1932

Abstract

Novel sequencing technologies are making it increasingly possible to measure the mutation rates of somatic cell lineages. Accurate germline mutation rate measurement technologies have also been available for a decade, making it possible to assess how this fundamental evolutionary parameter varies across the tree of life. Here, we review some classical theories about germline and somatic mutation rate evolution that were formulated using principles of population genetics and the biology of aging and cancer. We find that somatic mutation rate measurements, while still limited in phylogenetic diversity, seem consistent with the theory that selection to preserve the soma is proportional to life span. However, germline and somatic theories make conflicting predictions regarding which species should have the most accurate DNA repair. Resolving this conflict will require carefully measuring how mutation rates scale with time and cell division and achieving a better understanding of mutation rate pleiotropy among cell types.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-102523-104225
2024-08-23
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/7/1/annurev-biodatasci-102523-104225.html?itemId=/content/journals/10.1146/annurev-biodatasci-102523-104225&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Evans DAP, Peter J, Burbach H, van Leeuwen FW. 1995.. Somatic mutations in the brain: relationship to aging?. Mutat. Res. 338:(1–6):17382
    [Crossref] [Google Scholar]
  2. 2.
    Busuttil RA, Garcia AM, Reddick RL, Dollé MET, Calder RB, et al. 2007.. Intra-organ variation in age-related mutation accumulation in the mouse. . PLOS ONE 2:(9):e876
    [Crossref] [Google Scholar]
  3. 3.
    Murphey P, McLean DJ, McMahan CA, Walter CA, McCarrey JR. 2013.. Enhanced genetic integrity in mouse germ cells. . Biol. Reprod. 88:(1):6
    [Crossref] [Google Scholar]
  4. 4.
    Chen C, Qi H, Shen Y, Pickrell J, Przeworski M. 2017.. Contrasting determinants of mutation rates in germline and soma. . Genetics 207:(1):25567
    [Crossref] [Google Scholar]
  5. 5.
    Moore L, Cagan A, Coorens THH, Neville MDC, Sanghvi R, et al. 2021.. The mutational landscape of human somatic and germline cells. . Nature 597:(7876):38186
    [Crossref] [Google Scholar]
  6. 6.
    Sturtevant AH. 1937.. Essays on evolution. I. On the effects of selection on mutation rate. . Q. Rev. Biol. 12:(4):46467
    [Crossref] [Google Scholar]
  7. 7.
    Ives PT. 1950.. The importance of mutation rate genes in evolution. . Evolution 4:(3):23652
    [Crossref] [Google Scholar]
  8. 8.
    Kimura M. 1967.. On the evolutionary adjustment of spontaneous mutation rates. . Genet. Res. 9:(1):2334
    [Crossref] [Google Scholar]
  9. 9.
    Sniegowski PD, Gerrish PJ, Johnson T, Shaver A. 2000.. The evolution of mutation rates: separating causes from consequences. . BioEssays 22:(12):105766
    [Crossref] [Google Scholar]
  10. 10.
    Bedau MA, Packard NH. 2003.. Evolution of evolvability via adaptation of mutation rates. . Biosystems 69:(2):14362
    [Crossref] [Google Scholar]
  11. 11.
    Conrad DF, Keebler JEM, DePristo MA, Lindsay SJ, Zhang Y, et al. 2011.. Variation in genome-wide mutation rates within and between human families. . Nat. Genet. 43:(7):71214
    [Crossref] [Google Scholar]
  12. 12.
    Scally A, Durbin R. 2012.. Revising the human mutation rate: implications for understanding human evolution. . Nat. Rev. Genet. 13:(10):74553
    [Crossref] [Google Scholar]
  13. 13.
    Venn O, Turner I, Mathieson I, de Groot N, Bontrop R, McVean G. 2014.. Strong male bias drives germline mutation in chimpanzees. . Science 344:(6189):127275
    [Crossref] [Google Scholar]
  14. 14.
    Echols H, Goodman MF. 1991.. Fidelity mechanisms in DNA replication. . Annu. Rev. Biochem. 60::477511
    [Crossref] [Google Scholar]
  15. 15.
    Ganai RA, Johansson E. 2016.. DNA replication—a matter of fidelity. . Mol. Cell 62:(5):74555
    [Crossref] [Google Scholar]
  16. 16.
    Ames BN. 1989.. Mutagenesis and carcinogenesis: endogenous and exogenous factors. . Environ. Mol. Mutagen. 14:(Suppl. 16):6677
    [Crossref] [Google Scholar]
  17. 17.
    Friedberg EC, McDaniel LD, Schultz RA. 2004.. The role of endogenous and exogenous DNA damage and mutagenesis. . Curr. Opin. Genet. Dev. 14:(1):510
    [Crossref] [Google Scholar]
  18. 18.
