1932

Abstract

Advances in biomedical data science and artificial intelligence (AI) are profoundly changing the landscape of healthcare. This article reviews the ethical issues that arise with the development of AI technologies, including threats to privacy, data security, consent, and justice, as they relate to donors of tissue and data. It also considers broader societal obligations, including the importance of assessing the unintended consequences of AI research in biomedicine. In addition, this article highlights the challenge of rapid AI development against the backdrop of disparate regulatory frameworks, calling for a global approach to address concerns around data misuse, unintended surveillance, and the equitable distribution of AI's benefits and burdens. Finally, a number of potential solutions to these ethical quandaries are offered. Namely, the merits of advocating for a collaborative, informed, and flexible regulatory approach that balances innovation with individual rights and public welfare, fostering a trustworthy AI-driven healthcare ecosystem, are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-102623-104553
2024-08-23
2025-06-25
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/7/1/annurev-biodatasci-102623-104553.html?itemId=/content/journals/10.1146/annurev-biodatasci-102623-104553&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Provost F, Fawcett T. 2013.. Data science and its relationship to big data and data-driven decision making. . Big Data 1::5159
    [Crossref] [Google Scholar]
  2. 2.
    Obermeyer Z, Emanuel EJ. 2016.. Predicting the future—big data, machine learning, and clinical medicine. . N. Engl. J. Med. 375::121619
    [Crossref] [Google Scholar]
  3. 3.
    Emanuel EJ, Wachter RM. 2019.. Artificial intelligence in health care: Will the value match the hype?. JAMA 321::228182
    [Crossref] [Google Scholar]
  4. 4.
    Amisha, Malik P, Pathania M, Rathaur VK. 2019.. Overview of artificial intelligence in medicine. . J. Fam. Med. Prim. Care 8::232831
    [Crossref] [Google Scholar]
  5. 5.
    Check Hayden E. 2014.. The automated lab. . Nature 516::13132
    [Crossref] [Google Scholar]
  6. 6.
    Yu K-H, Beam AL, Kohane IS. 2018.. Artificial intelligence in healthcare. . Nat. Biomed. Eng. 2::71931
    [Crossref] [Google Scholar]
  7. 7.
    Kim GB, Kim JY, Lee JA, Norsigian CJ, Palsson BO, Lee SY. 2023.. Functional annotation of enzyme-encoding genes using deep learning with transformer layers. . Nat. Commun. 14::7370
    [Crossref] [Google Scholar]
  8. 8.
    Jiménez-Luna J, Grisoni F, Schneider G. 2020.. Drug discovery with explainable artificial intelligence. . Nat. Mach. Intell. 2::57384
    [Crossref] [Google Scholar]
  9. 9.
    Zeng X, Wang F, Luo Y, Kang S-G, Tang J, et al. 2022.. Deep generative molecular design reshapes drug discovery. . Cell Rep. Med. 3::100794
    [Crossref] [Google Scholar]
  10. 10.
    Bohr A, Memarzadeh K. 2020.. The rise of artificial intelligence in healthcare applications. . In Artificial Intelligence in Healthcare, ed. A Bohr, K Memarzadeh , pp. 2560. New York:: Academic
    [Google Scholar]
  11. 11.
    Kim HE, Kim HH, Han BK, Kim KH, Han K, et al. 2020.. Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study. . Lancet Digit. Health 2::e13848
    [Crossref] [Google Scholar]
  12. 12.
    Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. 2018.. Artificial intelligence in radiology. . Nat. Rev. Cancer 18::50010
    [Crossref] [Google Scholar]
  13. 13.
    Gao H, Hamp T, Ede J, Schraiber JG, McRae J, et al. 2023.. The landscape of tolerated genetic variation in humans and primates. . Science 380::eabn8153
    [Crossref] [Google Scholar]
  14. 14.
