1932

Abstract

Dogs are humanity's oldest friend, the first species we domesticated 20,000–40,000 years ago. In this unequaled collaboration, dogs have inadvertently but serendipitously been molded into a potent human cancer model. Unlike many common model species, dogs are raised in the same environment as humans and present with spontaneous tumors with human-like comorbidities, immunocompetency, and heterogeneity. In breast, bladder, blood, and several pediatric cancers, in-depth profiling of dog and human tumors has established the benefits of the dog model. In addition to this clinical and molecular similarity, veterinary studies indicate that domestic dogs have relatively high tumor incidence rates. As a result, there are a plethora of data for analysis, the statistical power of which is bolstered by substantial breed-specific variability. As such, dog tumors provide a unique opportunity to interrogate the molecular factors underpinning cancer and facilitate the modeling of new therapeutic targets. This review discusses the emerging field of comparative oncology, how it complements human and rodent cancer studies, and where challenges remain, given the rapid proliferation of genomic resources. Increasingly, it appears that human's best friend is becoming an irreplaceable component of oncology research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-102423-111936
2024-08-23
2025-04-24
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/7/1/annurev-biodatasci-102423-111936.html?itemId=/content/journals/10.1146/annurev-biodatasci-102423-111936&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Botigué LR, Song S, Scheu A, Gopalan S, Pendleton AL, et al. 2017.. Ancient European dog genomes reveal continuity since the early Neolithic. . Nat. Commun. 8::16082
    [Crossref] [Google Scholar]
  2. 2.
    Arendt M, Fall T, Lindblad-Toh K, Axelsson E. 2014.. Amylase activity is associated with AMY2B copy numbers in dog: implications for dog domestication, diet and diabetes. . Anim. Genet. 45::71622
    [Crossref] [Google Scholar]
  3. 3.
    MacLean EL, Snyder-Mackler N, VonHoldt BM, Serpell JA. 2019.. Highly heritable and functionally relevant breed differences in dog behaviour. . Proc. R. Soc. B 286::20190716
    [Crossref] [Google Scholar]
  4. 4.
    Arendt M, Cairns K, Ballard J, Savolainen P, Axelsson E. 2016.. Diet adaptation in dog reflects spread of prehistoric agriculture. . Heredity 117::3016
    [Crossref] [Google Scholar]
  5. 5.
    Bellumori TP, Famula TR, Bannasch DL, Belanger JM, Oberbauer AM. 2013.. Prevalence of inherited disorders among mixed-breed and purebred dogs: 27,254 cases (1995–2010). . J. Am. Vet. Med. Assoc. 242::154955
    [Crossref] [Google Scholar]
  6. 6.
    Bunel M, Chaudieu G, Hamel C, Lagoutte L, Manes G, et al. 2019.. Natural models for retinitis pigmentosa: progressive retinal atrophy in dog breeds. . Hum. Genet. 138::44153
    [Crossref] [Google Scholar]
  7. 7.
    Morrill K, Hekman J, Li X, McClure J, Logan B, et al. 2022.. Ancestry-inclusive dog genomics challenges popular breed stereotypes. . Science 376::eabk0639
    [Crossref] [Google Scholar]
  8. 8.
    LeBlanc AK, Mazcko CN. 2020.. Improving human cancer therapy through the evaluation of pet dogs. . Nat. Rev. Cancer 20::72742
    [Crossref] [Google Scholar]
  9. 9.
    LeBlanc AK, Mazcko CN, Khanna C. 2016.. Defining the value of a comparative approach to cancer drug development. . Clin. Cancer Res. 22::213338
    [Crossref] [Google Scholar]
  10. 10.
    Gardner HL, Fenger JM, London CA. 2016.. Dogs as a model for cancer. . Annu. Rev. Anim. Biosci. 4::199222
    [Crossref] [Google Scholar]
  11. 11.
    Schiffman JD, Breen M. 2015.. Comparative oncology: what dogs and other species can teach us about humans with cancer. . Philos. Trans. R. Soc. B 370::20140231
    [Crossref] [Google Scholar]
  12. 12.
    Terajima M, Taga Y, Brisson BK, Durham AC, Sato K, et al. 2021.. Collagen molecular phenotypic switch between non-neoplastic and neoplastic canine mammary tissues. . Sci. Rep. 11::8659
    [Crossref] [Google Scholar]
  13. 13.
    Graim K, Gorenshteyn D, Robinson DG, Carriero NJ, Cahill JA, et al. 2021.. Modeling molecular development of breast cancer in canine mammary tumors. . Genome Res. 31::33747
    [Crossref] [Google Scholar]
  14. 14.
    Liu D, Xiong H, Ellis AE, Northrup NC, Rodriguez CO Jr., et al. 2014.. Molecular homology and difference between spontaneous canine mammary cancer and human breast cancer. . Cancer Res. 74::504556
    [Crossref] [Google Scholar]
  15. 15.
    Decker B, Parker HG, Dhawan D, Kwon EM, Karlins E, et al. 2015.. Homologous mutation to human BRAF V600E is common in naturally occurring canine bladder cancer—evidence for a relevant model system and urine-based diagnostic test. . Mol. Cancer Res. 13::9931002
    [Crossref] [Google Scholar]
  16. 16.
    Liu D, Xiong H, Ellis AE, Northrup NC, Dobbin KK, et al. 2015.. Canine spontaneous head and neck squamous cell carcinomas represent their human counterparts at the molecular level. . PLOS Genet. 11::e1005277
    [Crossref] [Google Scholar]
  17. 17.
