1932

Abstract

Drug repurposing refers to the inference of therapeutic relationships between a clinical indication and existing compounds. As an emerging paradigm in drug development, drug repurposing enables more efficient treatment of rare diseases, stratified patient populations, and urgent threats to public health. However, prioritizing well-suited drug candidates from among a nearly infinite number of repurposing options continues to represent a significant challenge in drug development. Over the past decade, advances in genomic profiling, database curation, and machine learning techniques have enabled more accurate identification of drug repurposing candidates for subsequent clinical evaluation. This review outlines the major methodologic classes that these approaches comprise, which rely on () protein structure, () genomic signatures, () biological networks, and () real-world clinical data. We propose that realizing the full impact of drug repurposing methodologies requires a multidisciplinary understanding of each method's advantages and limitations with respect to clinical practice.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-110123-025333
2024-08-23
2025-04-26
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/7/1/annurev-biodatasci-110123-025333.html?itemId=/content/journals/10.1146/annurev-biodatasci-110123-025333&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Roessler HI, Knoers NVAM, van Haelst MM, van Haaften G. 2021.. Drug repurposing for rare diseases. . Trends Pharmacol. Sci. 42:(4):25567
    [Crossref] [Google Scholar]
  2. 2.
    Frantzi M, Latosinska A, Mokou M, Mischak H, Vlahou A. 2020.. Drug repurposing in oncology. . Lancet Oncol. 21:(12):e543
    [Crossref] [Google Scholar]
  3. 3.
    Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, et al. 2020.. Remdesivir for the treatment of Covid-19—final report. . N. Engl. J. Med. 383:(19):181326
    [Crossref] [Google Scholar]
  4. 4.
    Jayk Bernal A, Gomes da Silva MM, Musungaie DB, Kovalchuk E, Gonzalez A, et al. 2022.. Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. . N. Engl. J. Med. 386:(6):50920
    [Crossref] [Google Scholar]
  5. 5.
    Horby P, Mafham M, Linsell L, Bell JL, Staplin N, et al. 2020.. Effect of hydroxychloroquine in hospitalized patients with Covid-19. . N. Engl. J. Med. 383:(21):203040
    [Crossref] [Google Scholar]
  6. 6.
    Bramante CT, Huling JD, Tignanelli CJ, Buse JB, Liebovitz DM, et al. 2022.. Randomized trial of metformin, ivermectin, and fluvoxamine for Covid-19. . N. Engl. J. Med. 387:(7):599610
    [Crossref] [Google Scholar]
  7. 7.
    Wang R-S, Loscalzo J. 2023.. Repurposing drugs for the treatment of COVID-19 and its cardiovascular manifestations. . Circ. Res. 132:(10):137486
    [Crossref] [Google Scholar]
  8. 8.
    Valderas JM, Starfield B, Sibbald B, Salisbury C, Roland M. 2009.. Defining comorbidity: implications for understanding health and health services. . Ann. Fam. Med. 7:(4):35763
    [Crossref] [Google Scholar]
  9. 9.
    Sun W, Sanderson P, Zheng W. 2016.. Drug combination therapy increases successful drug repositioning. . Drug Discov. Today 21:(7):118995
    [Crossref] [Google Scholar]
  10. 10.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. 2000.. The Protein Data Bank. . Nucleic Acids Res. 28:(1):23542
    [Crossref] [Google Scholar]
  11. 11.
    Clent BA, Wang Y, Britton HC, Otto F, Swain CJ, et al. 2021.. Molecular docking with open access software: development of an online laboratory handbook and remote workflow for chemistry and pharmacy master's students to undertake computer-aided drug design. . J. Chem. Educ. 98:(9):2899905
    [Crossref] [Google Scholar]
  12. 12.
    Kamal IM, Chakrabarti S. 2023.. MetaDOCK: a combinatorial molecular docking approach. . ACS Omega 8:(6):585060
    [Crossref] [Google Scholar]
  13. 13.
    Islam MK, Amaya-Ramirez D, Maigret B, Devignes M-D, Aridhi S, Smaïl-Tabbone M. 2023.. Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding. . Sci. Rep. 13::3643
    [Crossref] [Google Scholar]
  14. 14.