    Nik-Zainal S, Kucab JE, Morganella S, Glodzik D, Alexandrov LB, et al. 2015.. The genome as a record of environmental exposure. . Mutagenesis 30:(6):76370
    [Google Scholar]
  19. 19.
    Jordan CT, Guzman ML, Noble M. 2006.. Cancer stem cells. . N. Engl. J. Med. 355:(12):125361
    [Crossref] [Google Scholar]
  20. 20.
    Phesse TJ, Clarke AR. 2009.. Normal stem cells in cancer prone epithelial tissues. . Br. J. Cancer 100:(2):22127
    [Crossref] [Google Scholar]
  21. 21.
    Lynch M. 2008.. The cellular, developmental and population-genetic determinants of mutation-rate evolution. . Genetics 180:(2):93343
    [Crossref] [Google Scholar]
  22. 22.
    Lynch M. 2010.. Evolution of the mutation rate. . Trends Genet. 26:(8):34552
    [Crossref] [Google Scholar]
  23. 23.
    Lynch M. 2011.. The lower bound to the evolution of mutation rates. . Genome Biol. Evol. 3::110718
    [Crossref] [Google Scholar]
  24. 24.
    Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M. 2012.. Drift-barrier hypothesis and mutation-rate evolution. . PNAS 109:(45):1848892
    [Crossref] [Google Scholar]
  25. 25.
    Lynch M, Ackerman MS, Gout J-F, Long H, Sung W, et al. 2016.. Genetic drift, selection and the evolution of the mutation rate. . Nat. Rev. Genet. 17:(11):70414
    [Crossref] [Google Scholar]
  26. 26.
    Ohta T. 1973.. Slightly deleterious mutant substitutions in evolution. . Nature 246:(5428):9698
    [Crossref] [Google Scholar]
  27. 27.
    Ohta T. 1992.. The nearly neutral theory of molecular evolution. . Annu. Rev. Ecol. Syst. 23::26386
    [Crossref] [Google Scholar]
  28. 28.
    Li H, Durbin R. 2011.. Inference of human population history from individual whole-genome sequences. . Nature 475:(7357):49396
    [Crossref] [Google Scholar]
  29. 29.
    Geraldes A, Basset P, Smith KL, Nachman MW. 2011.. Higher differentiation among subspecies of the house mouse (Mus musculus) in genomic regions with low recombination. . Mol. Ecol. 20:(22):472236
    [Crossref] [Google Scholar]
  30. 30.
    Phifer-Rixey M, Bonhomme F, Boursot P, Churchill GA, Piálek J, et al. 2012.. Adaptive evolution and effective population size in wild house mice. . Mol. Biol. Evol. 29:(10):294955
    [Crossref] [Google Scholar]
  31. 31.
    Lindsay SJ, Rahbari R, Kaplanis J, Keane T, Hurles ME. 2019.. Similarities and differences in patterns of germline mutation between mice and humans. . Nat. Commun. 10:(1):4053
    [Crossref] [Google Scholar]
  32. 32.
    Bergeron LA, Besenbacher S, Zheng J, Li P, Bertelsen MF, et al. 2023.. Evolution of the germline mutation rate across vertebrates. . Nature 615:(7951):28591
    [Crossref] [Google Scholar]
  33. 33.
    Spisak N, de Manuel M, Milligan W, Sella G, Przeworski M. 2023.. Disentangling sources of clock-like mutations in germline and soma. . bioRxiv 2023.09.07.556720. https://doi.org/10.1101/2023.09.07.556720
  34. 34.
    Rahbari R, Wuster A, Lindsay SJ, Hardwick RJ, Alexandrov LB, et al. 2016.. Timing, rates and spectra of human germline mutation. . Nat. Genet. 48:(2):12633
    [Crossref] [Google Scholar]
  35. 35.
    Ju YS, Martincorena I, Gerstung M, Petljak M, Alexandrov LB, et al. 2017.. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo. . Nature 543:(7647):71418
    [Crossref] [Google Scholar]
  36. 36.
    Li L, Lu X, Dean J. 2013.. The maternal to zygotic transition in mammals. . Mol. Aspects Med. 34:(5):91938
    [Crossref] [Google Scholar]
  37. 37.
    Schoen DJ, Schultz ST. 2019.. Somatic mutation and evolution in plants. . Annu. Rev. Ecol. Evol. Syst. 50::4973
    [Crossref] [Google Scholar]
  38. 38.
    Doonan JH, Sablowski R. 2010.. Walls around tumours—why plants do not develop cancer. . Nat. Rev. Cancer 10:(11):794802
    [Crossref] [Google Scholar]
  39. 39.
    Ohta T. 1996.. The neutral theory is dead. The current significance and standing of neutral and nearly neutral theories. . BioEssays 18:(8):67377
    [Crossref] [Google Scholar]
  40. 40.