    Kabir FML, DeInnocentes P, Agarwal P, Mill CP, Riese DJ 2nd, Bird RC. 2017.. Estrogen receptor α, progesterone receptor, and c-erb B/HER-family receptor mRNA detection and phenotype analysis in spontaneous canine models of breast cancer. . J. Vet. Sci. 18::14958
    [Crossref] [Google Scholar]
  18. 18.
    Amin SB, Anderson KJ, Boudreau CE, Martinez-Ledesma E, Kocakavuk E, et al. 2020.. Comparative molecular life history of spontaneous canine and human gliomas. . Cancer Cell 37::24357
    [Crossref] [Google Scholar]
  19. 19.
    Fowles J, Dailey D, Gustafson D, Thamm D, Duval D. 2017.. The Flint Animal Cancer Center (FACC) canine tumour cell line panel: a resource for veterinary drug discovery, comparative oncology and translational medicine. . Vet. Comp. Oncol. 15::48192
    [Crossref] [Google Scholar]
  20. 20.
    Burrai G, Tanca A, De Miglio M, Abbondio M, Pisanu S, et al. 2015.. Investigation of HER2 expression in canine mammary tumors by antibody-based, transcriptomic and mass spectrometry analysis: Is the dog a suitable animal model for human breast cancer?. Tumor Biol. 36::908391
    [Crossref] [Google Scholar]
  21. 21.
    Park JS, Withers SS, Modiano JF, Kent MS, Chen M, et al. 2016.. Canine cancer immunotherapy studies: linking mouse and human. . J. Immunother. Cancer 4::97
    [Crossref] [Google Scholar]
  22. 22.
    Wong K, Ludwig L, Krijgsman O, Adams DJ, Wood GA, van der Weyden L. 2021.. Comparison of the oncogenomic landscape of canine and feline hemangiosarcoma shows novel parallels with human angiosarcoma. . Dis. Models Mech. 14::dmm049044
    [Crossref] [Google Scholar]
  23. 23.
    Merlo D, Rossi L, Pellegrino C, Ceppi M, Cardellino U, et al. 2008.. Cancer incidence in pet dogs: findings of the animal tumor registry of Genoa, Italy. . J. Vet. Intern. Med. 22::97684
    [Crossref] [Google Scholar]
  24. 24.
    Vittecoq M, Roche B, Daoust SP, Ducasse H, Missé D, et al. 2013.. Cancer: a missing link in ecosystem functioning?. Trends Ecol. Evol. 28::62835
    [Crossref] [Google Scholar]
  25. 25.
    Fleming J, Creevy K, Promislow D. 2011.. Mortality in North American dogs from 1984 to 2004: an investigation into age-, size-, and breed-related causes of death. . J. Vet. Intern. Med. 25::18798
    [Crossref] [Google Scholar]
  26. 26.
    AVMA (Am. Vet. Med. Assoc.). 2022.. AVMA Pet Ownership and Demographics Sourcebook. Schaumburg, IL:: AVMA
    [Google Scholar]
  27. 27.
    Teng KT, Brodbelt DC, Pegram C, Church DB, O'Neill DG. 2022.. Life tables of annual life expectancy and mortality for companion dogs in the United Kingdom. . Sci. Rep. 12::6415
    [Crossref] [Google Scholar]
  28. 28.
    Siegel R, Naishadham D, Jemal A, et al. 2013.. Global cancer statistics. . CA Cancer J. Clin. 63::1130
    [Crossref] [Google Scholar]
  29. 29.
    Garden O, Volk S, Mason N, Perry J. 2018.. Companion animals in comparative oncology: one medicine in action. . Vet. J. 240::613
    [Crossref] [Google Scholar]
  30. 30.
    Alsaihati BA, Ho KL, Watson J, Feng Y, Wang T, et al. 2021.. Canine tumor mutational burden is correlated with TP53 mutation across tumor types and breeds. . Nat. Commun. 12::4670
    [Crossref] [Google Scholar]
  31. 31.
    LeBlanc AK, Breen M, Choyke P, Dewhirst M, Fan TM, et al. 2016.. Perspectives from man's best friend: National Academy of Medicine's Workshop on Comparative Oncology. . Sci. Transl. Med. 8::324ps5
    [Crossref] [Google Scholar]
  32. 32.
    Natl. Cancer Policy Forum, Board Health Care Serv., Inst. Med., Natl. Acad. Sci. Eng. Med. 2015.. The Role of Clinical Studies for Pets with Naturally Occurring Tumors in Translational Cancer Research: Workshop Summary. Washington, DC:: Natl. Acad.
    [Google Scholar]
  33. 33.
    Felsburg P. 2002.. Overview of immune system development in the dog: comparison with humans. . Hum. Exp. Toxicol. 21::48792
    [Crossref] [Google Scholar]
  34. 34.
    Haley PJ. 2003.. Species differences in the structure and function of the immune system. . Toxicology 188::4971
    [Crossref] [Google Scholar]
  35. 35.
    Mestas J, Hughes CC. 2004.. Of mice and not men: differences between mouse and human immunology. . J. Immunol. 172::273138
    [Crossref] [Google Scholar]
  36. 36.
    Overgaard NH, Fan TM, Schachtschneider KM, Principe DR, Schook LB, Jungersen G. 2018.. Of mice, dogs, pigs, and men: choosing the appropriate model for immuno-oncology research. . ILAR J. 59::24762
    [Crossref] [Google Scholar]
  37. 37.
    Rando HM, Graim K, Hampikian G, Greene CS. 2024.. Many direct-to-consumer canine genetic tests can identify the breed of purebred dogs. . J. Am. Vet. Med. Assoc. 262(5):18
    [Google Scholar]
  38. 38.
    Larson G, Fuller DQ. 2014.. The evolution of animal domestication. . Annu. Rev. Ecol. Evol. Syst. 45::11536
    [Crossref] [Google Scholar]
  39. 39.
