1932

Abstract

Three-dimensional protein structural data at the molecular level are pivotal for successful precision medicine. Such data are crucial not only for discovering drugs that act to block the active site of the target mutant protein but also for clarifying to the patient and the clinician how the mutations harbored by the patient work. The relative paucity of structural data reflects their cost, challenges in their interpretation, and lack of clinical guidelines for their utilization. Rapid technological advancements in experimental high-resolution structural determination increasingly generate structures. Computationally, modeling algorithms, including molecular dynamics simulations, are becoming more powerful, as are compute-intensive hardware, particularly graphics processing units, overlapping with the inception of the exascale era. Accessible, freely available, and detailed structural and dynamical data can be merged with big data to powerfully transform personalizedpharmacology. Here we review protein and emerging genome high-resolution data, along with means, applications, and examples underscoring their usefulness in precision medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-122220-012951
2022-08-10
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/5/1/annurev-biodatasci-122220-012951.html?itemId=/content/journals/10.1146/annurev-biodatasci-122220-012951&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Hyman DM, Taylor BS, Baselga J. 2017. Implementing genome-driven oncology. Cell 168:584–99
    [Google Scholar]
  2. 2.
    Bachtiar M, Ooi BNS, Wang J, Jin Y, Tan TW et al. 2019. Towards precision medicine: interrogating the human genome to identify drug pathways associated with potentially functional, population-differentiated polymorphisms. Pharmacogenom. J. 19:516–27
    [Google Scholar]
  3. 3.
    Nussinov R, Jang H, Tsai CJ, Cheng F. 2019. Review: precision medicine and driver mutations: computational methods, functional assays and conformational principles for interpreting cancer drivers. PLOS Comput. Biol. 15:e1006658 Correction 2019. PLOS Comput. Biol. 15:e1007114
    [Google Scholar]
  4. 4.
    Ho D, Quake SR, McCabe ERB, Chng WJ, Chow EK et al. 2020. Enabling technologies for personalized and precision medicine. Trends Biotechnol 38:497–518
    [Google Scholar]
  5. 5.
    Peck RW. 2018. Precision medicine is not just genomics: the right dose for every patient. Annu. Rev. Pharmacol. Toxicol. 58:105–22
    [Google Scholar]
  6. 6.
    Hou YC, Yu HC, Martin R, Cirulli ET, Schenker-Ahmed NM et al. 2020. Precision medicine integrating whole-genome sequencing, comprehensive metabolomics, and advanced imaging. PNAS 117:3053–62
    [Google Scholar]
  7. 7.
    Nussinov R, Jang H, Tsai CJ, Cheng F. 2019. Precision medicine review: rare driver mutations and their biophysical classification. Biophys. Rev. 11:5–19
    [Google Scholar]
  8. 8.
    Cheng F, Liang H, Butte AJ, Eng C, Nussinov R. 2019. Personal mutanomes meet modern oncology drug discovery and precision health. Pharmacol. Rev. 71:1–19
    [Google Scholar]
  9. 9.
    Hulsen T, Jamuar SS, Moody AR, Karnes JH, Varga O et al. 2019. From big data to precision medicine. Front. Med. 6:34
    [Google Scholar]
  10. 10.
    Morgan AA, Crawford DC, Denny JC, Mooney SD, Aronow BJ, Brenner SE. 2017. Precision medicine: data and discovery for improved health and therapy. Pac. Symp. Biocomput. 22:348–55
    [Google Scholar]
  11. 11.
    Schaefer GO, Tai ES, Sun S. 2019. Precision medicine and big data: the application of an ethics framework for big data in health and research. Asian Bioeth. Rev. 11:275–88
    [Google Scholar]
  12. 12.
    Qian T, Zhu S, Hoshida Y. 2019. Use of big data in drug development for precision medicine: an update. Expert Rev. Precis. Med. Drug Dev. 4:189–200
    [Google Scholar]
  13. 13.
    Nussinov R, Jang H, Tsai CJ. 2014. The structural basis for cancer treatment decisions. Oncotarget 5:7285–302
    [Google Scholar]
  14. 14.
    Kosorok MR, Laber EB. 2019. Precision medicine. Annu. Rev. Stat. Appl. 6:263–86
    [Google Scholar]
  15. 15.
