Biol. 8:7257–59
    [Google Scholar]
  7. 7.
    Domingo J, Baeza-Centurion P, Lehner B. 2019. The causes and consequences of genetic interactions (epistasis). Annu. Rev. Genom. Hum. Genet. 20:433–60
    [Google Scholar]
  8. 8.
    Hill WG, Goddard ME, Visscher PM. 2008. Data and theory point to mainly additive genetic variance for complex traits. PLOS Genet. 4:2e1000008
    [Google Scholar]
  9. 9.
    Eichler EE, Flint J, Gibson G, Kong A, Leal SM et al. 2010. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 11:446–50
    [Google Scholar]
  10. 10.
    Kajiwara K, Berson EL, Dryja TP. 1994. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 264:51651604–8
    [Google Scholar]
  11. 11.
    Auricchio A, Griseri P, Carpentieri ML, Betsos N, Staiano A et al. 1999. Double heterozygosity for a RET substitution interfering with splicing and an EDNRB missense mutation in Hirschsprung disease. Am. J. Hum. Genet. 64:41216–21
    [Google Scholar]
  12. 12.
    Vincent AL, Billingsley G, Buys Y, Levin AV, Priston M et al. 2002. Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. Am. J. Hum. Genet. 70:2448–60
    [Google Scholar]
  13. 13.
    Soares ML, Coelho T, Sousa A, Batalov S, Conceição I et al. 2005. Susceptibility and modifier genes in Portuguese transthyretin V30M amyloid polyneuropathy: complexity in a single-gene disease. Hum. Mol. Genet. 14:4543–53
    [Google Scholar]
  14. 14.
    Dipple KM, McCabe ER. 2000. Phenotypes of patients with “simple” Mendelian disorders are complex traits: thresholds, modifiers, and systems dynamics. Am. J. Hum. Genet. 66:61729–35
    [Google Scholar]
  15. 15.
    Dipple KM, McCabe ER. 2000. Modifier genes convert “simple” Mendelian disorders to complex traits. Mol. Genet. Metab. 71:1–243–50
    [Google Scholar]
  16. 16.
    Rauscher R, Bampi GB, Guevara-Ferrer M, Santos LA, Joshi D et al. 2021. Positive epistasis between disease-causing missense mutations and silent polymorphism with effect on mRNA translation velocity. PNAS 118:4e2010612118
    [Google Scholar]
  17. 17.
    Johannesson M, Olsson LM, Lindqvist A-KB, Möller S, Koczan D et al. 2005. Gene expression profiling of arthritis using a QTL chip reveals a complex gene regulation of the Cia5 region in mice. Genes Immun. 6:7575–83
    [Google Scholar]
  18. 18.
    Johannesson M, Karlsson J, Wernhoff P, Nandakumar KS, Lindqvist A-K et al. 2005. Identification of epistasis through a partial advanced intercross reveals three arthritis loci within the Cia5 QTL in mice. Genes Immun. 6:3175–85
    [Google Scholar]
  19. 19.
    Warden CH, Yi N, Fisler J. 2004. Epistasis among genes is a universal phenomenon in obesity: evidence from rodent models. Nutrition 20:174–77
    [Google Scholar]
  20. 20.
    Leamy LJ, Workman MS, Routman EJ, Cheverud JM. 2005. An epistatic genetic basis for fluctuating asymmetry of tooth size and shape in mice. Heredity 94:3316–25
    [Google Scholar]
  21. 21.
    Segrè D, Deluna A, Church GM, Kishony R. 2005. Modular epistasis in yeast metabolism. Nat. Genet. 37:77–83
    [Google Scholar]
  22. 22.
    Abegaz F, van Lishout F, Mahachie John JM, Chiachoompu K, Bhardwaj A et al. 2019. Epistasis detection in genome-wide screening for complex human diseases in structured populations. Syst. Med. 2:119–27
    [Google Scholar]
  23. 23.
    Li Y, Cho H, Wang F, Canela-Xandri O, Luo C et al. 2020. Statistical and functional studies identify epistasis of cardiovascular risk genomic variants from genome-wide association studies. J. Am. Heart Assoc. 9:7e014146
    [Google Scholar]
  24. 24.