    Kreitman M. 1996.. The neutral theory is dead. Long live the neutral theory. . BioEssays 18:(8):67883
    [Crossref] [Google Scholar]
  41. 41.
    Gould SJ, Lewontin RC, Maynard Smith J, Holliday R. 1997.. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. . Proc. R. Soc. B 205:(1161):58198
    [Google Scholar]
  42. 42.
    Nielsen R. 2009.. Adaptionism—30 years after Gould and Lewontin. . Evolution 63:(10):248790
    [Crossref] [Google Scholar]
  43. 43.
    McVicker G, Gordon D, Davis C, Green P. 2009.. Widespread genomic signatures of natural selection in hominid evolution. . PLOS Genet. 5:(5):e1000471
    [Crossref] [Google Scholar]
  44. 44.
    Hernandez RD, Kelley JL, Elyashiv E, Melton SC, Auton A, et al. 2011.. Classic selective sweeps were rare in recent human evolution. . Science 331:(6019):92024
    [Crossref] [Google Scholar]
  45. 45.
    Kern AD, Hahn MW. 2018.. The neutral theory in light of natural selection. . Mol. Biol. Evol. 35:(6):136671
    [Crossref] [Google Scholar]
  46. 46.
    Jensen JD, Payseur BA, Stephan W, Aquadro CF, Lynch M, et al. 2019.. The importance of the Neutral Theory in 1968 and 50 years on: a response to Kern and Hahn 2018. . Evolution 73:(1):11114
    [Crossref] [Google Scholar]
  47. 47.
    Coffey LL, Beeharry Y, Bordería AV, Blanc H, Vignuzzi M. 2011.. Arbovirus high fidelity variant loses fitness in mosquitoes and mice. . PNAS 108:(38):1603843
    [Crossref] [Google Scholar]
  48. 48.
    Dapp MJ, Heineman RH, Mansky LM. 2013.. Interrelationship between HIV-1 fitness and mutation rate. . J. Mol. Biol. 425:(1):4153
    [Crossref] [Google Scholar]
  49. 49.
    Fitzsimmons WJ, Woods RJ, McCrone JT, Woodman A, Arnold JJ, et al. 2018.. A speed-fidelity trade-off determines the mutation rate and virulence of an RNA virus. . PLOS Biol. 16:(6):e2006459
    [Crossref] [Google Scholar]
  50. 50.
    Pal C, Maciá MD, Oliver A, Schachar I, Buckling A. 2007.. Coevolution with viruses drives the evolution of bacterial mutation rates. . Nature 450:(7172):107981
    [Crossref] [Google Scholar]
  51. 51.
    Payne JL, Wagner A. 2019.. The causes of evolvability and their evolution. . Nat. Rev. Genet. 20:(1):2438
    [Crossref] [Google Scholar]
  52. 52.
    McKenzie GJ, Harris RS, Lee PL, Rosenberg SM. 2000.. The SOS response regulates adaptive mutation. . PNAS 97:(12):664651
    [Crossref] [Google Scholar]
  53. 53.
    Andersson DI, Koskiniemi S, Hughes D. 2010.. Biological roles of translesion synthesis DNA polymerases in eubacteria. . Mol. Microbiol. 77:(3):54048
    [Crossref] [Google Scholar]
  54. 54.
    Monroe JG, Srikant T, Carbonell-Bejerano P, Becker C, Lensink M, et al. 2022.. Mutation bias reflects natural selection in Arabidopsis thaliana. . Nature 602:(7895):1015
    [Crossref] [Google Scholar]
  55. 55.
    Wang L, Ho AT, Hurst LD, Yang S. 2023.. Re-evaluating evidence for adaptive mutation rate variation. . Nature 619:(7971):E5256
    [Crossref] [Google Scholar]
  56. 56.
    Monroe JG, Murray KD, Xian W, Srikant T, Carbonell-Bejerano P, et al. 2023.. Reply to: re-evaluating evidence for adaptive mutation rate variation. . Nature 619:(7971):E5760
    [Crossref] [Google Scholar]
  57. 57.
    Martincorena I, Seshasayee ASN, Luscombe NM. 2012.. Evidence of non-random mutation rates suggests an evolutionary risk management strategy. . Nature 485:(7396):9598
    [Crossref] [Google Scholar]
  58. 58.
    Liu H, Zhang J. 2022.. Is the mutation rate lower in genomic regions of stronger selective constraints?. Mol. Biol. Evol. 39:(8):msac169
    [Crossref] [Google Scholar]
  59. 59.
    Melamed D, Nov Y, Malik A, Yakass MB, Bolotin E, et al. 2022.. De novo mutation rates at the single-mutation resolution in a human HBB gene region associated with adaptation and genetic disease. . Genome Res. 32:(3):48898
    [Crossref] [Google Scholar]
  60. 60.