    Rost B, Radivojac P, Bromberg Y. 2016. Protein function in precision medicine: deep understanding with machine learning. FEBS Lett 590:2327–41
    [Google Scholar]
  16. 16.
    Cirillo D, Valencia A. 2019. Big data analytics for personalized medicine. Curr. Opin. Biotechnol. 58:161–67
    [Google Scholar]
  17. 17.
    Frohlich H, Balling R, Beerenwinkel N, Kohlbacher O, Kumar S et al. 2018. From hype to reality: data science enabling personalized medicine. BMC Med 16:150
    [Google Scholar]
  18. 18.
    Uddin M, Wang Y, Woodbury-Smith M. 2019. Artificial intelligence for precision medicine in neurodevelopmental disorders. NPJ Digit. Med. 2:112
    [Google Scholar]
  19. 19.
    Glusman G, Rose PW, Prlic A, Dougherty J, Duarte JM et al. 2017. Mapping genetic variations to three-dimensional protein structures to enhance variant interpretation: a proposed framework. Genome Med 9:113
    [Google Scholar]
  20. 20.
    Nagarajan N, Yapp EKY, Le NQK, Kamaraj B, Al-Subaie AM, Yeh HY 2019. Application of computational biology and artificial intelligence technologies in cancer precision drug discovery. Biomed. Res. Int. 2019:8427042
    [Google Scholar]
  21. 21.
    Nussinov R, Wolynes PG. 2014. A second molecular biology revolution? The energy landscapes of biomolecular function. Phys. Chem. Chem. Phys. 16:6321–22
    [Google Scholar]
  22. 22.
    Nussinov R, Tsai CJ, Jang H. 2021. Signaling in the crowded cell. Curr. Opin. Struct. Biol. 71:43–50
    [Google Scholar]
  23. 23.
    Jang H, Zhang M, Nussinov R. 2020. The quaternary assembly of KRas4B with Raf-1 at the membrane. Comput. Struct. Biotechnol. J. 18:737–48
    [Google Scholar]
  24. 24.
    Nussinov R, Tsai CJ, Jang H. 2020. Are parallel proliferation pathways redundant?. Trends Biochem. Sci. 45:554–63
    [Google Scholar]
  25. 25.
    Yeger-Lotem E, Sharan R 2015. Human protein interaction networks across tissues and diseases. Front. Genet. 6:257
    [Google Scholar]
  26. 26.
    Bossi A, Lehner B. 2009. Tissue specificity and the human protein interaction network. Mol. Syst. Biol. 5:260
    [Google Scholar]
  27. 27.
    Poole W, Leinonen K, Shmulevich I, Knijnenburg TA, Bernard B. 2017. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression. PLOS Comput. Biol. 13:e1005347
    [Google Scholar]
  28. 28.
    Gao J, Chang MT, Johnsen HC, Gao SP, Sylvester BE et al. 2017. 3D clusters of somatic mutations in cancer reveal numerous rare mutations as functional targets. Genome Med 9:4
    [Google Scholar]
  29. 29.
    Martinez-Jimenez F, Muinos F, Sentis I, Deu-Pons J, Reyes-Salazar I et al. 2020. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20:555–72
    [Google Scholar]
  30. 30.
    Liu C, Zhao J, Lu W, Dai Y, Hockings J et al. 2020. Individualized genetic network analysis reveals new therapeutic vulnerabilities in 6,700 cancer genomes. PLOS Comput. Biol. 16:e1007701
    [Google Scholar]
  31. 31.
    He H, Liu B, Luo H, Zhang T, Jiang J. 2020. Big data and artificial intelligence discover novel drugs targeting proteins without 3D structure and overcome the undruggable targets. Stroke Vasc. Neurol. 5:381–87
    [Google Scholar]
  32. 32.
    Nero TL, Parker MW, Morton CJ. 2018. Protein structure and computational drug discovery. Biochem. Soc. Trans. 46:1367–79
    [Google Scholar]
  33. 33.
    Liu X, Shi D, Zhou S, Liu H, Liu H, Yao X. 2018. Molecular dynamics simulations and novel drug discovery. Expert Opin. Drug Discov. 13:23–37
    [Google Scholar]
  34. 34.