    Webber C. 2017. Epistasis in neuropsychiatric disorders. Trends Genet. 33:4256–65
    [Google Scholar]
  25. 25.
    Ameratunga R, Woon ST, Bryant VL, Steele R, Slade C et al. 2018. Clinical implications of digenic inheritance and epistasis in primary immunodeficiency disorders. Front. Immunol. 8:1965
    [Google Scholar]
  26. 26.
    Chatelain C, Lessard S, Thuillier V, Carliez C, Rajpal D, Augé F. 2021. Atlas of epistasis. medRxiv 2021.03.17.21253794. https://doi.org/10.1101/2021.03.17.21253794
  27. 27.
    Singhal P, Veturi Y, Dudek SM, Lucas A, Frase A et al. 2023. Evidence of epistasis in regions of long-range linkage disequilibrium across five complex diseases in the UK Biobank and eMERGE datasets. Am. J. Hum. Genet. 110:4575–91
    [Google Scholar]
  28. 28.
    Thornton-Wells TA, Moore JH, Haines JL. 2006. Dissecting trait heterogeneity: a comparison of the clustering methods applied to genotypic data. BMC Bioinform. 7:204
    [Google Scholar]
  29. 29.
    Stringer S, Wray NR, Kahn RS, Derks EM. 2011. Underestimated effect sizes in GWAS: fundamental limitations of single SNP analysis for dichotomous phenotypes. PLOS ONE 6:11e27964
    [Google Scholar]
  30. 30.
    Boyle EA, Li YI, Pritchard JK. 2017. An expanded view of complex traits: from polygenic to omnigenic. Cell 169:71177–86
    [Google Scholar]
  31. 31.
    Sheppard B, Rappoport N, Loh P-R, Sanders SJ, Zaitlen N, Dahl A. 2021. A model and test for coordinated polygenic epistasis in complex traits. PNAS 118:15e1922305118
    [Google Scholar]
  32. 32.
    Lehner B. 2011. Molecular mechanisms of epistasis within and between genes. Trends Genet. 27:8323–31
    [Google Scholar]
  33. 33.
    Brem RB, Storey JD, Whittle J, Kruglyak L. 2005. Genetic interactions between polymorphisms that affect gene expression in yeast. Nature 436:7051701–3
    [Google Scholar]
  34. 34.
    Maher B. 2008. Personal genomes: The case of the missing heritability. Nature 456:18–21
    [Google Scholar]
  35. 35.
    Wu J, Devlin B, Ringquist S, Trucco M, Roeder K. 2010. Screen and clean: a tool for identifying interactions in genome-wide association studies. Genet. Epidemiol. 34:3275–85
    [Google Scholar]
  36. 36.
    Hua B, Springer M. 2018. Widespread cumulative influence of small effect size mutations on yeast quantitative traits. Cell Syst. 7:6590–600.e6
    [Google Scholar]
  37. 37.
    Cordell HJ. 2009. Detecting gene–gene interactions that underlie human diseases. Nat. Rev. Genet. 10:6392–404
    [Google Scholar]
  38. 38.
    Howson JMM, Cooper JD, Smyth DJ, Walker NM, Stevens H et al. 2012. Evidence of gene-gene interaction and age-at-diagnosis effects in type 1 diabetes. Diabetes 61:113012–17
    [Google Scholar]
  39. 39.
    Ziyab AH, Davies GA, Ewart S, Hopkin JM, Schauberger EM et al. 2013. Interactive effect of STAT6 and IL13 gene polymorphisms on eczema status: results from a longitudinal and a cross-sectional study. BMC Med. Genet. 14:67
    [Google Scholar]
  40. 40.
    van de Haar J, Canisius S, Yu MK, Voest EE, Wessels LFA, Ideker T. 2019. Identifying epistasis in cancer genomes: a delicate affair. Cell 177:61375–83
    [Google Scholar]
  41. 41.
    Wang H, Bennett DA, de Jager PL, Zhang QY, Zhang HY. 2021. Genome-wide epistasis analysis for Alzheimer's disease and implications for genetic risk prediction. Alzheimer's Res. Ther. 13:55
    [Google Scholar]
  42. 42.