    Johnson AA, Shokhirev MN, Shoshitaishvili B. 2019.. Revamping the evolutionary theories of aging. . Ageing Res. Rev. 55::100947
    [Crossref] [Google Scholar]
  61. 61.
    Boddy AM. 2023.. The need for evolutionary theory in cancer research. . Eur. J. Epidemiol. 38:(12):125964
    [Crossref] [Google Scholar]
  62. 62.
    Freitas AA, de Magalhães JP. 2011.. A review and appraisal of the DNA damage theory of ageing. . Mutat. Res. 728:(1):1222
    [Crossref] [Google Scholar]
  63. 63.
    Tollis M, Schiffman JD, Boddy AM. 2017.. Evolution of cancer suppression as revealed by mammalian comparative genomics. . Curr. Opin. Genet. Dev. 42::4047
    [Crossref] [Google Scholar]
  64. 64.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2023.. Hallmarks of aging: an expanding universe. . Cell 186:(2):24378
    [Crossref] [Google Scholar]
  65. 65.
    Peto R, Roe FJ, Lee PN, Levy L, Clack J. 1975.. Cancer and ageing in mice and men. . Br. J. Cancer 32:(4):41126
    [Crossref] [Google Scholar]
  66. 66.
    Peto R. 1977.. Epidemiology, multistage models, and short-term mutagenicity tests. . In Origins of Human Cancer: Cold Spring Harbor Conferences on Cell Proliferation, Vol. 4, ed. HH Hiatt, JD Watson, JA Winsten , pp. 140328. Cold Spring Harbor, NY:: Cold Spring Harb. Lab.
    [Google Scholar]
  67. 67.
    Peto R. 2016.. Epidemiology, multistage models, and short-term mutagenicity tests. . Int. J. Epidemiol. 45:(3):62137
    [Crossref] [Google Scholar]
  68. 68.
    Nunney L. 1999.. Lineage selection and the evolution of multistage carcinogenesis. . Proc. R. Soc. B 266:(1418):49398
    [Crossref] [Google Scholar]
  69. 69.
    Caulin AF, Maley CC. 2011.. Peto's Paradox: evolution's prescription for cancer prevention. . Trends Ecol. Evol. 26:(4):17582
    [Crossref] [Google Scholar]
  70. 70.
    Peto R. 2015.. Quantitative implications of the approximate irrelevance of mammalian body size and lifespan to lifelong cancer risk. . Philos. Trans. R. Soc. B 370:(1673):20150198
    [Crossref] [Google Scholar]
  71. 71.
    Boddy AM, Abegglen LM, Pessier AP, Aktipis A, Schiffman JD, et al. 2020.. Lifetime cancer prevalence and life history traits in mammals. . Evol. Med. Public Health 2020:(1):18795
    [Crossref] [Google Scholar]
  72. 72.
    Tollis M, Boddy AM, Maley CC. 2017.. Peto's Paradox: How has evolution solved the problem of cancer prevention?. BMC Biol. 15:(1):60
    [Crossref] [Google Scholar]
  73. 73.
    Abegglen LM, Caulin AF, Chan A, Lee K, Robinson R, et al. 2015.. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. . JAMA 314:(17):185060
    [Crossref] [Google Scholar]
  74. 74.
    Sulak M, Fong L, Mika K, Chigurupati S, Yon L, et al. 2016.. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. . eLife 5::e11994
    [Crossref] [Google Scholar]
  75. 75.
    Keane M, Semeiks J, Webb AE, Li YI, Quesada V, et al. 2015.. Insights into the evolution of longevity from the bowhead whale genome. . Cell Rep. 10:(1):11222
    [Crossref] [Google Scholar]
  76. 76.
    Tollis M, Robbins J, Webb AE, Kuderna LFK, Caulin AF, et al. 2019.. Return to the sea, get huge, beat cancer: an analysis of cetacean genomes including an assembly for the humpback whale (Megaptera novaeangliae). . Mol. Biol. Evol. 36:(8):174663
    [Crossref] [Google Scholar]
  77. 77.
    Toren D, Kulaga A, Jethva M, Rubin E, Snezhkina AV, et al. 2020.. Gray whale transcriptome reveals longevity adaptations associated with DNA repair and ubiquitination. . Aging Cell 19:(7):e13158
    [Crossref] [Google Scholar]
  78. 78.
    Firsanov D, Zacher M, Tian X, Zhao Y, George JC, et al. 2023.. DNA repair and anti-cancer mechanisms in the longest-living mammal: the bowhead whale. . bioRxiv 2023.05.07.539748. https://doi.org/10.1101/2023.05.07.539748
  79. 79.
    Jackson JA, Baker CS, Vant M, Steel DJ, Medrano-González L, Palumbi SR. 2009.. Big and slow: phylogenetic estimates of molecular evolution in baleen whales (Suborder Mysticeti). . Mol. Biol. Evol. 26:(11):242740
    [Crossref] [Google Scholar]
  80. 80.