    Cooper R, Berkower C, Nass S. 2022.. Companion Animals as Sentinels for Predicting Environmental Exposure Effects on Aging and Cancer Susceptibility in Humans. Washington, DC:: Natl. Acad.
    [Google Scholar]
  40. 40.
    Sévère S, Marchand P, Guiffard I, Morio F, Venisseau A, et al. 2015.. Pollutants in pet dogs: a model for environmental links to breast cancer. . SpringerPlus 4::27
    [Crossref] [Google Scholar]
  41. 41.
    Reif JS. 2011.. Animal sentinels for environmental and public health. . Public Health Rep. 126::5057
    [Crossref] [Google Scholar]
  42. 42.
    Pastor M, Chalvet-Monfray K, Marchal T, Keck G, Magnol J, et al. 2009.. Genetic and environmental risk indicators in canine non-Hodgkin's lymphomas: breed associations and geographic distribution of 608 cases diagnosed throughout France over 1 year. . J. Vet. Intern. Med. 23::30110
    [Crossref] [Google Scholar]
  43. 43.
    Wang Q, Hu B, Hu X, Kim H, Squatrito M, et al. 2017.. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. . Cancer Cell 32::4256
    [Crossref] [Google Scholar]
  44. 44.
    Pulz LH, Strefezzi RD. 2017.. Proteases as prognostic markers in human and canine cancers. . Vet. Comp. Oncol. 15::66983
    [Crossref] [Google Scholar]
  45. 45.
    Giuliano A, dos Santos Horta R, Constantino-Casas F, Hoather T, Dobson J. 2017.. Expression of fibroblast activating protein and correlation with histological grade, mitotic index and Ki67 expression in canine mast cell tumours. . J. Comp. Pathol. 156::1420
    [Crossref] [Google Scholar]
  46. 46.
    Sunil Kumar B, Kumar KA, Padmanath K, Sharma B, Kataria M. 2013.. Heterologous expression and functional characterization of matrix metalloproteinase 11 from canine mammary tumor. . Anim. Biotechnol. 24::3143
    [Crossref] [Google Scholar]
  47. 47.
    Puff C, Risha E, Baumgärtner W. 2013.. Regression of canine cutaneous histiocytoma is associated with an orchestrated expression of matrix metalloproteinases. . J. Comp. Pathol. 149::20815
    [Crossref] [Google Scholar]
  48. 48.
    Al-Khan A, Gunn H, Day M, Tayebi M, Ryan S, et al. 2017.. Immunohistochemical validation of spontaneously arising canine osteosarcoma as a model for human osteosarcoma. . J. Comp. Pathol. 157::25665
    [Crossref] [Google Scholar]
  49. 49.
    Mannheimer JD, Tawa G, Gerhold D, Braisted J, Sayers CM, et al. 2023.. Transcriptional profiling of canine osteosarcoma identifies prognostic gene expression signatures with translational value for humans. . Commun. Biol. 6::856
    [Crossref] [Google Scholar]
  50. 50.
    Ostrander EA, Dreger DL, Evans JM. 2019.. Canine cancer genomics: lessons for canine and human health. . Annu. Rev. Anim. Biosci. 7::44972
    [Crossref] [Google Scholar]
  51. 51.
    Parker HG, Dreger DL, Rimbault M, Davis BW, Mullen AB, et al. 2017.. Genomic analyses reveal the influence of geographic origin, migration, and hybridization on modern dog breed development. . Cell Rep. 19::697708
    [Crossref] [Google Scholar]
  52. 52.
    Broeckx BJ, Derrien T, Mottier S, Wucher V, Cadieu E, et al. 2017.. An exome sequencing based approach for genome-wide association studies in the dog. . Sci. Rep. 7::15680
    [Crossref] [Google Scholar]
  53. 53.
    Ostrander EA. 2012.. Both ends of the leash—the human links to good dogs with bad genes. . N. Engl. J. Med. 367::63646
    [Crossref] [Google Scholar]
  54. 54.
    Goldstein O, Zangerl B, Pearce-Kelling S, Sidjanin DJ, Kijas JW, et al. 2006.. Linkage disequilibrium mapping in domestic dog breeds narrows the progressive rod–cone degeneration interval and identifies ancestral disease-transmitting chromosome. . Genomics 88::54150
    [Crossref] [Google Scholar]
  55. 55.
    Schwartz SM, Urfer SR, White M, Megquier K, Shrager S, et al. 2022.. Lifetime prevalence of malignant and benign tumours in companion dogs: cross-sectional analysis of Dog Aging Project baseline survey. . Vet. Comp. Oncol. 20::797804
    [Crossref] [Google Scholar]
  56. 56.
    Karlsson EK, Sigurdsson S, Ivansson E, Thomas R, Elvers I, et al. 2013.. Genome-wide analyses implicate 33 loci in heritable dog osteosarcoma, including regulatory variants near CDKN2A/B. . Genome Biol. 14::R132
    [Crossref] [Google Scholar]
  57. 57.
    Mitchell D, Chintala S, Fetcko K, Henriquez M, Tewari BN, et al. 2019.. Common molecular alterations in canine oligodendroglioma and human malignant gliomas and potential novel therapeutic targets. . Front. Oncol. 9::780
    [Crossref] [Google Scholar]
  58. 58.
    Scott MC, Temiz NA, Sarver AE, LaRue RS, Rathe SK, et al. 2018.. Comparative transcriptome analysis quantifies immune cell transcript levels, metastatic progression, and survival in osteosarcoma. . Cancer Res. 78::32637
    [Crossref] [Google Scholar]
  59. 59.