    Lazniewski M, Dermawan D, Hidayat S, Muchtaridi M, Dawson WK, Plewczynski D. 2022.. Drug repurposing for identification of potential spike inhibitors for SARS-CoV-2 using molecular docking and molecular dynamics simulations. . Methods 203::498510
    [Crossref] [Google Scholar]
  15. 15.
    Parisi D, Adasme MF, Sveshnikova A, Bolz SN, Moreau Y, Schroeder M. 2020.. Drug repositioning or target repositioning: a structural perspective of drug-target-indication relationship for available repurposed drugs. . Comput. Struct. Biotechnol. J. 18::104355
    [Crossref] [Google Scholar]
  16. 16.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596:(7873):58389
    [Crossref] [Google Scholar]
  17. 17.
    Khamis MA, Gomaa W, Ahmed WF. 2015.. Machine learning in computational docking. . Artif. Intell. Med. 63:(3):13552
    [Crossref] [Google Scholar]
  18. 18.
    Macari G, Toti D, Pasquadibisceglie A, Polticelli F. 2020.. DockingApp RF: a state-of-the-art novel scoring function for molecular docking in a user-friendly interface to AutoDock Vina. . Int. J. Mol. Sci. 21:(24):9548
    [Crossref] [Google Scholar]
  19. 19.
    Cang Z, Wei G-W. 2017.. TopologyNet: topology based deep convolutional and multi-task neural networks for biomolecular property predictions. . PLOS Comput. Biol. 13:(7):e1005690
    [Crossref] [Google Scholar]
  20. 20.
    Wang S, Song X, Zhang Y, Zhang K, Liu Y, et al. 2023.. MSGNN-DTA: multi-scale topological feature fusion based on graph neural networks for drug-target binding affinity prediction. . Int. J. Mol. Sci. 24:(9):8326
    [Crossref] [Google Scholar]
  21. 21.
    Gentile F, Agrawal V, Hsing M, Ton A-T, Ban F, et al. 2020.. Deep docking: a deep learning platform for augmentation of structure based drug discovery. . ACS Cent. Sci. 6:(6):93949
    [Crossref] [Google Scholar]
  22. 22.
    Meller A, Bhakat S, Solieva S, Bowman GR. 2023.. Accelerating cryptic pocket discovery using AlphaFold. . J. Chem. Theory Comput. 19:(14):435563
    [Crossref] [Google Scholar]
  23. 23.
    Meller A, Ward M, Borowsky J, Kshirsagar M, Lotthammer JM, et al. 2023.. Predicting locations of cryptic pockets from single protein structures using the PocketMiner graph neural network. . Nat. Commun. 14::1177
    [Crossref] [Google Scholar]
  24. 24.
    Pekel H, Ilter M, Sensoy O. 2022.. Inhibition of SARS-CoV-2 main protease: a repurposing study that targets the dimer interface of the protein. . J. Biomol. Struct. Dyn. 40::716782
    [Crossref] [Google Scholar]
  25. 25.
    Platania CBM, Ronchetti S, Riccardi C, Migliorati G, Marchetti MC, et al. 2020.. Effects of protein-protein interface disruptors at the ligand of the glucocorticoid-induced tumor necrosis factor receptor-related gene (GITR). . Biochem. Pharmacol. 178::114110
    [Crossref] [Google Scholar]
  26. 26.
    Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, et al. 2006.. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. . Science 313:(5795):192935
    [Crossref] [Google Scholar]
  27. 27.
    Mousavi SZ, Rahmanian M, Sami A. 2020.. A connectivity map-based drug repurposing study and integrative analysis of transcriptomic profiling of SARS-CoV-2 infection. . Infect. Genet. Evol. 86::104610
    [Crossref] [Google Scholar]
  28. 28.
    Maher SP, Bakowski MA, Vantaux A, Flannery EL, Andolina C, et al. 2023.. A drug repurposing approach reveals targetable epigenetic pathways in plasmodium vivax hypnozoites. . bioRxiv 2023.01.31.526483. http://doi.org/10.1101/2023.01.31.526483
  29. 29.
    Montalvo-Casimiro M, González-Barrios R, Meraz-Rodriguez MA, Juárez-González VT, Arriaga-Canon C, Herrera LA. 2020.. Epidrug repurposing: discovering new faces of old acquaintances in cancer therapy. . Front. Oncol. 10::605386
    [Crossref] [Google Scholar]
  30. 30.