    Seluanov A, Gladyshev VN, Vijg J, Gorbunova V. 2018.. Mechanisms of cancer resistance in long-lived mammals. . Nat. Rev. Cancer 18:(7):43341
    [Crossref] [Google Scholar]
  81. 81.
    Suárez-Menéndez M, Bérubé M, Furni F, Rivera-León VE, Heide-Jørgensen M-P, et al. 2023.. Wild pedigrees inform mutation rates and historic abundance in baleen whales. . Science 381:(6661):99095
    [Crossref] [Google Scholar]
  82. 82.
    Wang Y, Obbard DJ. 2023.. Experimental estimates of germline mutation rate in eukaryotes: a phylogenetic meta-analysis. . Evol. Lett. 7:(4):21626
    [Crossref] [Google Scholar]
  83. 83.
    Hoelzel AR, Lynch M. 2023.. The raw material of evolution. . Science 381:(6661):94243
    [Crossref] [Google Scholar]
  84. 84.
    Medawar PB. 1952.. An Unsolved Problem of Biology. London:: H.K. Lewis Co.
    [Google Scholar]
  85. 85.
    Kim Y, Nam HG, Valenzano DR. 2016.. The short-lived African turquoise killifish: an emerging experimental model for ageing. . Dis. Model. Mech. 9:(2):11529
    [Crossref] [Google Scholar]
  86. 86.
    Cui R, Willemsen D, Valenzano DR. 2020.. Nothobranchius furzeri (African turquoise killifish). . Trends Genet. 36:(7):54041
    [Crossref] [Google Scholar]
  87. 87.
    Willemsen D, Cui R, Reichard M, Valenzano DR. 2020.. Intra-species differences in population size shape life history and genome evolution. . eLife 9::e55794
    [Crossref] [Google Scholar]
  88. 88.
    Williams GC. 2001 (1957).. Pleiotropy, natural selection, and the evolution of senescence. . Sci. Aging Knowl. Environ. 2001:(1):cp13
    [Crossref] [Google Scholar]
  89. 89.
    Kirkwood TBL. 1977.. Evolution of ageing. . Nature 270:(5635):3014
    [Crossref] [Google Scholar]
  90. 90.
    Li S, Vazquez JM, Sudmant PH. 2023.. The evolution of aging and lifespan. . Trends Genet. 39:(11):83043
    [Crossref] [Google Scholar]
  91. 91.
    Cawthon RM, Meeks HD, Sasani TA, Smith KR, Kerber RA, et al. 2020.. Germline mutation rates in young adults predict longevity and reproductive lifespan. . Sci. Rep. 10:(1):10001
    [Crossref] [Google Scholar]
  92. 92.
    Lohr JN, David P, Haag CR. 2014.. Reduced lifespan and increased ageing driven by genetic drift in small populations. . Evolution 68:(9):2494508
    [Crossref] [Google Scholar]
  93. 93.
    Le Marchand L, Kolonel LN, Earle ME, Mi M-P. 1988.. Body size at different periods of life and breast cancer risk. . Am. J. Epidemiol. 128:(1):13752
    [Crossref] [Google Scholar]
  94. 94.
    Russo A, Franceschi S, La Vecchia C, Dal Maso L, Montella M, et al. 1998.. Body size and colorectal-cancer risk. . Int. J. Cancer 78:(2):16165
    [Crossref] [Google Scholar]
  95. 95.
    Grüntzig K, Graf R, Boo G, Guscetti F, Hässig M, et al. 2016.. Swiss Canine Cancer Registry 1955–2008: occurrence of the most common tumour diagnoses and influence of age, breed, body size, sex and neutering status on tumour development. . J. Comp. Pathol. 155:(2):15670
    [Crossref] [Google Scholar]
  96. 96.
    Cagan A, Baez-Ortega A, Brzozowska N, Abascal F, Coorens THH, et al. 2022.. Somatic mutation rates scale with lifespan across mammals. . Nature 604:(7906):51724
    [Crossref] [Google Scholar]
  97. 97.
    Chin DWL, Yoshizato T, Virding Culleton S, Grasso F, Barbachowska M, et al. 2022.. Aged healthy mice acquire clonal hematopoiesis mutations. . Blood 139:(4):62934
    [Crossref] [Google Scholar]
  98. 98.
    Hochberg ME, Noble RJ. 2017.. A framework for how environment contributes to cancer risk. . Ecol. Lett. 20:(2):11734
    [Crossref] [Google Scholar]
  99. 99.
    Tian X, Firsanov D, Zhang Z, Cheng Y, Luo L, et al. 2019.. SIRT6 is responsible for more efficient DNA double-strand break repair in long-lived species. . Cell 177:(3):62238.e22
    [Crossref] [Google Scholar]
  100. 100.