    Yan J, Risacher SL, Shen L, Saykin AJ. 2017. Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief. Bioinform. 19:61370–81
    [Google Scholar]
  43. 43.
    Crick F. 1958. On protein synthesis. Symp. Soc. Exp. Biol. 12:138–63
    [Google Scholar]
  44. 44.
    Ideker T, Galitski T, Hood L. 2001. A new approach to decoding life: systems biology. Annu. Rev. Genom. Hum. Genet. 2:343–72
    [Google Scholar]
  45. 45.
    Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD et al. 2001. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69:1138–47
    [Google Scholar]
  46. 46.
    Zhu X-C, Yu J-T, Jiang T, Wang P, Cao L, Tan L 2015. CR1 in Alzheimer's disease. Mol. Neurobiol. 51:2753–65
    [Google Scholar]
  47. 47.
    Qin Q, Teng Z, Liu C, Li Q, Yin Y, Tang Y. 2021. TREM2, microglia, and Alzheimer's disease. Mech. Ageing Dev. 195:111438
    [Google Scholar]
  48. 48.
    Li P, Marshall L, Oh G, Jakubowski JL, Groot D et al. 2019. Epigenetic dysregulation of enhancers in neurons is associated with Alzheimer's disease pathology and cognitive symptoms. Nat. Commun. 10:2246
    [Google Scholar]
  49. 49.
    Riemenschneider M, Konta L, Friedrich P, Schwarz S, Taddei K et al. 2006. A functional polymorphism within plasminogen activator urokinase (PLAU) is associated with Alzheimer's disease. Hum. Mol. Genet. 15:162446–56
    [Google Scholar]
  50. 50.
    Hasin Y, Seldin M, Lusis A. 2017. Multi-omics approaches to disease. Genome Biol. 18:83
    [Google Scholar]
  51. 51.
    González-Reymúndez A, de Los Campos G, Gutiérrez L, Lunt SY, Vazquez AI. 2017. Prediction of years of life after diagnosis of breast cancer using omics and omic-by-treatment interactions. Eur. J. Hum. Genet. 25:5538–44
    [Google Scholar]
  52. 52.
    Kim D, Joung JG, Sohn KA, Shin H, Park YR et al. 2015. Knowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction. J. Am. Med. Inform. Assoc. 22:1109–20
    [Google Scholar]
  53. 53.
    Boj SF, Petrov D, Ferrer J. 2010. Epistasis of transcriptomes reveals synergism between transcriptional activators Hnf1α and Hnf4α. PLOS Genet. 6:55
    [Google Scholar]
  54. 54.
    Liu T, Zhu B, Liu Y, Zhang X, Yin J et al. 2020. Multi-omic comparison of Alzheimer's variants in human ESC-derived microglia reveals convergence at APOE. J. Exp. Med. 217:12e20200474
    [Google Scholar]
  55. 55.
    Rubin AJ, Parker KR, Satpathy AT, Qi Y, Wu B et al. 2019. Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene regulatory networks. Cell 176:1–2361–76.e17
    [Google Scholar]
  56. 56.
    Kang M, Zhang C, Chun HW, Ding C, Liu C, Gao J. 2015. eQTL epistasis: detecting epistatic effects and inferring hierarchical relationships of genes in biological pathways. Bioinformatics 31:5656–64
    [Google Scholar]
  57. 57.
    Kryazhimskiy S. 2021. Emergence and propagation of epistasis in metabolic networks. eLife 10:e60200
    [Google Scholar]
  58. 58.
    Jansen R, Hottenga J-J, Nivard MG, Abdellaoui A, Laport B et al. 2017. Conditional eQTL analysis reveals allelic heterogeneity of gene expression. Hum. Mol. Genet. 26:81444–51
    [Google Scholar]
  59. 59.
    Hormozdiari F, Zhu A, Kichaev G, Ju CJT, Segrè AV et al. 2017. Widespread allelic heterogeneity in complex traits. Am. J. Hum. Genet. 100:5789–802
    [Google Scholar]
  60. 60.
    Becker J, Wendland JR, Haenisch B, Nöthen MM, Schumacher J. 2012. A systematic eQTL study of cis–trans epistasis in 210 HapMap individuals. Eur. J. Hum. Genet. 20:197–101
    [Google Scholar]
  61. 61.