    Reuter JA, Spacek DV, Snyder MP. 2015.. High-throughput sequencing technologies. . Mol. Cell 58:(4):58697
    [Crossref] [Google Scholar]
  31. 31.
    Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. 2020.. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. . Signal Transduct. Target. Ther. 5::1
    [Crossref] [Google Scholar]
  32. 32.
    Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, et al. 2013.. The Cancer Genome Atlas Pan-Cancer analysis project. . Nat. Genet. 45:(10):111320
    [Crossref] [Google Scholar]
  33. 33.
    Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, et al. 2017.. The Human Cell Atlas. . eLife 6::e27041
    [Crossref] [Google Scholar]
  34. 34.
    Bellomo F, De Leo E, Taranta A, Giaquinto L, Di Giovamberardino G, et al. 2021.. Drug repurposing in rare diseases: an integrative study of drug screening and transcriptomic analysis in nephropathic cystinosis. . Int. J. Mol. Sci. 22:(23):12829
    [Crossref] [Google Scholar]
  35. 35.
    Powers S, DeJongh M, Best AA, Tintle NL. 2015.. Cautions about the reliability of pairwise gene correlations based on expression data. . Front. Microbiol. 6::650
    [Crossref] [Google Scholar]
  36. 36.
    Upadhya SR, Ryan CJ. 2022.. Experimental reproducibility limits the correlation between mRNA and protein abundances in tumor proteomic profiles. . Cell Rep. Methods 2:(9):100288
    [Crossref] [Google Scholar]
  37. 37.
    Fang J, Zhang P, Wang Q, Chiang C-W, Zhou Y, et al. 2022.. Artificial intelligence framework identifies candidate targets for drug repurposing in Alzheimer's disease. . Alzheimers Res. Ther. 14:(1):7
    [Crossref] [Google Scholar]
  38. 38.
    McInnes G, Yee SW, Pershad Y, Altman RB. 2021.. Genomewide association studies in pharmacogenomics. . Clin. Pharmacol. Ther. 110:(3):63748
    [Crossref] [Google Scholar]
  39. 39.
    Abdelsayed M, Kort EJ, Jovinge S, Mercola M. 2022.. Repurposing drugs to treat cardiovascular disease in the era of precision medicine. . Nat. Rev. Cardiol. 19:(11):75164
    [Crossref] [Google Scholar]
  40. 40.
    Welling MT, Liu L, Kretzschmar T, Mauleon R, Ansari O, King GJ. 2020.. An extreme-phenotype genome-wide association study identifies candidate cannabinoid pathway genes in Cannabis. . Sci. Rep. 10::18643
    [Crossref] [Google Scholar]
  41. 41.
    Maziarz M, Stencel A. 2022.. The failure of drug repurposing for COVID-19 as an effect of excessive hypothesis testing and weak mechanistic evidence. . Hist. Philos. Life Sci. 44::47
    [Crossref] [Google Scholar]
  42. 42.
    Selvaraj N, Swaroop AK, Nidamanuri BSS, Kumar RR, Natarajan J, Selvaraj J. 2022.. Network-based drug repurposing: a critical review. . Curr. Drug Res. Rev. 14:(2):11631
    [Crossref] [Google Scholar]
  43. 43.
    Bonner S, Barrett IP, Ye C, Swiers R, Engkvist O, et al. 2022.. A review of biomedical datasets relating to drug discovery: a knowledge graph perspective. . Brief. Bioinform. 23:(6):bbac404
    [Crossref] [Google Scholar]
  44. 44.
    Grotzinger AD. 2021.. Shared genetic architecture across psychiatric disorders. . Psychol. Med. 51:(13):221016
    [Crossref] [Google Scholar]
  45. 45.
    Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, et al. 2023.. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. . Nucleic Acids Res. 51:(D1):D63846
    [Crossref] [Google Scholar]
  46. 46.
    Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, et al. 2020.. The DisGeNET knowledge platform for disease genomics: 2019 update. . Nucleic Acids Res. 48:(D1):D84555
    [Google Scholar]
  47. 47.