    Athanasiou AT, Nussbaumer T, Kummer S, Hofer M, Johnston IG, et al. 2020.. S100A4 mRNA-protein relationship uncovered by measurement noise reduction. . J. Mol. Med. 98::73549
    [Crossref] [Google Scholar]
  60. 60.
    Simpson S, Dunning M, de Brot S, Alibhai A, Bailey C, et al. 2020.. Molecular characterisation of canine osteosarcoma in high risk breeds. . Cancers 12::2405
    [Crossref] [Google Scholar]
  61. 61.
    Chu S, Skidmore ZL, Kunisaki J, Walker JR, Griffith M, et al. 2021.. Unraveling the chaotic genomic landscape of primary and metastatic canine appendicular osteosarcoma with current sequencing technologies and bioinformatic approaches. . PLOS ONE 16::e0246443
    [Crossref] [Google Scholar]
  62. 62.
    Ruiz D, Haynes C, Marable J, Pundkar C, Nance RL, et al. 2022.. Development of OX40 agonists for canine cancer immunotherapy. . iScience 25::105158
    [Crossref] [Google Scholar]
  63. 63.
    Nance RL, Cooper SJ, Starenki D, Wang X, Matz B, et al. 2022.. Transcriptomic analysis of canine osteosarcoma from a precision medicine perspective reveals limitations of differential gene expression studies. . Genes 13::680
    [Crossref] [Google Scholar]
  64. 64.
    Parker HG, Dhawan D, Harris AC, Ramos-Vara JA, Davis BW, et al. 2020.. RNAseq expression patterns of canine invasive urothelial carcinoma reveal two distinct tumor clusters and shared regions of dysregulation with human bladder tumors. . BMC Cancer 20::251
    [Crossref] [Google Scholar]
  65. 65.
    Ramsey SA, Xu T, Goodall C, Rhodes AC, Kashyap A, et al. 2017.. Cross-species analysis of the canine and human bladder cancer transcriptome and exome. . Genes Chromosomes Cancer 56::32843
    [Crossref] [Google Scholar]
  66. 66.
    Cordeiro YD, Xavier PLP, Rochetti AD, Alexandre PA, Mori CMC, et al. 2018.. Transcriptomic profile reveals molecular events associated to focal adhesion and invasion in canine mammary gland tumour cell lines. . Vet. Comp. Oncol. 16::E8998
    [Crossref] [Google Scholar]
  67. 67.
    Kim KK, Seung BJ, Kim D, Park HM, Lee S, et al. 2019.. Whole-exome and whole-transcriptome sequencing of canine mammary gland tumors. . Sci. Data 6::147
    [Crossref] [Google Scholar]
  68. 68.
    Xu E, Hu M, Ge R, Tong D, Fan Y, et al. 2021.. LncRNA-42060 regulates tamoxifen sensitivity and tumor development via regulating the MIR-204-5p/SOX4 axis in canine mammary gland tumor cells. . Front. Vet. Sci. 8::654694
    [Crossref] [Google Scholar]
  69. 69.
    Hsu CH, Tomiyasu H, Liao CH, Lin CS. 2021.. Genome-wide DNA methylation and RNA-seq analyses identify genes and pathways associated with doxorubicin resistance in a canine diffuse large B-cell lymphoma cell line. . PLOS ONE 16::e0250013
    [Crossref] [Google Scholar]
  70. 70.
    Simpson S, Dunning MD, de Brot S, Grau-Roma L, Mongan NP, Rutland CS. 2017.. Comparative review of human and canine osteosarcoma: morphology, epidemiology, prognosis, treatment and genetics. . Acta Vet. Scand. 59::71
    [Crossref] [Google Scholar]
  71. 71.
    Coyle KM, Hillman T, Cheung M, Grande BM, Bushell KR, et al. 2022.. Shared and distinct genetic features in human and canine B-cell lymphomas. . Blood Adv. 6::34049
    [Crossref] [Google Scholar]
  72. 72.
    Frampton D, Schwenzer H, Marino G, Butcher LM, Pollara G, et al. 2018.. Molecular signatures of regression of the canine transmissible venereal tumor. . Cancer Cell 33::62033
    [Crossref] [Google Scholar]
  73. 73.
    Alnajjar S, Nolte I, Becker A, Schille JT, Trakooljul N, et al. 2021.. Ablation of red stable transfected claudin expressing canine prostate adenocarcinoma and transitional cell carcinoma cell lines by C-CPE gold-nanoparticle-mediated laser intervention. . Int. J. Mol. Sci. 22::12289
    [Crossref] [Google Scholar]
  74. 74.
    Borgatti A, Koopmeiners JS, Sarver AL, Winter AL, Stuebner K, et al. 2017.. Safe and effective sarcoma therapy through bispecific targeting of EGFR and uPAR. . Mol. Cancer Ther. 16::95665
    [Crossref] [Google Scholar]
  75. 75.
    Grenier JK, Foureman PA, Sloma EA, Miller AD. 2017.. RNA-seq transcriptome analysis of formalin fixed, paraffin-embedded canine meningioma. . PLOS ONE 12::e0187150
    [Crossref] [Google Scholar]
  76. 76.
    Zorzan E, Elgendy R, Giantin M, Dacasto M, Sissi C. 2018.. Whole-transcriptome profiling of canine and human in vitro models exposed to a G-quadruplex binding small molecule. . Sci. Rep. 8::17107
    [Crossref] [Google Scholar]
  77. 77.
    Das S, Idate R, Lana SE, Regan DP, Duval DL. 2023.. Integrated analysis of canine soft tissue sarcomas identifies recurrent mutations in TP53, KMT genes and PDGFB fusions. . Sci. Rep. 13::10422
    [Crossref] [Google Scholar]
  78. 78.