    Ritchie MD. 2011. Using biological knowledge to uncover the mystery in the search for epistasis in genome-wide association studies. Ann. Hum. Genet. 75:1172–82
    [Google Scholar]
  62. 62.
    Barabási A-L, Gulbahce N, Loscalzo J. 2011. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12:56–68
    [Google Scholar]
  63. 63.
    Agrawal M, Zitnik M, Leskovec J. 2018. Large-scale analysis of disease pathways in the human interactome. Pac. Symp. Biocomput. 23:111–22
    [Google Scholar]
  64. 64.
    Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M et al. 2015. Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science 347:62241257601
    [Google Scholar]
  65. 65.
    Sun YV, Kardia SLR. 2010. Identification of epistatic effects using a protein–protein interaction database. Hum. Mol. Genet. 19:224345–52
    [Google Scholar]
  66. 66.
    Tian L, Chen T, Lu J, Yan J, Zhang Y et al. 2021. Integrated protein–protein interaction and weighted gene co-expression network analysis uncover three key genes in hepatoblastoma. Front. Cell Dev. Biol. 9:631982
    [Google Scholar]
  67. 67.
    Barshir R, Shwartz O, Smoly IY, Yeger-Lotem E. 2014. Comparative analysis of human tissue interactomes reveals factors leading to tissue-specific manifestation of hereditary diseases. PLOS Comput. Biol. 10:6e1003632
    [Google Scholar]
  68. 68.
    Basha O, Shpringer R, Argov CM, Yeger-Lotem E. 2018. The DifferentialNet database of differential protein–protein interactions in human tissues. Nucleic Acids Res. 46:D1D522–26
    [Google Scholar]
  69. 69.
    Kotlyar M, Pastrello C, Sheahan N, Jurisica I. 2016. Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res. 44:D1D536–41
    [Google Scholar]
  70. 70.
    Hawe JS, Theis FJ, Heinig M. 2019. Inferring interaction networks from multi-omics data. Front Genet. 10:535
    [Google Scholar]
  71. 71.
    Miele A, Dekker J. 2008. Long-range chromosomal interactions and gene regulation. Mol. Biosyst. 4:111046–58
    [Google Scholar]
  72. 72.
    Li Y, Hu M, Shen Y. 2018. Gene regulation in the 3D genome. Hum. Mol. Genet. 27:R2R228–33
    [Google Scholar]
  73. 73.
    Phillips JE, Corces VG. 2009. CTCF: master weaver of the genome. Cell 137:71194–211
    [Google Scholar]
  74. 74.
    Kaiser VB, Semple CA. 2018. Chromatin loop anchors are associated with genome instability in cancer and recombination hotspots in the germline. Genome Biol. 19:101
    [Google Scholar]
  75. 75.
    Bouwman BAM, de Laat W. 2015. Architectural hallmarks of the pluripotent genome. 58920 Pt. A2905–13
  76. 76.
    de Laat W, Grosveld F. 2003. Spatial organization of gene expression: the active chromatin hub. Chromosome Res. 11:5447–59
    [Google Scholar]
  77. 77.
    Giorgetti L, Heard E. 2016. Closing the loop: 3C versus DNA FISH. Genome Biol. 17:215
    [Google Scholar]
  78. 78.
    Beliveau BJ, Apostolopoulos N, Wu C. 2014. Visualizing genomes with Oligopaint FISH probes. Curr. Protoc. Mol. Biol. 105:14.23.1–14.23.20
    [Google Scholar]
  79. 79.
    Dunham-Snary KJ, Sandel MW, Sammy MJ, Westbrook DG, Xiao R et al. 2018. Mitochondrial–nuclear genetic interaction modulates whole body metabolism, adiposity and gene expression in vivo. eBioMedicine 36:316–28
    [Google Scholar]
  80. 80.
    Paliwal S, Fiumera AC, Fiumera HL. 2014. Mitochondrial-nuclear epistasis contributes to phenotypic variation and coadaptation in natural isolates of Saccharomyces cerevisiae. Genetics 198:31251–65
    [Google Scholar]
  81. 81.
    Morrow EH, Camus MF. 2017. Mitonuclear epistasis and mitochondrial disease. Mitochondrion 35:119–22
    [Google Scholar]
  82. 82.