    Pappalardo F, Russo G, Tshinanu FM, Viceconti M. 2019.. In silico clinical trials: concepts and early adoptions. . Brief. Bioinform. 20::1699708
    [Crossref] [Google Scholar]
  15. 15.
    Sarrami-Foroushani A, Lassila T, MacRaild M, Asquith J, Roes KCB, et al. 2021.. In-silico trial of intracranial flow diverters replicates and expands insights from conventional clinical trials. . Nat. Commun. 12::3861
    [Crossref] [Google Scholar]
  16. 16.
    An G, Cockrell C. 2023.. Generating synthetic multidimensional molecular time series data for machine learning: considerations. . Front. Syst. Biol. 3::1188009
    [Crossref] [Google Scholar]
  17. 17.
    Chen IY, Pierson E, Rose S, Joshi S, Ferryman K, Ghassemi M. 2021.. Ethical machine learning in healthcare. . Annu. Rev. Biomed. Data Sci. 4::12344
    [Crossref] [Google Scholar]
  18. 18.
    Char DS, Abràmoff MD, Feudtner C. 2020.. Identifying ethical considerations for machine learning healthcare applications. . Am. J. Bioethics 20::717
    [Crossref] [Google Scholar]
  19. 19.
    Vayena E, Blasimme A, Cohen IG. 2018.. Machine learning in medicine: addressing ethical challenges. . PLOS Med. 15::e1002689
    [Crossref] [Google Scholar]
  20. 20.
    Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. 2018.. Ensuring fairness in machine learning to advance health equity. . Ann. Intern. Med. 169::86672
    [Crossref] [Google Scholar]
  21. 21.
    Antaki J, Blumenthal-Barby JS, Cohen IG, Estep JE, Gerke S, et al. 2022.. Mitigating racial bias in machine learning. . J. Law Med. Ethics 50::92100
    [Crossref] [Google Scholar]
  22. 22.
    Thompson IE. 1979.. The nature of confidentiality. . J. Med. Ethics 5::5764
    [Crossref] [Google Scholar]
  23. 23.
    Glenn T, Monteith S. 2014.. Privacy in the digital world: medical and health data outside of HIPAA protections. . Curr. Psychiatry Rep. 16::494
    [Crossref] [Google Scholar]
  24. 24.
    Brönneke JB, Müller J, Mouratis K, Hagen J, Stern AD. 2021.. Regulatory, legal, and market aspects of smart wearables for cardiac monitoring. . Sensors 21::4937
    [Crossref] [Google Scholar]
  25. 25.
    Challa N, Yu S, Kunchakarra S. 2017.. Wary about wearables: potential for the exploitation of wearable health technology through employee discrimination and sales to third parties. . Intersect 10:(3). https://ojs.stanford.edu/ojs/index.php/intersect/article/view/1003/1065
    [Google Scholar]
  26. 26.
    Rocher L, Hendrickx JM, de Montjoye YA. 2019.. Estimating the success of re-identifications in incomplete datasets using generative models. . Nat. Commun. 10::3069
    [Crossref] [Google Scholar]
  27. 27.
    Murdoch B. 2021.. Privacy and artificial intelligence: challenges for protecting health information in a new era. . BMC Med. Ethics 22::122
    [Crossref] [Google Scholar]
  28. 28.
    Braun M, Hummel P, Beck S, Dabrock P. 2020.. Primer on an ethics of AI-based decision support systems in the clinic. . J. Med. Ethics 47::e3
    [Crossref] [Google Scholar]
  29. 29.
    Fritzsche M-C, Akyüz K, Cano Abadía M, McLennan S, Marttinen P, et al. 2023.. Ethical layering in AI-driven polygenic risk scores—new complexities, new challenges. . Front. Genet. 14::1098439
    [Crossref] [Google Scholar]
  30. 30.
    Sherkow JS, Park JK, Lu CY. 2023.. Regulating direct-to-consumer polygenic risk scores. . JAMA 330::69192
    [Crossref] [Google Scholar]
  31. 31.