    Teixeira SA, Ibelli AM, Cantão ME, de Oliveira HC, Ledur MC, et al. 2019.. Sex determination using RNA-sequencing analyses in early prenatal pig development. . Genes 10::1010
    [Crossref] [Google Scholar]
  79. 79.
    Guscetti F, Nassiri S, Beebe E, Brandao IR, Graf R, Markkanen E. 2020.. Molecular homology between canine spontaneous oral squamous cell carcinomas and human head-and-neck squamous cell carcinomas reveals disease drivers and therapeutic vulnerabilities. . Neoplasia 22::77888
    [Crossref] [Google Scholar]
  80. 80.
    Scott MC, Tomiyasu H, Garbe JR, Cornax I, Amaya C, et al. 2016.. Heterotypic mouse models of canine osteosarcoma recapitulate tumor heterogeneity and biological behavior. . Dis. Models Mech. 9::143544
    [Google Scholar]
  81. 81.
    Hendricks WP, Zismann V, Sivaprakasam K, Legendre C, Poorman K, et al. 2018.. Somatic inactivating PTPRJ mutations and dysregulated pathways identified in canine malignant melanoma by integrated comparative genomic analysis. . PLOS Genet. 14::e1007589
    [Crossref] [Google Scholar]
  82. 82.
    Rahman MM, Lai YC, Husna AA, Chen HW, Tanaka Y, et al. 2020.. Transcriptome analysis of dog oral melanoma and its oncogenic analogy with human melanoma. . Oncol. Rep. 43::1630
    [Google Scholar]
  83. 83.
    Megquier K, Turner-Maier J, Swofford R, Kim JH, Sarver AL, et al. 2019.. Comparative genomics reveals shared mutational landscape in canine hemangiosarcoma and human angiosarcoma. . Mol. Cancer Res. 17::241021
    [Crossref] [Google Scholar]
  84. 84.
    Lian X, Bond JS, Bharathy N, Boudko SP, Pokidysheva E, et al. 2021.. Defining the extracellular matrix of rhabdomyosarcoma. . Front. Oncol. 11::38
    [Google Scholar]
  85. 85.
    Allen TA, Cullen MM, Hawkey N, Mochizuki H, Nguyen L, et al. 2021.. A zebrafish model of metastatic colonization pinpoints cellular mechanisms of circulating tumor cell extravasation. . Front. Oncol. 11::641187
    [Crossref] [Google Scholar]
  86. 86.
    Prouteau A, Mottier S, Primot A, Cadieu E, Bachelot L, et al. 2022.. Canine oral melanoma genomic and transcriptomic study defines two molecular subgroups with different therapeutical targets. . Cancers 14::276
    [Crossref] [Google Scholar]
  87. 87.
    Lin Z, Lin Z, Zhao Y, Cheng N, Zhang D, et al. 2021.. Auranofin and ICG-001 emerge synergistic anti-tumor effect on canine breast cancer by inducing apoptosis via mitochondrial pathway. . Front. Vet. Sci. 8::772687
    [Crossref] [Google Scholar]
  88. 88.
    Sanders K, Kooistra HS, van den Heuvel M, Mokry M, Grinwis GC, et al. 2023.. Transcriptome sequencing reveals two subtypes of cortisol-secreting adrenocortical tumours in dogs and identifies CYP26B1 as a potential new therapeutic target. . Vet. Comp. Oncol. 21::10010
    [Crossref] [Google Scholar]
  89. 89.
    Zhang Y, Parmigiani G, Johnson WE. 2020.. ComBat-seq: batch effect adjustment for RNA-seq count data. . NAR Genom. Bioinform. 2::lqaa078
    [Crossref] [Google Scholar]
  90. 90.
    Wu K, Rodrigues L, Post G, Harvey G, White M, et al. 2023.. Analyses of canine cancer mutations and treatment outcomes using real-world clinico-genomics data of 2119 dogs. . NPJ Precis. Oncol. 7::8
    [Crossref] [Google Scholar]
  91. 91.
    Rodrigues L, Watson J, Feng Y, Lewis B, Harvey G, et al. 2023.. Shared hotspot mutations in oncogenes position dogs as an unparalleled comparative model for precision therapeutics. . Sci. Rep. 13::10935
    [Crossref] [Google Scholar]
  92. 92.
    Kim TM, Yang IS, Seung BJ, Lee S, Kim D, et al. 2020.. Cross-species oncogenic signatures of breast cancer in canine mammary tumors. . Nat. Commun. 11::3616
    [Crossref] [Google Scholar]
  93. 93.
    Levine R, Forest T, Smith C. 2002.. Tumor suppressor PTEN is mutated in canine osteosarcoma cell lines and tumors. . Vet. Pathol. 39::37278
    [Crossref] [Google Scholar]
  94. 94.
    Gardner HL, Sivaprakasam K, Briones N, Zismann V, Perdigones N, et al. 2019.. Canine osteosarcoma genome sequencing identifies recurrent mutations in DMD and the histone methyltransferase gene SETD2. . Commun. Biol. 2::266
    [Crossref] [Google Scholar]
  95. 95.
    Fenger JM, London CA, Kisseberth WC. 2014.. Canine osteosarcoma: a naturally occurring disease to inform pediatric oncology. . ILAR J. 55::6985
    [Crossref] [Google Scholar]
  96. 96.
    Shelly S, Chien MB, Yip B, Kent MS, Theon AP, et al. 2005.. Exon 15 BRAF mutations are uncommon in canine oral malignant melanomas. . Mamm. Genome 16::21117
    [Crossref] [Google Scholar]
  97. 97.