    Swerdlow RH, Burns JM, Khan SM. 2010. The Alzheimer's disease mitochondrial cascade hypothesis. J. Alzheimer's Dis. 20:Suppl. 2S265–79
    [Google Scholar]
  83. 83.
    Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. 2004. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 350:7664–71
    [Google Scholar]
  84. 84.
    Breijyeh Z, Karaman R. 2020. Comprehensive review on Alzheimer's disease: causes and treatment. Molecules 25:245789
    [Google Scholar]
  85. 85.
    Petersen C, Nolan AL, de Paula França Resende E, Miller Z, Ehrenberg AJ et al. 2019. Alzheimer's disease clinical variants show distinct regional patterns of neurofibrillary tangle accumulation. Acta Neuropathol. 138:4597–612
    [Google Scholar]
  86. 86.
    Rudge JD. 2022. A new hypothesis for Alzheimer's disease: the lipid invasion model. J Alzheimer's Dis. Rep. 6:1129–61
    [Google Scholar]
  87. 87.
    Xiong X, Hu T, Yin Z, Zhang Y, Chen F, Lei P. 2022. Research advances in the study of sleep disorders, circadian rhythm disturbances and Alzheimer's disease. Front. Aging Neurosci. 14:944283
    [Google Scholar]
  88. 88.
    Padurariu M, Ciobica A, Lefter R, Serban IL, Stefanescu C, Chirita R. 2013. The oxidative stress hypothesis in Alzheimer's disease. Psychiatr. Danub. 25:4401–9
    [Google Scholar]
  89. 89.
    Naughton SX, Raval U, Pasinetti GM. 2020. The viral hypothesis in Alzheimer's disease: novel insights and pathogen-based biomarkers. J. Pers. Med. 10:374
    [Google Scholar]
  90. 90.
    Gallois A, Mefford J, Ko A, Vaysse A, Julienne H et al. 2019. A comprehensive study of metabolite genetics reveals strong pleiotropy and heterogeneity across time and context. Nat. Commun. 10:4788
    [Google Scholar]
  91. 91.
    Wishart DS, Guo AC, Oler E, Wang F, Anjum A et al. 2022. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 50:D1D622–31
    [Google Scholar]
  92. 92.
    Rauschert S, Uhl O, Koletzko B, Hellmuth C. 2014. Metabolomic biomarkers for obesity in humans: a short review. Ann. Nutr. Metab. 64:3–4314–24
    [Google Scholar]
  93. 93.
    Rizvi AA, Stoian AP, Janez A, Rizzo M. 2021. Lipoproteins and cardiovascular disease: an update on the clinical significance of atherogenic small, dense LDL and new therapeutical options. Biomedicines 9:111579
    [Google Scholar]
  94. 94.
    Imielinski M, Belta C. 2010. Deep epistasis in human metabolism. Chaos 20:2026104
    [Google Scholar]
  95. 95.
    Tang Z, Yang Z, Hu Z, Zhang D, Lu X et al. 2013. Cytonuclear epistatic quantitative trait locus mapping for plant height and ear height in maize. Mol. Breed. 31:1–14
    [Google Scholar]
  96. 96.
    Bushel PR, Ward J, Burkholder A, Li J, Anchang B. 2022. Mitochondrial-nuclear epistasis underlying phenotypic variation in breast cancer pathology. Sci. Rep. 12:1393
    [Google Scholar]
  97. 97.
    Tranah GJ. 2011. Mitochondrial-nuclear epistasis: implications for human aging and longevity. Ageing Res. Rev. 10:2238–52
    [Google Scholar]
  98. 98.
    Jacob F. 1977. Evolution and tinkering. Science 196:42951161–66
    [Google Scholar]
  99. 99.
    Shinde P, Whitwell HJ, Verma RK, Ivanchenko M, Zaikin A, Jalan S. 2021. Impact of modular mitochondrial epistatic interactions on the evolution of human subpopulations. Mitochondrion 58:111–22
    [Google Scholar]
  100. 100.
    Patt A, Siddiqui J, Zhang B, Mathé E. 2019. Integration of metabolomics and transcriptomics to identify gene-metabolite relationships specific to phenotype. Methods Mol. Biol. 1928:441–68
    [Google Scholar]
  101. 101.