    Bonomi L, Huang Y, Ohno-Machado L. 2020.. Privacy challenges and research opportunities for genomic data sharing. . Nat. Genet. 52::64654
    [Crossref] [Google Scholar]
  32. 32.
    Bak M, Madai VI, Fritzsche M-C, Mayrhofer MT, McLennan S. 2022.. You can't have AI both ways: balancing health data privacy and access fairly. . Front. Genet. 13::929453
    [Crossref] [Google Scholar]
  33. 33.
    Safdar NM, Banja JD, Meltzer CC. 2020.. Ethical considerations in artificial intelligence. . Eur. J. Radiol. 122::108768
    [Crossref] [Google Scholar]
  34. 34.
    Seh AH, Zarour M, Alenezi M, Sarkar AK, Agrawal A, et al. 2020.. Healthcare data breaches: insights and implications. . Healthcare 8::133
    [Crossref] [Google Scholar]
  35. 35.
    Koppel R, Kuziemsky C. 2019.. Healthcare data are remarkably vulnerable to hacking: Connected healthcare delivery increases the risks. . Stud. Health Technol. Inform. 257::21822
    [Google Scholar]
  36. 36.
    HIPAA J. 2023.. Healthcare data breach statistics. . The HIPAA Journal. https://www.hipaajournal.com/healthcare-data-breach-statistics
    [Google Scholar]
  37. 37.
    23andMe. 2023.. Addressing data security concerns. . 23andMe Blog, Oct. 6. https://blog.23andme.com/articles/addressing-data-security-concerns
  38. 38.
    Manickam P, Mariappan SA, Murugesan SM, Hansda S, Kaushik A, et al. 2022.. Artificial intelligence (AI) and Internet of Medical Things (IoMT) assisted biomedical systems for intelligent healthcare. . Biosensors 12::562
    [Crossref] [Google Scholar]
  39. 39.
    Kumar R, Arjunaditya, Singh D, Srinivasan K, Hu YC. 2022.. AI-powered blockchain technology for public health: a contemporary review, open challenges, and future research directions. . Healthcare 11::81
    [Crossref] [Google Scholar]
  40. 40.
    Hand DJ. 2018.. Aspects of data ethics in a changing world: Where are we now?. Big Data 6::17690
    [Crossref] [Google Scholar]
  41. 41.
    McGuire AL, Roberts J, Aas S, Evans BJ. 2019.. Who owns the data in a medical information commons?. J. Law Med. Ethics 47::6269
    [Crossref] [Google Scholar]
  42. 42.
    Duch-Brown N, Martens B, Mueller-Langer F. 2017.. The economics of ownership, access and trade in digital data. Work. Pap. 2017-01 , Joint Res. Cent., Eur. Comm., Seville, Spain:
    [Google Scholar]
  43. 43.
    Piasecki J, Cheah PY. 2022.. Ownership of individual-level health data, data sharing, and data governance. . BMC Med. Ethics 23::104
    [Crossref] [Google Scholar]
  44. 44.
    Harding A, Harper B, Stone D, O'Neill C, Berger P, et al. 2012.. Conducting research with tribal communities: sovereignty, ethics, and data-sharing issues. . Environ. Health Perspect. 120::610
    [Crossref] [Google Scholar]
  45. 45.
    Sterling RL. 2011.. Genetic research among the Havasupai: a cautionary tale. . Virtual Mentor 13::11317
    [Google Scholar]
  46. 46.
    Gröger C. 2021.. There is no AI without data. . Commun. ACM 64::98108
    [Crossref] [Google Scholar]
  47. 47.
    Wu K, Zhao Y, Zhu Q, Tan X, Zheng H. 2011.. A meta-analysis of the impact of trust on technology acceptance model: investigation of moderating influence of subject and context type. . Int. J. Inform. Manag. 31::57281
    [Crossref] [Google Scholar]
  48. 48.