    Lasota J, Miettinen M. 2006.. KIT and PDGFRA mutations in gastrointestinal stromal tumors (GISTs). . Semin. Diagn. Pathol. 23::91102
    [Crossref] [Google Scholar]
  98. 98.
    Jafri M, Wake NC, Ascher DB, Pires DEV, Gentle D, et al. 2015.. Germline mutations in the CDKN2B tumor suppressor gene predispose to renal cell carcinoma. . Cancer Discov. 5::72329
    [Crossref] [Google Scholar]
  99. 99.
    Mochizuki H, Shapiro SG, Breen M. 2015.. Detection of BRAF mutation in urine DNA as a molecular diagnostic for canine urothelial and prostatic carcinoma. . PLOS ONE 10::e0144170
    [Crossref] [Google Scholar]
  100. 100.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, et al. 2011.. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. . N. Engl. J. Med. 364::250716
    [Crossref] [Google Scholar]
  101. 101.
    Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, et al. 2012.. Improved survival with MEK inhibition in BRAF-mutated melanoma. . N. Engl. J. Med. 367::10714
    [Crossref] [Google Scholar]
  102. 102.
    Ding L, Bailey MH, Porta-Pardo E, Thorsson V, Colaprico A, et al. 2018.. Perspective on oncogenic processes at the end of the beginning of cancer genomics. . Cell 173::30520
    [Crossref] [Google Scholar]
  103. 103.
    Berger AC, Korkut A, Kanchi RS, Hegde AM, Lenoir W, et al. 2018.. A comprehensive pan-cancer molecular study of gynecologic and breast cancers. . Cancer Cell 33::690705
    [Crossref] [Google Scholar]
  104. 104.
    Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, et al. 2019.. COSMIC: the Catalogue of Somatic Mutations in Cancer. . Nucleic Acids Res. 47::D94147
    [Crossref] [Google Scholar]
  105. 105.
    Lee BT, Barber GP, Benet-Pagès A, Casper J, Clawson H, et al. 2022.. The UCSC Genome Browser Database: 2022 update. . Nucleic Acids Res. 50::D111522
    [Crossref] [Google Scholar]
  106. 106.
    Siegel DA, Richardson LC, Henley SJ, Wilson RJ, Dowling NF, et al. 2020.. Pediatric cancer mortality and survival in the United States, 2001–2016. . Cancer 126::437989
    [Crossref] [Google Scholar]
  107. 107.
    Theiss L, Contreras CM. 2019.. Gastrointestinal stromal tumors of the stomach and esophagus. . Surg. Clin. N. Am. 99::54353
    [Crossref] [Google Scholar]
  108. 108.
    Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, et al. 2015.. Understanding multicellular function and disease with human tissue-specific networks. . Nat. Genet. 47::56976
    [Crossref] [Google Scholar]
  109. 109.
    Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, et al. 2016.. The GeneCards suite: from gene data mining to disease genome sequence analyses. . Curr. Protoc. Bioinform. 54::1.30
    [Crossref] [Google Scholar]
  110. 110.
    Gröbner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, et al. 2018.. The landscape of genomic alterations across childhood cancers. . Nature 555::32127
    [Crossref] [Google Scholar]
  111. 111.
    Guy MK, Page RL, Jensen WA, Olson PN, Haworth JD, et al. 2015.. The Golden Retriever Lifetime Study: establishing an observational cohort study with translational relevance for human health. . Philos. Trans. R. Soc. B 370::20140230
    [Crossref] [Google Scholar]
  112. 112.
    Klopfleisch R, Von Euler H, Sarli G, Pinho S, Gärtner F, Gruber A. 2011.. Molecular carcinogenesis of canine mammary tumors: news from an old disease. . Vet. Pathol. 48::98116
    [Crossref] [Google Scholar]
  113. 113.
    Rivera P, Von Euler H. 2011.. Molecular biological aspects on canine and human mammary tumors. . Vet. Pathol. 48::13246
    [Crossref] [Google Scholar]
  114. 114.
    Pinho SS, Carvalho S, Cabral J, Reis CA, Gärtner F. 2012.. Canine tumors: a spontaneous animal model of human carcinogenesis. . Transl. Res. 159::16572
    [Crossref] [Google Scholar]
  115. 115.
    Shearin AL, Hedan B, Cadieu E, Erich SA, Schmidt EV, et al. 2012.. The MTAP-CDKN2A locus confers susceptibility to a naturally occurring canine cancer. . Cancer Epidemiol. Biomark. Prev. 21::101927
    [Crossref] [Google Scholar]
  116. 116.
    Antuofermo E, Miller MA, Pirino S, Xie J, Badve S, Mohammed SI. 2007.. Spontaneous mammary intraepithelial lesions in dogs—a model of breast cancer. . Cancer Epidemiol. Biomark. Prev. 16::224756
    [Crossref] [Google Scholar]
  117. 117.
    Klopfleisch R, Klose P, Weise C, Bondzio A, Multhaup G, et al. 2010.. Proteome of metastatic canine mammary carcinomas: similarities to and differences from human breast cancer. . J. Proteome Res. 9::638091
    [Crossref] [Google Scholar]
  118. 118.
    Sorenmo K, Kristiansen V, Cofone M, Shofer F, Breen AM, et al. 2009.. Canine mammary gland tumours; a histological continuum from benign to malignant; clinical and histopathological evidence. . Vet. Comp. Oncol. 7::16272
    [Crossref] [Google Scholar]
  119. 119.
    Gustafson DL, Duval DL, Regan DP, Thamm DH. 2018.. Canine sarcomas as a surrogate for the human disease. . Pharmacol. Ther. 188::8096
    [Crossref] [Google Scholar]
  120. 120.