    Hollingsworth SA, Dror RO. 2018. Molecular dynamics simulation for all. Neuron 99:1129–43
    [Google Scholar]
  35. 35.
    Thompson MC, Yeates TO, Rodriguez JA. 2020. Advances in methods for atomic resolution macromolecular structure determination. F1000Research 9:667
    [Google Scholar]
  36. 36.
    Subramaniam S. 2019. The cryo-EM revolution: fueling the next phase. IUCrJ 6:1–2
    [Google Scholar]
  37. 37.
    Lyumkis D. 2019. Challenges and opportunities in cryo-EM single-particle analysis. J. Biol. Chem. 294:5181–97
    [Google Scholar]
  38. 38.
    Faruqi AR, Henderson R, Pryddetch M, Allport P, Evans A. 2005. Direct single electron detection with a CMOS detector for electron microscopy. Nucl. Instrum. Methods Phys. Res. A 546:170–75
    [Google Scholar]
  39. 39.
    Terwilliger TC, Adams PD, Afonine PV, Sobolev OV. 2018. A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps. Nat. Methods 15:905–8
    [Google Scholar]
  40. 40.
    Nicholls RA, Tykac M, Kovalevskiy O, Murshudov GN. 2018. Current approaches for the fitting and refinement of atomic models into cryo-EM maps using CCP-EM. Acta Crystallogr. D 74:492–505
    [Google Scholar]
  41. 41.
    Kim DN, Moriarty NW, Kirmizialtin S, Afonine PV, Poon B et al. 2019. Cryo_fit: democratization of flexible fitting for cryo-EM. J. Struct. Biol. 208:1–6
    [Google Scholar]
  42. 42.
    Chen CY, Chang YC, Lin BL, Huang CH, Tsai MD. 2019. Temperature-resolved cryo-EM uncovers structural bases of temperature-dependent enzyme functions. J. Am. Chem. Soc. 141:19983–87
    [Google Scholar]
  43. 43.
    Zhang C, Cantara W, Jeon Y, Musier-Forsyth K, Grigorieff N, Lyumkis D. 2019. Analysis of discrete local variability and structural covariance in macromolecular assemblies using cryo-EM and focused classification. Ultramicroscopy 203:170–80
    [Google Scholar]
  44. 44.
    Nakane T, Kimanius D, Lindahl E, Scheres SH. 2018. Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. eLife 7:e36861
    [Google Scholar]
  45. 45.
    Keedy DA, Hill ZB, Biel JT, Kang E, Rettenmaier TJ et al. 2018. An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering. eLife 7:e36307
    [Google Scholar]
  46. 46.
    Ferreiro DU, Komives EA, Wolynes PG. 2014. Frustration in biomolecules. Q. Rev. Biophys. 47:285–363
    [Google Scholar]
  47. 47.
    Wright PE, Dyson HJ. 2015. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16:18–29
    [Google Scholar]
  48. 48.
    Torrisi M, Pollastri G, Le Q 2020. Deep learning methods in protein structure prediction. Comput. Struct. Biotechnol. J. 18:1301–10
    [Google Scholar]
  49. 49.
    Heo L, Feig M. 2018. Experimental accuracy in protein structure refinement via molecular dynamics simulations. PNAS 115:13276–81
    [Google Scholar]
  50. 50.
    Ali M, Aittokallio T. 2019. Machine learning and feature selection for drug response prediction in precision oncology applications. Biophys. Rev. 11:31–39
    [Google Scholar]
  51. 51.
    Nussinov R, Tsai CJ, Jang H. 2019. Protein ensembles link genotype to phenotype. PLOS Comput. Biol. 15:e1006648
    [Google Scholar]
  52. 52.
    Orellana L. 2019. Large-scale conformational changes and protein function: breaking the in silico barrier. Front. Mol. Biosci. 6:117
    [Google Scholar]
  53. 53.
    Sekhar A, Kay LE. 2019. An NMR view of protein dynamics in health and disease. Annu. Rev. Biophys. 48:297–319
    [Google Scholar]
  54. 54.
    Campitelli P, Modi T, Kumar S, Ozkan SB. 2020. The role of conformational dynamics and allostery in modulating protein evolution. Annu. Rev. Biophys. 49:267–88
    [Google Scholar]
  55. 55.