    Sadee W, Hartmann K, Seweryn M, Pietrzak M, Handelman SK, Rempala GA. 2014. Missing heritability of common diseases and treatments outside the protein-coding exome. Hum. Genet. 133:101199–215
    [Google Scholar]
  102. 102.
    Luizon MR, Ahituv N. 2015. Uncovering drug-responsive regulatory elements. Pharmacogenomics 16:161829–41
    [Google Scholar]
  103. 103.
    Motsinger AA, Ritchie MD, Reif DM. 2007. Novel methods for detecting epistasis in pharmacogenomics studies. Pharmacogenomics 8:91229–41
    [Google Scholar]
  104. 104.
    Ritchie MD. 2012. The success of pharmacogenomics in moving genetic association studies from bench to bedside: study design and implementation of precision medicine in the post-GWAS era. Hum. Genet. 131:101615–26
    [Google Scholar]
  105. 105.
    Luizon MR, Pereira DA, Sandrim VC. 2018. Pharmacogenomics of hypertension and preeclampsia: focus on gene-gene interactions. Front. Pharmacol. 9:168
    [Google Scholar]
  106. 106.
    Oliveira-Paula GH, Luizon MR, Lacchini R, Fontana V, Silva PS et al. 2017. Gene–gene interactions among PRKCA, NOS3 and BDKRB2 polymorphisms affect the antihypertensive effects of enalapril. Basic Clin. Pharmacol. Toxicol. 120:3284–91
    [Google Scholar]
  107. 107.
    Luizon MR, Palei ACT, Belo VA, Amaral LM, Lacchini R et al. 2017. Gene-gene interactions in the NAMPT pathway, plasma visfatin/NAMPT levels, and antihypertensive therapy responsiveness in hypertensive disorders of pregnancy. Pharmacogenom. J. 17:5427–34
    [Google Scholar]
  108. 108.
    Kim MK, Moore JH, Kim JK, Cho KH, Cho YW et al. 2011. Evidence for epistatic interactions in antiepileptic drug resistance. J. Hum. Genet. 56:71–76
    [Google Scholar]
  109. 109.
    Tomaszewski M, Charchar FJ, Lacka B, Pesonen U, Wang WY et al. 2004. Epistatic interaction between β2-adrenergic receptor and neuropeptide Y genes influences LDL-cholesterol in hypertension. Hypertension 44:5689–94
    [Google Scholar]
  110. 110.
    Maxwell TJ, Ballantyne CM, Cheverud JM, Guild CS, Ndumele CE, Boerwinkle E. 2013. APOE modulates the correlation between triglycerides, cholesterol, and CHD through pleiotropy, and gene-by-gene interactions. Genetics 195:41397–405
    [Google Scholar]
  111. 111.
    Wessel J, Moratorio G, Rao F, Mahata M, Zhang L et al. 2007. C-reactive protein, an “intermediate phenotype” for inflammation: human twin studies reveal heritability, association with blood pressure and the metabolic syndrome, and the influence of common polymorphism at catecholaminergic/β-adrenergic pathway loci. J. Hypertens. 25:2329–43
    [Google Scholar]
  112. 112.
    Chand GB, Singhal P, Dwyer DB, Wen J, Erus G et al. 2022. Schizophrenia imaging signatures and their associations with cognition, psychopathology, and genetics in the general population. Am. J. Psychiatry 179:9650–60
    [Google Scholar]
  113. 113.
    Wand H, Lambert SA, Tamburro C, Iacocca MA, O'Sullivan JW et al. 2021. Improving reporting standards for polygenic scores in risk prediction studies. Nature 591:211–19
    [Google Scholar]
  114. 114.
    Le TT, Gong H, Orzechowsk PI, Manduchi E, Moore JH 2020. Expanding polygenic risk scores to include automatic genotype encodings and gene-gene interactions. Proceedings of International Joint Conference on Biomedical Engineering Systems and Technologies, Vol. 3 E De Maria, A Fred, H Gamboa 79–84. Setúbal, Port.: Scitepress
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-102022-120818
Loading
/content/journals/10.1146/annurev-biodatasci-102022-120818
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error