    Grüntzig K, Graf R, Boo G, Guscetti F, Hässig M, et al. 2016.. Swiss canine cancer registry 1955–2008: occurrence of the most common tumour diagnoses and influence of age, breed, body size, sex and neutering status on tumour development. . J. Comp. Pathol. 155::15670
    [Crossref] [Google Scholar]
  121. 121.
    Boos GS, Bassuino DM, Wurster F, Castro NB, Watanabe TT, et al. 2015.. Retrospective canine skin peripheral nerve sheath tumors data with emphasis on histologic, immunohistochemical and prognostic factors. . Pesqui. Vet. Bras. 35::96574
    [Crossref] [Google Scholar]
  122. 122.
    Ehrhart NP, Ryan SD, Fan TM. 2013.. Tumors of the skeletal system. . In Withrow and MacEwen's Small Animal Clinical Oncology, ed. SJ Withrow, DM Vail, RL Page , pp. 463503. Amsterdam:: Elsevier
    [Google Scholar]
  123. 123.
    Withrow SJ, Wilkins RM. 2010.. Cross talk from pets to people: translational osteosarcoma treatments. . ILAR J. 51::20813
    [Crossref] [Google Scholar]
  124. 124.
    Mason NJ. 2020.. Comparative immunology and immunotherapy of canine osteosarcoma. . Adv. Med. Exp. Biol. 1258::199221
    [Crossref] [Google Scholar]
  125. 125.
    Parkin DM, Ferlay J, Curado MP, Bray F, Edwards B, et al. 2010.. Fifty years of cancer incidence: CI5 I–IX. . Int. J. Cancer 127::291827
    [Crossref] [Google Scholar]
  126. 126.
    Mirabello L, Troisi RJ, Savage SA. 2009.. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. . Int. J. Cancer 125::22934
    [Crossref] [Google Scholar]
  127. 127.
    Mueller F, Fuchs B, Kaser-Hotz B. 2007.. Comparative biology of human and canine osteosarcoma. . Anticancer Res. 27::15564
    [Google Scholar]
  128. 128.
    Dorfman HD, Czerniak B. 1995.. Bone cancers. . Cancer 75::20310
    [Crossref] [Google Scholar]
  129. 129.
    Mason NJ, Gnanandarajah JS, Engiles JB, Gray F, Laughlin D, et al. 2016.. Immunotherapy with a HER2-targeting Listeria induces HER2-specific immunity and demonstrates potential therapeutic effects in a phase I trial in canine osteosarcoma. . Clin. Cancer Res. 22::438090
    [Crossref] [Google Scholar]
  130. 130.
    Levine R, Fleischli M. 2000.. Inactivation of p53 and retinoblastoma family pathways in canine osteosarcoma cell lines. . Vet. Pathol. 37::5461
    [Crossref] [Google Scholar]
  131. 131.
    Mendoza S, Konishi T, Dernell W, Withrow S, Miller C. 1998.. Status of the p53, RB and MDM2 genes in canine osteosarcoma. . Anticancer Res. 18::444953
    [Google Scholar]
  132. 132.
    Sakthikumar S, Elvers I, Kim J, Arendt ML, Thomas R, et al. 2018.. SETD2 is recurrently mutated in whole-exome sequenced canine osteosarcoma. . Cancer Res. 78::342131
    [Crossref] [Google Scholar]
  133. 133.
    Das S, Idate R, Regan DP, Fowles JS, Lana SE, et al. 2021.. Immune pathways and TP53 missense mutations are associated with longer survival in canine osteosarcoma. . Commun. Biol. 4::1178
    [Crossref] [Google Scholar]
  134. 134.
    O'Neill DG, Edmunds GL, Urquhart-Gilmore J, Church DB, Rutherford L, et al. 2023.. Dog breeds and conformations predisposed to osteosarcoma in the UK: a VetCompass study. . Canine Med. Genet. 10::8
    [Crossref] [Google Scholar]
  135. 135.
    Mirabello L, Troisi RJ, Savage SA. 2009.. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. . Cancer 115::153143
    [Crossref] [Google Scholar]
  136. 136.
    Selmic L, Burton J, Thamm D, Withrow S, Lana S. 2014.. Comparison of carboplatin and doxorubicin-based chemotherapy protocols in 470 dogs after amputation for treatment of appendicular osteosarcoma. . J. Vet. Intern. Med. 28::55463
    [Crossref] [Google Scholar]
  137. 137.
    Tamburini BA, Trapp S, Phang TL, Schappa JT, Hunter LE, Modiano JF. 2009.. Gene expression profiles of sporadic canine hemangiosarcoma are uniquely associated with breed. . PLOS ONE 4::e5549
    [Crossref] [Google Scholar]
  138. 138.
    Sommer BC, Dhawan D, Ratliff TL, Knapp DW. 2018.. Naturally-occurring canine invasive urothelial carcinoma: a model for emerging therapies. . Bladder Cancer 4::14959
    [Crossref] [Google Scholar]
  139. 139.
    José-López R, Gutierrez-Quintana R, de la Fuente C, Manzanilla EG, Suñol A, et al. 2021.. Clinical features, diagnosis, and survival analysis of dogs with glioma. . J. Vet. Intern. Med. 35::190217
    [Crossref] [Google Scholar]
  140. 140.
    Dickinson PJ, York D, Higgins RJ, LeCouteur RA, Joshi N, Bannasch D. 2016.. Chromosomal aberrations in canine gliomas define candidate genes and common pathways in dogs and humans. . J. Neuropathol. Exp. Neurol. 75::70010
    [Crossref] [Google Scholar]
  141. 141.