    Qiao W, Akhter N, Fang X, Maximova T, Plaku E, Shehu A. 2018. From mutations to mechanisms and dysfunction via computation and mining of protein energy landscapes. BMC Genom. 19:671
    [Google Scholar]
  56. 56.
    Nussinov R, Zhang M, Tsai CJ, Jang H. 2021. Phosphorylation and driver mutations in PI3Kα and PTEN autoinhibition. Mol. Cancer Res. 19:543–48
    [Google Scholar]
  57. 57.
    Strumillo MJ, Oplova M, Vieitez C, Ochoa D, Shahraz M et al. 2019. Conserved phosphorylation hotspots in eukaryotic protein domain families. Nat. Commun. 10:1977
    [Google Scholar]
  58. 58.
    Li Y, Zhou X, Zhai Z, Li T. 2017. Co-occurring protein phosphorylation are functionally associated. PLOS Comput. Biol. 13:e1005502
    [Google Scholar]
  59. 59.
    Ni D, Li Y, Qiu Y, Pu J, Lu S, Zhang J. 2020. Combining allosteric and orthosteric drugs to overcome drug resistance. Trends Pharmacol. Sci. 41:336–48
    [Google Scholar]
  60. 60.
    Burke JE, Perisic O, Masson GR, Vadas O, Williams RL. 2012. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). PNAS 109:15259–64
    [Google Scholar]
  61. 61.
    Yehia L, Ngeow J, Eng C. 2019. PTEN-opathies: from biological insights to evidence-based precision medicine. J. Clin. Investig. 129:452–64
    [Google Scholar]
  62. 62.
    Lee YR, Chen M, Pandolfi PP. 2018. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat. Rev. Mol. Cell Biol. 19:547–62
    [Google Scholar]
  63. 63.
    Masson GR, Williams RL. 2020. Structural mechanisms of PTEN regulation. Cold Spring Harb. . Perspect. Med. 10:a036152
    [Google Scholar]
  64. 64.
    Kotelevets L, Trifault B, Chastre E, Scott MGH 2020. Posttranslational regulation and conformational plasticity of PTEN. Cold Spring Harb. . Perspect. Med. 10:a036095
    [Google Scholar]
  65. 65.
    Smith IN, Thacker S, Jaini R, Eng C. 2019. Dynamics and structural stability effects of germline PTEN mutations associated with cancer versus autism phenotypes. J. Biomol. Struct. Dyn. 37:1766–82
    [Google Scholar]
  66. 66.
    Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T et al. 1999. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99:323–34
    [Google Scholar]
  67. 67.
    Masson GR, Perisic O, Burke JE, Williams RL. 2016. The intrinsically disordered tails of PTEN and PTEN-L have distinct roles in regulating substrate specificity and membrane activity. Biochem. J. 473:135–44
    [Google Scholar]
  68. 68.
    Zhang M, Jang H, Nussinov R. 2019. The mechanism of PI3Kα activation at the atomic level. Chem. Sci. 10:3671–80
    [Google Scholar]
  69. 69.
    Astl L, Tse A, Verkhivker GM. 2019. Interrogating regulatory mechanisms in signaling proteins by allosteric inhibitors and activators: a dynamic view through the lens of residue interaction networks. Adv. Exp. Med. Biol. 1163:187–223
    [Google Scholar]
  70. 70.
    Zhang M, Jang H, Nussinov R. 2020. Structural features that distinguish inactive and active PI3K lipid kinases. J. Mol. Biol. 432:5849–59
    [Google Scholar]
  71. 71.
    Roskoski R Jr. 2018. Targeting oncogenic Raf protein-serine/threonine kinases in human cancers. Pharmacol. Res. 135:239–58
    [Google Scholar]
  72. 72.
    Yaeger R, Corcoran RB. 2019. Targeting alterations in the RAF-MEK pathway. Cancer Discov 9:329–41
    [Google Scholar]
  73. 73.
    Garcia-Gomez R, Bustelo XR, Crespo P. 2018. Protein-protein interactions: emerging oncotargets in the RAS-ERK pathway. Trends Cancer 4:616–33
    [Google Scholar]
  74. 74.