    Zhang L, Dong X, Tian X, Lee M, Ablaeva J, et al. 2021.. Maintenance of genome sequence integrity in long- and short-lived rodent species. . Sci. Adv. 7:(44):eabj3284
    [Crossref] [Google Scholar]
  101. 101.
    Tollis M, Schneider-Utaka AK, Maley CC. 2020.. The evolution of human cancer gene duplications across mammals. . Mol. Biol. Evol. 37:(10):287586
    [Crossref] [Google Scholar]
  102. 102.
    Ohta T. 1977.. Extension to the neutral mutation random drift hypothesis. . In Molecular Evolution, Protein Polymorphism and the Neutral Theory, ed. M Kimura , pp. 14867. Mishima, Japan:: Natl. Inst. Genet.
    [Google Scholar]
  103. 103.
    Chao L, Carr DE. 1993.. The molecular clock and the relationship between population size and generation time. . Evolution 47:(2):68890
    [Crossref] [Google Scholar]
  104. 104.
    Felsenstein J. 1985.. Phylogenies and the comparative method. . Am. Nat. 125:(1):115
    [Crossref] [Google Scholar]
  105. 105.
    Garland T Jr., Harvey PH, Ives AR. 1992.. Procedures for the analysis of comparative data using phylogenetically independent contrasts. . Syst. Biol. 41:(1):1832
    [Crossref] [Google Scholar]
  106. 106.
    Martins EP, Hansen TF. 1997.. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. . Am. Nat. 149:(4):64667
    [Crossref] [Google Scholar]
  107. 107.
    Freckleton RP, Harvey PH, Pagel M. 2002.. Phylogenetic analysis and comparative data: a test and review of evidence. . Am. Nat. 160:(6):71226
    [Crossref] [Google Scholar]
  108. 108.
    Ives AR, Helmus MR. 2011.. Generalized linear mixed models for phylogenetic analyses of community structure. . Ecol. Monogr. 81:(3):51125
    [Crossref] [Google Scholar]
  109. 109.
    Milholland B, Dong X, Zhang L, Hao X, Suh Y, Vijg J. 2017.. Differences between germline and somatic mutation rates in humans and mice. . Nat. Commun. 8:(1):15183
    [Crossref] [Google Scholar]
  110. 110.
    Sasani TA, Ashbrook DG, Beichman AC, Lu L, Palmer AA, et al. 2022.. A natural mutator allele shapes mutation spectrum variation in mice. . Nature 605:(7910):497502
    [Crossref] [Google Scholar]
  111. 111.
    Ferraj A, Audano PA, Balachandran P, Czechanski A, Flores JI, et al. 2023.. Resolution of structural variation in diverse mouse genomes reveals chromatin remodeling due to transposable elements. . Cell Genom. 3:(5):100291
    [Crossref] [Google Scholar]
  112. 112.
    Sasani TA, Quinlan AR, Harris K. 2023.. Epistasis between mutator alleles contributes to germline mutation rate variability in laboratory mice. . bioRxiv 2023.04.25.537217. https://doi.org/10.1101/2023.04.25.537217
  113. 113.
    Coorens THH, Oliver TRW, Sanghvi R, Sovio U, Cook E, et al. 2021.. Inherent mosaicism and extensive mutation of human placentas. . Nature 592:(7852):8085
    [Crossref] [Google Scholar]
  114. 114.
    Gao Z, Moorjani P, Sasani TA, Pedersen BS, Quinlan AR, et al. 2019.. Overlooked roles of DNA damage and maternal age in generating human germline mutations. . PNAS 116:(19):9491500
    [Crossref] [Google Scholar]
  115. 115.
    Wu FL, Strand AI, Cox LA, Ober C, Wall JD, et al. 2020.. A comparison of humans and baboons suggests germline mutation rates do not track cell divisions. . PLOS Biol. 18:(8):e3000838
    [Crossref] [Google Scholar]
  116. 116.
    Zhu L, Beichman AC, Harris K. 2023.. Reproductive life history may modulate selection on the germline mutation rate. . bioRxiv 2023.12.06.570457. https://doi.org/10.1101/2023.12.06.570457
  117. 117.
    Lynch M, Ali F, Lin T, Wang Y, Ni J, Long H. 2023.. The divergence of mutation rates and spectra across the Tree of Life. . EMBO Rep. 24:(10):e57561
    [Crossref] [Google Scholar]
  118. 118.
    Kessler MD, Loesch DP, Perry JA, Heard-Costa NL, Taliun D, et al. 2020.. De novo mutations across 1,465 diverse genomes reveal mutational insights and reductions in the Amish founder population. . PNAS 117:(5):256069
    [Crossref] [Google Scholar]
  119. 119.