    Lotfi Shahreza M, Ghadiri N, Mousavi SR, Varshosaz J, Green JR. 2018.. A review of network-based approaches to drug repositioning. . Brief. Bioinform. 19:(5):87892
    [Crossref] [Google Scholar]
  48. 48.
    Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2017.. KEGG: new perspectives on genomes, pathways, diseases and drugs. . Nucleic Acids Res. 45:(D1):D35361
    [Crossref] [Google Scholar]
  49. 49.
    Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, et al. 2018.. The Reactome Pathway Knowledgebase. . Nucleic Acids Res. 46:(D1):D64955
    [Crossref] [Google Scholar]
  50. 50.
    Oughtred R, Rust J, Chang C, Breitkreutz B, Stark C, et al. 2021.. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. . Protein Sci. 30:(1):187200
    [Crossref] [Google Scholar]
  51. 51.
    del Toro N, Shrivastava A, Ragueneau E, Meldal B, Combe C, et al. 2022.. The IntAct database: efficient access to fine-grained molecular interaction data. . Nucleic Acids Res. 50:(D1):D64853
    [Crossref] [Google Scholar]
  52. 52.
    Alonso-López D, Campos-Laborie FJ, Gutiérrez MA, Lambourne L, Calderwood MA, et al. 2019.. APID database: redefining protein–protein interaction experimental evidences and binary interactomes. . Database 2019::baz005
    [Crossref] [Google Scholar]
  53. 53.
    Badkas A, De Landtsheer S, Sauter T. 2020.. Topological network measures for drug repositioning. . Brief. Bioinform. 22:(4):bbaa357
    [Crossref] [Google Scholar]
  54. 54.
    Viacava Follis A. 2021.. Centrality of drug targets in protein networks. . BMC Bioinform. 22::527
    [Crossref] [Google Scholar]
  55. 55.
    Vitali F, Cohen LD, Demartini A, Amato A, Eterno V, et al. 2016.. A network-based data integration approach to support drug repurposing and multi-target therapies in triple negative breast cancer. . PLOS ONE 11:(9):e0162407
    [Crossref] [Google Scholar]
  56. 56.
    Liang S, Liu H-M, Liu D-Y, Lv W-Q, Wang S-R, et al. 2022.. Network-based approach to repurpose approved drugs for COVID-19 by integrating GWAS and text mining data. . Processes 10:(2):326
    [Crossref] [Google Scholar]
  57. 57.
    Zhou Y, Hou Y, Shen J, Mehra R, Kallianpur A, et al. 2020.. A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19. . PLOS Biol. 18:(11):e3000970
    [Crossref] [Google Scholar]
  58. 58.
    Hwang W, Han N. 2022.. Identification of potential pan-coronavirus therapies using a computational drug repurposing platform. . Methods 203::21425
    [Crossref] [Google Scholar]
  59. 59.
    Cousins HC, Kline AS, Wang C, Qu Y, Zengel J, et al. 2023.. Integrative analysis of functional genomic screening and clinical data identifies a protective role for spironolactone in severe COVID-19. . Cell Rep. Methods 3:(7):100503
    [Crossref] [Google Scholar]
  60. 60.
    Glaab E, Baudot A, Krasnogor N, Schneider R, Valencia A. 2012.. EnrichNet: network-based gene set enrichment analysis. . Bioinformatics 28:(18):i45157
    [Crossref] [Google Scholar]
  61. 61.
    Alexeyenko A, Lee W, Pernemalm M, Guegan J, Dessen P, et al. 2012.. Network enrichment analysis: extension of gene-set enrichment analysis to gene networks. . BMC Bioinform. 13:(1):226
    [Crossref] [Google Scholar]
  62. 62.
    Ma J, Shojaie A, Michailidis G. 2016.. Network-based pathway enrichment analysis with incomplete network information. . Bioinformatics 32:(20):316574
    [Crossref] [Google Scholar]
  63. 63.
    Cheng F, Lu W, Liu C, Fang J, Hou Y, et al. 2019.. A genome-wide positioning systems network algorithm for in silico drug repurposing. . Nat. Commun. 10::3476
    [Crossref] [Google Scholar]
  64. 64.
    Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. 2020.. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. . Cell Discov. 6::14
    [Crossref] [Google Scholar]
  65. 65.