    Terrell EM, Morrison DK. 2019. Ras-mediated activation of the Raf family kinases. Cold Spring Harb. . Perspect. Med. 9:a033746
    [Google Scholar]
  75. 75.
    Kondo Y, Ognjenovic J, Banerjee S, Karandur D, Merk A et al. 2019. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science 366:109–15
    [Google Scholar]
  76. 76.
    Park E, Rawson S, Li K, Kim BW, Ficarro SB et al. 2019. Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes. Nature 575:545–50
    [Google Scholar]
  77. 77.
    Kohler M, Brummer T. 2016. B-Raf activation loop phosphorylation revisited. Cell Cycle 15:1171–73
    [Google Scholar]
  78. 78.
    Lu S, Jang H, Muratcioglu S, Gursoy A, Keskin O et al. 2016. Ras conformational ensembles, allostery, and signaling. Chem. Rev. 116:6607–65
    [Google Scholar]
  79. 79.
    Zhang M, Jang H, Li Z, Sacks DB, Nussinov R. 2021. B-Raf autoinhibition in the presence and absence of 14-3-3. Structure 29:7768–77.e2
    [Google Scholar]
  80. 80.
    Nussinov R, Jang H, Gursoy A, Keskin O, Gaponenko V. 2021. Inhibition of nonfunctional Ras. Cell Chem. Biol. 28:121–33
    [Google Scholar]
  81. 81.
    Pon JR, Marra MA. 2015. Driver and passenger mutations in cancer. Annu. Rev. Pathol. 10:25–50
    [Google Scholar]
  82. 82.
    Tokheim CJ, Papadopoulos N, Kinzler KW, Vogelstein B, Karchin R. 2016. Evaluating the evaluation of cancer driver genes. PNAS 113:14330–35
    [Google Scholar]
  83. 83.
    Dimitrakopoulos CM, Beerenwinkel N. 2017. Computational approaches for the identification of cancer genes and pathways. Wiley Interdiscip. Rev. Syst. Biol. Med. 9:e1364
    [Google Scholar]
  84. 84.
    Bozic I, Gerold JM, Nowak MA. 2016. Quantifying clonal and subclonal passenger mutations in cancer evolution. PLOS Comput. Biol. 12:e1004731
    [Google Scholar]
  85. 85.
    Hudson AM, Wirth C, Stephenson NL, Fawdar S, Brognard J, Miller CJ. 2015. Using large-scale genomics data to identify driver mutations in lung cancer: methods and challenges. Pharmacogenomics 16:1149–60
    [Google Scholar]
  86. 86.
    Anoosha P, Huang LT, Sakthivel R, Karunagaran D, Gromiha MM. 2015. Discrimination of driver and passenger mutations in epidermal growth factor receptor in cancer. Mutat. Res. 780:24–34
    [Google Scholar]
  87. 87.
    Poulos RC, Wong JWH. 2019. Finding cancer driver mutations in the era of big data research. Biophys. Rev. 11:21–29
    [Google Scholar]
  88. 88.
    Caskey T. 2018. Precision medicine: functional advancements. Annu. Rev. Med. 69:1–18
    [Google Scholar]
  89. 89.
    Brown AL, Li M, Goncearenco A, Panchenko AR. 2019. Finding driver mutations in cancer: elucidating the role of background mutational processes. PLOS Comput. Biol. 15:e1006981
    [Google Scholar]
  90. 90.
    Agajanian S, Odeyemi O, Bischoff N, Ratra S, Verkhivker GM. 2018. Machine learning classification and structure-functional analysis of cancer mutations reveal unique dynamic and network signatures of driver sites in oncogenes and tumor suppressor genes. J. Chem. Inf. Model. 58:2131–50
    [Google Scholar]
  91. 91.
    Scholl C, Frohling S. 2019. Exploiting rare driver mutations for precision cancer medicine. Curr. Opin. Genet. Dev. 54:1–6
    [Google Scholar]
  92. 92.
    Bradshaw JM, Kubota Y, Meyer T, Schulman H. 2003. An ultrasensitive Ca2+/calmodulin-dependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling. PNAS 100:10512–17
    [Google Scholar]
  93. 93.