    Ammons DT, Guth A, Rozental AJ, Kurihara J, Marolf AJ, et al. 2022.. Reprogramming the canine glioma microenvironment with tumor vaccination plus oral losartan and propranolol induces objective responses. . Cancer Res. Commun. 2::165767
    [Crossref] [Google Scholar]
  142. 142.
    Aresu L. 2016.. Canine lymphoma, more than a morphological diagnosis: what we have learned about diffuse large B-cell lymphoma. . Front. Vet. Sci. 3::77
    [Crossref] [Google Scholar]
  143. 143.
    Ponce F, Marchal T, Magnol J, Turinelli V, Ledieu D, et al. 2010.. A morphological study of 608 cases of canine malignant lymphoma in France with a focus on comparative similarities between canine and human lymphoma morphology. . Vet. Pathol. 47::41433
    [Crossref] [Google Scholar]
  144. 144.
    Aresu L, Ferraresso S, Marconato L, Cascione L, Napoli S, et al. 2018.. New molecular and therapeutic insights into canine diffuse large B cell lymphoma elucidates the role of the dog as a model for human disease. . Haematologica 104::e25659
    [Crossref] [Google Scholar]
  145. 145.
    Simpson M, Searfoss E, Albright S, Brown DE, Wolfe B, et al. 2017.. Population characteristics of golden retriever lifetime study enrollees. . Canine Genet. Epidemiol. 4::14
    [Crossref] [Google Scholar]
  146. 146.
    Atherton MJ, Morris JS, McDermott MR, Lichty BD. 2016.. Cancer immunology and canine malignant melanoma: a comparative review. . Vet. Immunol. Immunopathol. 169::1526
    [Crossref] [Google Scholar]
  147. 147.
    Simpson RM, Bastian BC, Michael HT, Webster JD, Prasad ML, et al. 2014.. Sporadic naturally occurring melanoma in dogs as a preclinical model for human melanoma. . Pigment Cell Melanoma Res. 27::3747
    [Crossref] [Google Scholar]
  148. 148.
    Bergman P, Camps-Palau M, McKnight J, Leibman N, Craft D, et al. 2006.. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. . Vaccine 24::458285
    [Crossref] [Google Scholar]
  149. 149.
    Grosenbaugh DA, Leard AT, Bergman PJ, Klein MK, Meleo K, et al. 2011.. Safety and efficacy of a xenogeneic DNA vaccine encoding for human tyrosinase as adjunctive treatment for oral malignant melanoma in dogs following surgical excision of the primary tumor. . Am. J. Vet. Res. 72::163138
    [Crossref] [Google Scholar]
  150. 150.
    Yates B, Gray KA, Jones TE, Bruford EA. 2021.. Updates to HCOP: the HGNC comparison of orthology predictions tool. . Brief. Bioinform. 22::bbab155
    [Crossref] [Google Scholar]
  151. 151.
    Jacob JA. 2016.. Researchers turn to canine clinical trials to advance cancer therapies. . JAMA 315::155052
    [Crossref] [Google Scholar]
  152. 152.
    Mak IW, Evaniew N, Ghert M. 2014.. Lost in translation: animal models and clinical trials in cancer treatment. . Am. J. Transl. Res. 6::11418
    [Google Scholar]
  153. 153.
    Luan X, Yuan H, Song Y, Hu H, Wen B, et al. 2021.. Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation. . Biomaterials 275::120910
    [Crossref] [Google Scholar]
  154. 154.
    Sun D, Gao W, Hu H, Zhou S. 2022.. Why 90% of clinical drug development fails and how to improve it?. Acta Pharm. Sin. B 12::304962
    [Crossref] [Google Scholar]
  155. 155.
    Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, et al. 2010.. How to improve R&D productivity: the pharmaceutical industry's grand challenge. . Nat. Rev. Drug Discov. 9::20314
    [Crossref] [Google Scholar]
  156. 156.
    Snyder A, De Alwis D, Goonewardene A, Hegde PS. 2022.. Balancing speed, science and regulatory requirements in oncology drug development. . Nat. Med. 28::223435
    [Crossref] [Google Scholar]
  157. 157.
    Barnard RA, Wittenburg LA, Amaravadi RK, Gustafson DL, Thorburn A, Thamm DH. 2014.. Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma. . Autophagy 10::141525
    [Crossref] [Google Scholar]
  158. 158.
    Rangwala R, Chang YC, Hu J, Algazy KM, Evans TL, et al. 2014.. Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. . Autophagy 10::1391402
    [Crossref] [Google Scholar]
  159. 159.
    Gordon I, Paoloni M, Mazcko C, Khanna C. 2009.. The Comparative Oncology Trials Consortium: using spontaneously occurring cancers in dogs to inform the cancer drug development pathway. . PLOS Med. 6::e1000161
    [Crossref] [Google Scholar]
  160. 160.
    Yang B, Jeang J, Yang A, Wu T, Hung CF. 2014.. DNA vaccine for cancer immunotherapy. . Hum. Vaccines Immunother. 10::315364
    [Crossref] [Google Scholar]
  161. 161.
    Regan D, Guth A, Coy J, Dow S. 2016.. Cancer immunotherapy in veterinary medicine: current options and new developments. . Vet. J. 207::2028
    [Crossref] [Google Scholar]
  162. 162.
    Fürdös I, Fazekas J, Singer J, Jensen-Jarolim E. 2015.. Translating clinical trials from human to veterinary oncology and back. . J. Transl. Med. 13::265
    [Crossref] [Google Scholar]
  163. 163.
    Guerin MV, Finisguerra V, van den Eynde BJ, Bercovici N, Trautmann A. 2020.. Preclinical murine tumor models: a structural and functional perspective. . eLife 9::e50740
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-102423-111936
Loading
/content/journals/10.1146/annurev-biodatasci-102423-111936
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error