    Liu M, Zhou S, Jin Q, Nishimura S, Ogihara A. 2022.. Effectiveness, policy, and user acceptance of COVID-19 contact-tracing apps in the post–COVID-19 pandemic era: experience and comparative study. . JMIR Public Health Surveill. 8::e40233
    [Crossref] [Google Scholar]
  49. 49.
    Zhang B, Kreps S, McMurry N, McCain RM. 2020.. Americans' perceptions of privacy and surveillance in the COVID-19 pandemic. . PLOS ONE 15::e0242652
    [Crossref] [Google Scholar]
  50. 50.
    Steger A. 2019.. What happens to stolen healthcare data?. HealthTech Magazine, Oct. 30. https://healthtechmagazine.net/article/2019/10/what-happens-stolen-healthcare-data-perfcon
    [Google Scholar]
  51. 51.
    Choi SJ, Johnson ME, Lehmann CU. 2019.. Data breach remediation efforts and their implications for hospital quality. . Health Serv. Res. 54::97180
    [Crossref] [Google Scholar]
  52. 52.
    Jiang JX, Bai G. 2019.. Evaluation of causes of protected health information breaches. . JAMA Intern. Med. 179::26567
    [Crossref] [Google Scholar]
  53. 53.
    Rossi F. 2018.. Building trust in artificial intelligence. . J. Int. Aff. 72::12734
    [Google Scholar]
  54. 54.
    Kiseleva A, Kotzinos D, De Hert P. 2022.. Transparency of AI in healthcare as a multilayered system of accountabilities: between legal requirements and technical limitations. . Front. Artif. Intell. 5::879603
    [Crossref] [Google Scholar]
  55. 55.
    Natl. Sci. Technol. Counc. 2023.. National strategy to advance privacy-preserving data sharing and analytics. Rep. , Natl. Sci. Technol. Counc., Washington, DC:. https://www.nitrd.gov/pubs/National-Strategy-to-Advance-Privacy-Preserving-Data-Sharing-and-Analytics.pdf
    [Google Scholar]
  56. 56.
    Novelli C, Taddeo M, Floridi L. 2023.. Accountability in artificial intelligence: what it is and how it works. . AI Soc. https://doi.org/10.1007/s00146-023-01635-y
    [Crossref] [Google Scholar]
  57. 57.
    Beauchamp TL. 2011.. Informed consent: its history, meaning, and present challenges. . Camb. Q. Healthc. Ethics 20::51523
    [Crossref] [Google Scholar]
  58. 58.
    Froomkin AM. 2019.. Big Data: destroyer of informed consent. . Yale J. Law Technol. 21:(Spec. Issue): 2754
    [Google Scholar]
  59. 59.
    Andreotta AJ, Kirkham N, Rizzi M. 2022.. AI, big data, and the future of consent. . AI Soc. 37::171528
    [Crossref] [Google Scholar]
  60. 60.
    Howe EG III, Elenberg F. 2020.. Ethical challenges posed by big data. . Innov. Clin. Neurosci. 17::2430
    [Google Scholar]
  61. 61.
    Nature. 2019.. Time to discuss consent in digital-data studies. . Nature 572::5
    [Crossref] [Google Scholar]
  62. 62.
    Bouhouita-Guermech S, Gogognon P, Bélisle-Pipon JC. 2023.. Specific challenges posed by artificial intelligence in research ethics. . Front. Artif. Intell. 6::1149082
    [Crossref] [Google Scholar]
  63. 63.
    Landers C, Ormond KE, Blasimme A, Brall C, Vayena E. 2024.. Talking ethics early in health data public private partnerships. . J. Bus. Ethics 190::64959
    [Crossref] [Google Scholar]
  64. 64.
    Eur. Group Ethics Sci. New Technol. 2018.. Statement on artificial intelligence, robotics and ‘autonomous’ systems. Rep. , Eur. Comm., Brussels:
    [Google Scholar]
  65. 65.