    Jónsson H, Sulem P, Kehr B, Kristmundsdottir S, Zink F, et al. 2017.. Parental influence on human germline de novo mutations in 1,548 trios from Iceland. . Nature 549:(7673):51922
    [Crossref] [Google Scholar]
  120. 120.
    Wang RJ, Raveendran M, Harris RA, Murphy WJ, Lyons LA, et al. 2022.. De novo mutations in domestic cat are consistent with an effect of reproductive longevity on both the rate and spectrum of mutations. . Mol. Biol. Evol. 39:(7):msac147
    [Crossref] [Google Scholar]
  121. 121.
    Sasani TA, Pedersen BS, Gao Z, Baird L, Przeworski M, et al. 2019.. Large, three-generation human families reveal post-zygotic mosaicism and variability in germline mutation accumulation. . eLife 8::e46922
    [Crossref] [Google Scholar]
  122. 122.
    Harris K. 2015.. Evidence for recent, population-specific evolution of the human mutation rate. . PNAS 112:(11):343944
    [Crossref] [Google Scholar]
  123. 123.
    Harris K, Pritchard JK. 2017.. Rapid evolution of the human mutation spectrum. . eLife 6::e24284
    [Crossref] [Google Scholar]
  124. 124.
    Coll Macià M, Skov L, Peter BM, Schierup MH. 2021.. Different historical generation intervals in human populations inferred from Neanderthal fragment lengths and mutation signatures. . Nat. Commun. 12:(1):5317
    [Crossref] [Google Scholar]
  125. 125.
    Wang RJ, Al-Saffar SI, Rogers J, Hahn MW. 2023.. Human generation times across the past 250,000 years. . Sci. Adv. 9:(1):eabm7047
    [Crossref] [Google Scholar]
  126. 126.
    Gao Z, Zhang Y, Cramer N, Przeworski M, Moorjani P. 2023.. Limited role of generation time changes in driving the evolution of the mutation spectrum in humans. . eLife 12::e81188
    [Crossref] [Google Scholar]
  127. 127.
    Ragsdale AP, Thornton KR. 2023.. Multiple sources of uncertainty confound inference of historical human generation time. . Mol. Biol. Evol. 40:(8):msad160
    [Crossref] [Google Scholar]
  128. 128.
    Goldberg ME, Harris K. 2022.. Mutational signatures of replication timing and epigenetic modification persist through the global divergence of mutation spectra across the great ape phylogeny. . Genome Biol. Evol. 14:(1):evab104
    [Crossref] [Google Scholar]
  129. 129.
    Beichman AC, Robinson J, Lin M, Moreno-Estrada A, Nigenda-Morales S, Harris K. 2023.. Evolution of the mutation spectrum across a mammalian phylogeny. . Mol. Biol. Evol. 40:(10):msad213
    [Crossref] [Google Scholar]
  130. 130.
    Jiang P, Ollodart AR, Sudhesh V, Herr AJ, Dunham MJ, Harris K. 2021.. A modified fluctuation assay reveals a natural mutator phenotype that drives mutation spectrum variation within Saccharomyces cerevisiae. . eLife 10::e68285
    [Crossref] [Google Scholar]
  131. 131.
    Bloom JD, Beichman AC, Neher RA, Harris K. 2023.. Evolution of the SARS-CoV-2 mutational spectrum. . Mol. Biol. Evol. 40:(4):msad085
    [Crossref] [Google Scholar]
  132. 132.
    Yengo L, Vedantam S, Marouli E, Sidorenko J, Bartell E, et al. 2022.. A saturated map of common genetic variants associated with human height. . Nature 610:(7933):70412
    [Crossref] [Google Scholar]
  133. 133.
    Yoder AD, Tiley GP. 2021.. The challenge and promise of estimating the de novo mutation rate from whole-genome comparisons among closely related individuals. . Mol. Ecol. 30:(23):6087100
    [Crossref] [Google Scholar]
  134. 134.
    Bergeron LA, Besenbacher S, Turner T, Versoza CJ, Wang RJ, et al. 2022.. The Mutationathon highlights the importance of reaching standardization in estimates of pedigree-based germline mutation rates. . eLife 11::e73577
    [Crossref] [Google Scholar]
  135. 135.
    Agier N, Fischer G. 2012.. The mutational profile of the yeast genome is shaped by replication. . Mol. Biol. Evol. 29:(3):90513
    [Crossref] [Google Scholar]
  136. 136.
    Noyes MD, Harvey WT, Porubsky D, Sulovari A, Li R, et al. 2022.. Familial long-read sequencing increases yield of de novo mutations. . Am. J. Hum. Genet. 109:(4):63146
    [Crossref] [Google Scholar]
  137. 137.
    Kennedy SR, Schmitt MW, Fox EJ, Kohrn BF, Salk JJ, et al. 2014.. Detecting ultralow-frequency mutations by Duplex Sequencing. . Nat. Protoc. 9:(11):2586606
    [Crossref] [Google Scholar]
  138. 138.