    Zeng X, Tu X, Liu Y, Fu X, Su Y. 2022.. Toward better drug discovery with knowledge graph. . Curr. Opin. Struct. Biol. 72::11426
    [Crossref] [Google Scholar]
  66. 66.
    Abbas K, Abbasi A, Dong S, Niu L, Yu L, et al. 2021.. Application of network link prediction in drug discovery. . BMC Bioinform. 22::187
    [Crossref] [Google Scholar]
  67. 67.
    Qiu J, Dong Y, Ma H, Li J, Wang K, Tang J. 2018.. Network embedding as matrix factorization: Unifying DeepWalk, LINE, PTE, and node2vec. . arXiv:1710.02971 [cs.SI]
  68. 68.
    Amiri Souri E, Laddach R, Karagiannis SN, Papageorgiou LG, Tsoka S. 2022.. Novel drug-target interactions via link prediction and network embedding. . BMC Bioinform. 23::121
    [Crossref] [Google Scholar]
  69. 69.
    Kovács IA, Luck K, Spirohn K, Wang Y, Pollis C, et al. 2019.. Network-based prediction of protein interactions. . Nat. Commun. 10::1240
    [Crossref] [Google Scholar]
  70. 70.
    MacLean F. 2021.. Knowledge graphs and their applications in drug discovery. . Expert Opin. Drug Discov. 16:(9):105769
    [Crossref] [Google Scholar]
  71. 71.
    Sosa DN, Altman RB. 2022.. Contexts and contradictions: a roadmap for computational drug repurposing with knowledge inference. . Brief. Bioinform. 23:(4):bbac268
    [Crossref] [Google Scholar]
  72. 72.
    Xing R, Luo J, Song T. 2020.. BioRel: towards large-scale biomedical relation extraction. . BMC Bioinform. 21:(16):543
    [Crossref] [Google Scholar]
  73. 73.
    Luo L, Lai P-T, Wei C-H, Arighi CN, Lu Z. 2022.. BioRED: a rich biomedical relation extraction dataset. . Brief. Bioinform. 23:(5):bbac282
    [Crossref] [Google Scholar]
  74. 74.
    Chen J, Hu B, Peng W, Chen Q, Tang B. 2022.. Biomedical relation extraction via knowledge-enhanced reading comprehension. . BMC Bioinform. 23::20
    [Crossref] [Google Scholar]
  75. 75.
    Kim S, Yoon J, Kwon O. 2023.. Biomedical relation extraction using dependency graph and decoder-enhanced transformer model. . Bioengineering 10:(5):586
    [Crossref] [Google Scholar]
  76. 76.
    Santos A, Colaço AR, Nielsen AB, Niu L, Strauss M, et al. 2022.. A knowledge graph to interpret clinical proteomics data. . Nat. Biotechnol. 40:(5):692702
    [Crossref] [Google Scholar]
  77. 77.
    Sosa DN, Derry A, Guo M, Wei E, Brinton C, Altman RB. 2020.. A literature-based knowledge graph embedding method for identifying drug repurposing opportunities in rare diseases. . Pac. Symp. Biocomput. 25::46374
    [Google Scholar]
  78. 78.
    Chandak P, Huang K, Zitnik M. 2023.. Building a knowledge graph to enable precision medicine. . Sci. Data 10::67
    [Crossref] [Google Scholar]
  79. 79.
    Stahlschmidt SR, Ulfenborg B, Synnergren J. 2022.. Multimodal deep learning for biomedical data fusion: a review. . Brief. Bioinform. 23:(2):bbab569
    [Crossref] [Google Scholar]
  80. 80.
    Ceddia G, Pinoli P, Ceri S, Masseroli M. 2020.. Matrix factorization-based technique for drug repurposing predictions. . IEEE J. Biomed. Health Inform. 24:(11):316272
    [Crossref] [Google Scholar]
  81. 81.
    Sadeghi S, Lu J, Ngom A. 2021.. A network-based drug repurposing method via non-negative matrix factorization. . Bioinformatics 38:(5):136977
    [Crossref] [Google Scholar]
  82. 82.
    Zhang F, Hu W, Liu Y. 2022.. GCMM: graph convolution network based on multimodal attention mechanism for drug repurposing. . BMC Bioinform. 23::372
    [Crossref] [Google Scholar]
  83. 83.