    Benke K, Benke G. 2018.. Artificial intelligence and big data in public health. . Int. J. Environ. Res. Public Health 15::2796
    [Crossref] [Google Scholar]
  66. 66.
    Shachar C, Gerke S, Adashi EY. 2020.. AI surveillance during pandemics: ethical implementation imperatives. . Hastings Cent. Rep. 50::1821
    [Crossref] [Google Scholar]
  67. 67.
    Morley J, Machado CCV, Burr C, Cowls J, Joshi I, et al. 2020.. The ethics of AI in health care: a mapping review. . Soc. Sci. Med. 260::113172
    [Crossref] [Google Scholar]
  68. 68.
    Romero RA, Young SD. 2022.. Ethical perspectives in sharing digital data for public health surveillance before and shortly after the onset of the COVID-19 pandemic. . Ethics Behav. 32::2231
    [Crossref] [Google Scholar]
  69. 69.
    Lim SS, Bouffanais R. 2022.. ‘Data dregs’ and its implications for AI ethics: revelations from the pandemic. . AI Ethics 2::59597
    [Crossref] [Google Scholar]
  70. 70.
    Liaw ST, Liyanage H, Kuziemsky C, Terry AL, Schreiber R, et al. 2020.. Ethical use of electronic health record data and artificial intelligence: recommendations of the Primary Care Informatics Working Group of the International Medical Informatics Association. . Yearb. Med. Inform. 29::5157
    [Crossref] [Google Scholar]
  71. 71.
    Rosen DL, Buchbinder M, Juengst E, Rennie S. 2020.. Public health research, practice, and ethics for justice-involved persons in the big data era. . Am. J. Public Health 110::S3738
    [Crossref] [Google Scholar]
  72. 72.
    Flores L, Kim S, Young SD. 2024.. Addressing bias in artificial intelligence for public health surveillance. . J. Med. Ethics 50::19094
    [Crossref] [Google Scholar]
  73. 73.
    Saheb T. 2023.. Ethically contentious aspects of artificial intelligence surveillance: a social science perspective. . AI Ethics 3::36979
    [Crossref] [Google Scholar]
  74. 74.
    Bitkina OV, Park J, Kim HK. 2023.. Application of artificial intelligence in medical technologies: a systematic review of main trends. . Digit. Health 9::20552076231189331
    [Crossref] [Google Scholar]
  75. 75.
    Goirand M, Austin E, Clay-Williams R. 2021.. Implementing ethics in healthcare AI-based applications: a scoping review. . Sci. Eng. Ethics 27::61
    [Crossref] [Google Scholar]
  76. 76.
    Brall C, Schröder-Bäck P, Maeckelberghe E. 2019.. Ethical aspects of digital health from a justice point of view. . Eur. J. Public Health 29::1822
    [Crossref] [Google Scholar]
  77. 77.
    Obermeyer Z, Powers B, Vogeli C, Mullainathan S. 2019.. Dissecting racial bias in an algorithm used to manage the health of populations. . Science 366::44753
    [Crossref] [Google Scholar]
  78. 78.
    McCradden MD, Joshi S, Mazwi M, Anderson JA. 2020.. Ethical limitations of algorithmic fairness solutions in health care machine learning. . Lancet Digit. Health 2::e22123
    [Crossref] [Google Scholar]
  79. 79.
    Wang X, Zhang Y, Zhu R. 2022.. A brief review on algorithmic fairness. . Manag. Syst. Eng. 1::7
    [Crossref] [Google Scholar]
  80. 80.
    Giovanola B, Tiribelli S. 2023.. Beyond bias and discrimination: redefining the AI ethics principle of fairness in healthcare machine-learning algorithms. . AI Soc. 38::54963
    [Crossref] [Google Scholar]
  81. 81.