    Spencer Chapman M, Ranzoni AM, Myers B, Williams N, Coorens THH, et al. 2021.. Lineage tracing of human development through somatic mutations. . Nature 595:(7865):8590
    [Crossref] [Google Scholar]
  139. 139.
    Yizhak K, Aguet F, Kim J, Hess JM, Kübler K, et al. 2019.. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. . Science 364:(6444):eaaw0726
    [Crossref] [Google Scholar]
  140. 140.
    Rockweiler NB, Ramu A, Nagirnaja L, Wong WH, Noordam MJ, et al. 2023.. The origins and functional effects of postzygotic mutations throughout the human life span. . Science 380:(6641):eabn7113
    [Crossref] [Google Scholar]
  141. 141.
    Massarat AR, Sen A, Jaureguy J, Tyndale ST, Fu Y, et al. 2021.. Discovering single nucleotide variants and indels from bulk and single-cell ATAC-seq. . Nucleic Acids Res. 49:(14):798694
    [Crossref] [Google Scholar]
  142. 142.
    Muyas F, Sauer CM, Valle-Inclán JE, Li R, Rahbari R, et al. 2023.. De novo detection of somatic mutations in high-throughput single-cell profiling data sets. . Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01863-z
    [Google Scholar]
  143. 143.
    Marass F, Mouliere F, Yuan K, Rosenfeld N, Markowetz F. 2016.. A phylogenetic latent feature model for clonal deconvolution. . Ann. Appl. Stat. 10:(4):2377404
    [Crossref] [Google Scholar]
  144. 144.
    Caravagna G, Sanguinetti G, Graham TA, Sottoriva A. 2020.. The MOBSTER R package for tumour subclonal deconvolution from bulk DNA whole-genome sequencing data. . BMC Bioinform. 21:(1):531
    [Crossref] [Google Scholar]
  145. 145.
    Tanner G, Westhead DR, Droop A, Stead LF. 2021.. Benchmarking pipelines for subclonal deconvolution of bulk tumour sequencing data. . Nat. Commun. 12:(1):6396
    [Crossref] [Google Scholar]
  146. 146.
    Moorad JA, Promislow DEL. 2008.. A theory of age-dependent mutation and senescence. . Genetics 179:(4):206173
    [Crossref] [Google Scholar]
  147. 147.
    Bagic M, Valenzano DR. 2022.. Population size shapes the evolution of lifespan. . bioRxiv 2022.12.17.520867. https://doi.org/10.1101/2022.12.17.520867
  148. 148.
    Haller BC, Messer PW. 2019.. SLiM 3: forward genetic simulations beyond the Wright-Fisher model. . Mol. Biol. Evol. 36:(3):63237
    [Crossref] [Google Scholar]
  149. 149.
    Robinson PS, Coorens THH, Palles C, Mitchell E, Abascal F, et al. 2021.. Increased somatic mutation burdens in normal human cells due to defective DNA polymerases. . Nat. Genet. 53:(10):143442
    [Crossref] [Google Scholar]
  150. 150.
    Kaplanis J, Ide B, Sanghvi R, Neville M, Danecek P, et al. 2022.. Genetic and chemotherapeutic influences on germline hypermutation. . Nature 605:(7910):5038
    [Crossref] [Google Scholar]
  151. 151.
    Andrianova MA, Seplyarskiy VB, Terradas M, Sánchez-Heras AB, Mur P, et al. 2023.. Extended family with an inherited pathogenic variant in polymerase delta provides strong evidence for recessive effect of proofreading deficiency in human cells. . bioRxiv 2022.07.20.500591. https://doi.org/10.1101/2022.07.20.500591
  152. 152.
    Sherwood K, Ward JC, Soriano I, Martin L, Campbell A, et al. 2023.. Germline de novo mutations in families with Mendelian cancer syndromes caused by defects in DNA repair. . Nat. Commun. 14:(1):3636
    [Crossref] [Google Scholar]
  153. 153.
    Stendahl AM, Sanghvi R, Peterson S, Ray K, Lima AC, et al. 2023.. A naturally occurring variant of MBD4 causes maternal germline hypermutation in primates. . Genome Res. 33:(12):205359
    [Crossref] [Google Scholar]
  154. 154.
    Orme D, Freckleton RP, Thomas GH, Petzoldt T, Fritz SA, Isaac N. 2013.. CAPER: comparative analyses of phylogenetics and evolution in R. . Methods Ecol. Evol. 3::14551
    [Crossref] [Google Scholar]
  155. 155.
    Pagel M. 1999.. Inferring the historical patterns of biological evolution. . Nature 401:(6756):87784
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-102523-104225
Loading
/content/journals/10.1146/annurev-biodatasci-102523-104225
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error