    Wang Z, Zhou M, Arnold C. 2020.. Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing. . Bioinformatics 36:(Suppl. 1):i52533
    [Crossref] [Google Scholar]
  84. 84.
    Biedermann P, Ong R, Davydov A, Orlova A, Solovyev P, et al. 2021.. Standardizing registry data to the OMOP Common Data Model: experience from three pulmonary hypertension databases. . BMC Med. Res. Methodol. 21::238
    [Crossref] [Google Scholar]
  85. 85.
    Zhang X, Wang L, Miao S, Xu H, Yin Y, et al. 2018.. Analysis of treatment pathways for three chronic diseases using OMOP CDM. . J. Med. Syst. 42:(12):260
    [Crossref] [Google Scholar]
  86. 86.
    Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, et al. 2018.. The UK Biobank resource with deep phenotyping and genomic data. . Nature 562::2039
    [Crossref] [Google Scholar]
  87. 87.
    Denny JC, Rutter JL, Goldstein DB, Philippakis A, Smoller JW, et al. 2019.. The “All of Us” Research Program. . N. Engl. J. Med. 381:(7):66876
    [Crossref] [Google Scholar]
  88. 88.
    He Z, Tang X, Yang X, Guo Y, George TJ, et al. 2020.. Clinical trial generalizability assessment in the big data era: a review. . Clin. Transl. Sci. 13:(4):67584
    [Crossref] [Google Scholar]
  89. 89.
    Shilo S, Rossman H, Segal E. 2020.. Axes of a revolution: challenges and promises of big data in healthcare. . Nat. Med. 26::2938
    [Crossref] [Google Scholar]
  90. 90.
    Patel M, Chen J, Kim S, Garg S, Flannery B, et al. 2020.. Analysis of MarketScan data for immunosuppressive conditions and hospitalizations for acute respiratory illness, United States. . Emerg. Infect. Dis. 26:(8):172030
    [Crossref] [Google Scholar]
  91. 91.
    Dahlen A, Charu V. 2023.. Analysis of sampling bias in large health care claims databases. . JAMA Netw. Open 6:(1):e2249804
    [Crossref] [Google Scholar]
  92. 92.
    Zhou Y, Liu Y, Gupta S, Paramo MI, Hou Y, et al. 2023.. A comprehensive SARS-CoV-2–human protein–protein interactome reveals COVID-19 pathobiology and potential host therapeutic targets. . Nat. Biotechnol. 41::12839
    [Crossref] [Google Scholar]
  93. 93.
    Gordon DE, Hiatt J, Bouhaddou M, Rezelj VV, Ulferts S, et al. 2020.. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. . Science 370:(6521):eabe9403
    [Crossref] [Google Scholar]
  94. 94.
    Wu P, Feng Q, Kerchberger VE, Nelson SD, Chen Q, et al. 2022.. Integrating gene expression and clinical data to identify drug repurposing candidates for hyperlipidemia and hypertension. . Nat. Commun. 13::46
    [Crossref] [Google Scholar]
  95. 95.
    Ozery-Flato M, Goldschmidt Y, Shaham O, Ravid S, Yanover C. 2020.. Framework for identifying drug repurposing candidates from observational healthcare data. . JAMIA Open 3:(4):53644
    [Crossref] [Google Scholar]
  96. 96.
    Liu R, Wei L, Zhang P. 2021.. A deep learning framework for drug repurposing via emulating clinical trials on real-world patient data. . Nat. Mach. Intell. 3:(1):6875
    [Crossref] [Google Scholar]
  97. 97.
    Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J. 2019.. Critical assessment of methods of protein structure prediction (CASP) - round XIII. . Proteins 87:(12):101120
    [Crossref] [Google Scholar]
  98. 98.
    Zhou N, Jiang Y, Bergquist TR, Lee AJ, Kacsoh BZ, et al. 2019.. The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. . Genome Biol. 20::244
    [Crossref] [Google Scholar]
  99. 99.
    Andreoletti G, Pal LR, Moult J, Brenner SE. 2019.. Reports from the fifth edition of CAGI: The Critical Assessment of Genome Interpretation. . Hum. Mutat. 40:(9):1197201
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-110123-025333
Loading
/content/journals/10.1146/annurev-biodatasci-110123-025333
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error