    Ricci Lara MA, Echeveste R, Ferrante E. 2022.. Addressing fairness in artificial intelligence for medical imaging. . Nat. Commun. 13::4581
    [Crossref] [Google Scholar]
  82. 82.
    Munn L. 2023.. The uselessness of AI ethics. . AI Ethics 3::86977
    [Crossref] [Google Scholar]
  83. 83.
    Tan R, Cabato R. 2023.. Behind the AI boom, an army of overseas workers in ‘digital sweatshops.’. Washington Post, Aug. 28. https://www.washingtonpost.com/world/2023/08/28/scale-ai-remotasks-philippines-artificial-intelligence
    [Google Scholar]
  84. 84.
    Rawls J. 1958.. Justice as fairness. . Philos. Rev. 67::16494
    [Crossref] [Google Scholar]
  85. 85.
    Hawkins W, Mittelstadt B. 2023.. The ethical ambiguity of AI data enrichment: measuring gaps in research ethics norms and practices. . In Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, pp. 26170. Chicago:: Assoc. Comput. Mach.
    [Google Scholar]
  86. 86.
    Le Ludec C, Cornet M, Casilli AA. 2023.. The problem with annotation. Human labour and outsourcing between France and Madagascar. . Big Data Soc. 10:(2). https://doi.org/10.1177/20539517231188723
    [Crossref] [Google Scholar]
  87. 87.
    Favier M, Calders T, Pinxteren S, Meyer J. 2023.. How to be fair? A study of label and selection bias. . Mach. Learn. 112::5081104
    [Crossref] [Google Scholar]
  88. 88.
    Hotez P, Cohen R, Mimura C, Yamada T, Hoffman SL, Patel DM. 2013.. Strengthening mechanisms to prioritize, coordinate, finance, and execute R&D to meet health needs in developing countries. . NAM Perspect. https://doi.org/10.31478/201301a
    [Crossref] [Google Scholar]
  89. 89.
    Braveman PA, Kumanyika S, Fielding J, Laveist T, Borrell LN, et al. 2011.. Health disparities and health equity: The issue is justice. . Am. J. Public Health 101:(Suppl. 1):S14955
    [Crossref] [Google Scholar]
  90. 90.
    Vicente L, Matute H. 2023.. Humans inherit artificial intelligence biases. . Sci. Rep. 13::15737
    [Crossref] [Google Scholar]
  91. 91.
    Kostick-Quenet KM, Gerke S. 2022.. AI in the hands of imperfect users. . NPJ Digit. Med. 5::197
    [Crossref] [Google Scholar]
  92. 92.
    O'Neill C. 2017.. Is AI a threat or benefit to health workers?. CMAJ 189::E732
    [Crossref] [Google Scholar]
  93. 93.
    Hatzius J, Briggs J, Kodnani D, Pierdomenico G. 2023.. The potentially large effects of artificial intelligence on economic growth. Rep. , Goldman Sachs, New York:
    [Google Scholar]
  94. 94.
    Heilinger J-C. 2022.. The ethics of AI ethics. A constructive critique. . Philos. Technol. 35::61
    [Crossref] [Google Scholar]
  95. 95.
    Le Bui M, Noble SU. 2020.. We're missing a moral framework of justice in artificial intelligence. . In The Oxford Handbook of Ethics of AI, ed. MD Dubber, F Pasquale, S Das , pp. 16179. New York:: Oxford Univ. Press
    [Google Scholar]
  96. 96.
    Frost EK, Bosward R, Aquino YSJ, Braunack-Mayer A, Carter SM. 2022.. Public views on ethical issues in healthcare artificial intelligence: protocol for a scoping review. . Syst. Rev. 11::142
    [Crossref] [Google Scholar]
  97. 97.
    Stahl BC, Rodrigues R, Santiago N, Macnish K. 2022.. A European agency for artificial intelligence: protecting fundamental rights and ethical values. . Comp. Law Secur. Rev. 45::105661
    [Crossref] [Google Scholar]
  98. 98.
    Hickok M. 2021.. Lessons learned from AI ethics principles for future actions. . AI Ethics 1::4147
    [Crossref] [Google Scholar]
  99. 99.
    Han DY, Chen SH. 2014.. Reducing the stigma of depression through neurobiology-based psychoeducation: a randomized controlled trial. . Psychiatry Clin. Neurosci. 68::66673
    [Crossref] [Google Scholar]
  100. 100.
    Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. 2019.. Clinical use of current polygenic risk scores may exacerbate health disparities. . Nat. Genet. 51::58491
    [Crossref] [Google Scholar]
  101. 101.
    Urbina F, Lentzos F, Invernizzi C, Ekins S. 2022.. Dual use of artificial-intelligence-powered drug discovery. . Nat. Mach. Intell. 4::18991
    [Crossref] [Google Scholar]
  102. 102.
    Bernstein MS, Levi M, Magnus D, Rajala BA, Satz D, Waeiss Q. 2021.. Ethics and society review: ethics reflection as a precondition to research funding. . PNAS 118::e2117261118
    [Crossref] [Google Scholar]
  103. 103.
    Satariano A. 2023.. E.U. agrees on landmark artificial intelligence rules. . New York Times, Dec. 8. https://www.nytimes.com/2023/12/08/technology/eu-ai-act-regulation.html
    [Google Scholar]
  104. 104.
    Niemiec E. 2022.. Will the EU Medical Device Regulation help to improve the safety and performance of medical AI devices?. Digit. Health 8::20552076221089079
    [Google Scholar]
  105. 105.
    Engler A. 2023.. The EU and US diverge on AI regulation: a transatlantic comparison and steps to alignment. Rep. , Gov. Stud. Media Off., Brookings Inst., Washington, DC:
    [Google Scholar]
  106. 106.
    World Health Organ. 2021.. Ethics and governance of artificial intelligence for health: WHO guidance. Guidel., World Health Organ. , Geneva:. https://www.who.int/publications/i/item/9789240029200
    [Google Scholar]
  107. 107.
    Meskó B, Topol EJ. 2023.. The imperative for regulatory oversight of large language models (or generative AI) in healthcare. . NPJ Digit. Med. 6::120
    [Crossref] [Google Scholar]
  108. 108.
    Miliard M. 2023.. WHO urges caution with healthcare AI deployments. . Healthcare IT News, May 19. https://www.healthcareitnews.com/news/who-urges-caution-healthcare-ai-deployments
    [Google Scholar]
  109. 109.
    Eur. Comm. 2021.. Proposal for a regulation of the European Parliament and of the Council: laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) and amending certain union legislative acts. Propos., Eur. Comm., Brussels:. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021PC0206
    [Google Scholar]
  110. 110.
    Ebrahimian S, Kalra MK, Agarwal S, Bizzo BC, Elkholy M, et al. 2022.. FDA-regulated AI algorithms: trends, strengths, and gaps of validation studies. . Acad. Radiol. 29::55966
    [Crossref] [Google Scholar]
  111. 111.
    Off. Sci. Technol. Policy. 2022.. Blueprint for an AI bill of rights. . The White House. https://www.whitehouse.gov/ostp/ai-bill-of-rights/
    [Google Scholar]
  112. 112.
    US Food Drug Adm. 2021.. Artificial intelligence and machine learning in software as a medical device. Action Plan, US Food Drug Adm., Silver Spring, MD:. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
    [Google Scholar]
  113. 113.
    Webster G, Creemers R, Kania E, Triolo P. 2017.. New generation artificial intelligence development plan. Doc., DigiChina, Stanford Univ., Stanford, CA:. https://digichina.stanford.edu/work/full-translation-chinas-new-generation-artificial-intelligence-development-plan-2017/
    [Google Scholar]
  114. 114.
    Roberts H, Cowls J, Morley J, Taddeo M, Wang V, Floridi L. 2021.. The Chinese approach to artificial intelligence: an analysis of policy, ethics, and regulation. . AI Soc. 36::5977
    [Crossref] [Google Scholar]
  115. 115.
    US Food Drug Adm. 2023.. Marketing submission recommendations for a predetermined change control plan for artificial intelligence/machine learning (AI/ML)-enabled device software functions. . Federal Register, Apr. 3. https://www.federalregister.gov/documents/2023/04/03/2023-06786/marketing-submission-recommendations-for-a-predetermined-change-control-plan-for-artificial
    [Google Scholar]
  116. 116.
    McKee M, Wouters OJ. 2023.. The challenges of regulating artificial intelligence in healthcare: comment on “Clinical decision support and new regulatory frameworks for medical devices: are we ready for it? - a viewpoint paper.”. Int. J. Health Policy Manag. 12::7261
    [Google Scholar]
  117. 117.
    Lambert SI, Madi M, Sopka S, Lenes A, Stange H, et al. 2023.. An integrative review on the acceptance of artificial intelligence among healthcare professionals in hospitals. . NPJ Digit. Med. 6::111
    [Crossref] [Google Scholar]
  118. 118.
    Lee D, Yoon SN. 2021.. Application of artificial intelligence-based technologies in the healthcare industry: opportunities and challenges. . Int. J. Environ. Res. Public Health 18::271
    [Crossref] [Google Scholar]
  119. 119.
    Sun TQ, Medaglia R. 2019.. Mapping the challenges of artificial intelligence in the public sector: evidence from public healthcare. . Gov. Inform. Q. 36::36883
    [Crossref] [Google Scholar]
  120. 120.
    Alanazi A. 2022.. Using machine learning for healthcare challenges and opportunities. . Inform. Med. Unlocked 30::100924
    [Crossref] [Google Scholar]
  121. 121.
    Khanna NN, Maindarkar MA, Viswanathan V, Fernandes JFE, Paul S, et al. 2022.. Economics of artificial intelligence in healthcare: diagnosis versus treatment. . Healthcare 10::2493
    [Crossref] [Google Scholar]
  122. 122.
    Gerke S, Minssen T, Cohen G. 2020.. Ethical and legal challenges of artificial intelligence-driven health care. . In Artificial Intelligence in Healthcare, ed. A Bohr, K Memarzadeh , pp. 295336. New York:: Academic
    [Google Scholar]
  123. 123.
    Askin S, Burkhalter D, Calado G, El Dakrouni S. 2023.. Artificial intelligence applied to clinical trials: opportunities and challenges. . Health Technol. 13::20313
    [Crossref] [Google Scholar]
  124. 124.
    Hazarika I. 2020.. Artificial intelligence: opportunities and implications for the health workforce. . Int. Health 12::24145
    [Crossref] [Google Scholar]
  125. 125.
    Nagy M, Sisk B. 2020.. How will artificial intelligence affect patient-clinician relationships?. AMA J. Ethics 22::E395400
    [Crossref] [Google Scholar]
  126. 126.
    Kerasidou A. 2020.. Artificial intelligence and the ongoing need for empathy, compassion and trust in healthcare. . Bull. World Health Organ. 98::24550
    [Crossref] [Google Scholar]
  127. 127.
    Choudhury A, Asan O. 2020.. Role of artificial intelligence in patient safety outcomes: systematic literature review. . JMIR Med. Inform. 8::e18599
    [Crossref] [Google Scholar]
  128. 128.
    Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. 2019.. Key challenges for delivering clinical impact with artificial intelligence. . BMC Med. 17::195
    [Crossref] [Google Scholar]
  129. 129.
    Carter SM, Rogers W, Win KT, Frazer H, Richards B, Houssami N. 2020.. The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. . Breast 49::2532
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-102623-104553
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error