    Vasan N, Razavi P, Johnson JL, Shao H, Shah H et al. 2019. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science 366:714–23
    [Google Scholar]
  94. 94.
    Saito Y, Koya J, Araki M, Kogure Y, Shingaki S et al. 2020. Landscape and function of multiple mutations within individual oncogenes. Nature 582:95–99
    [Google Scholar]
  95. 95.
    Zhang M, Jang H, Nussinov R. 2019. The structural basis for Ras activation of PI3Kα lipid kinase. Phys. Chem. Chem. Phys. 21:12021–28
    [Google Scholar]
  96. 96.
    Zhao L, Vogt PK. 2008. Helical domain and kinase domain mutations in p110α of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. PNAS 105:2652–57
    [Google Scholar]
  97. 97.
    Blakely CM, Watkins TBK, Wu W, Gini B, Chabon JJ et al. 2017. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat. Genet. 49:1693–704
    [Google Scholar]
  98. 98.
    Gorelick AN, Sanchez-Rivera FJ, Cai Y, Bielski CM, Biederstedt E et al. 2020. Phase and context shape the function of composite oncogenic mutations. Nature 582:100–3
    [Google Scholar]
  99. 99.
    LoRusso PM, Sebolt-Leopold JS. 2020. One step at a time—clinical evidence that KRAS is indeed druggable. N. Engl. J. Med. 383:1277–78
    [Google Scholar]
  100. 100.
    Amodio V, Yaeger R, Arcella P, Cancelliere C, Lamba S et al. 2020. EGFR blockade reverts resistance to KRASG12C inhibition in colorectal cancer. Cancer Discov 10:1129–39
    [Google Scholar]
  101. 101.
    Molina-Arcas M, Moore C, Rana S, van Maldegem F, Mugarza E et al. 2019. Development of combination therapies to maximize the impact of KRAS-G12C inhibitors in lung cancer. Sci. Transl. Med. 11:510eaaw7999
    [Google Scholar]
  102. 102.
    Liu A. 2019. Could a combo treatment boost KRAS inhibitors in lung cancer?. Fierce Biotech Sept. 18. https://www.fiercebiotech.com/research/improving-kras-inhibitors-lung-cancers-a-combo
    [Google Scholar]
  103. 103.
    Broyde J, Simpson DR, Murray D, Paull EO, Chu BW et al. 2021. Oncoprotein-specific molecular interaction maps (SigMaps) for cancer network analyses. Nat. Biotechnol. 39:215–24
    [Google Scholar]
  104. 104.
    Bansal M, He J, Peyton M, Kustagi M, Iyer A et al. 2019. Elucidating synergistic dependencies in lung adenocarcinoma by proteome-wide signaling-network analysis. PLOS ONE 14:e0208646
    [Google Scholar]
  105. 105.
    Ludwig LS, Lareau CA, Bao EL, Nandakumar SK, Muus C et al. 2019. Transcriptional states and chromatin accessibility underlying human erythropoiesis. Cell Rep 27:3228–40.e7
    [Google Scholar]
  106. 106.
    Sack LM, Davoli T, Li MZ, Li Y, Xu Q et al. 2018. Profound tissue specificity in proliferation control underlies cancer drivers and aneuploidy patterns. Cell 173:499–514.e23
    [Google Scholar]
  107. 107.
    Haigis KM, Cichowski K, Elledge SJ. 2019. Tissue-specificity in cancer: the rule, not the exception. Science 363:1150–51
    [Google Scholar]
  108. 108.
    Monroe TO, Hill MC, Morikawa Y, Leach JP, Heallen T et al. 2019. YAP partially reprograms chromatin accessibility to directly induce adult cardiogenesis in vivo. Dev. Cell 48:765–79.e7
    [Google Scholar]
  109. 109.
    Klemm SL, Shipony Z, Greenleaf WJ. 2019. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20:207–20
    [Google Scholar]
  110. 110.
    Vo TV, Dhakshnamoorthy J, Larkin M, Zofall M, Thillainadesan G et al. 2019. CPF recruitment to non-canonical transcription termination sites triggers heterochromatin assembly and gene silencing. Cell Rep 28:267–81.e5
    [Google Scholar]
  111. 111.
    Skalska L, Stojnic R, Li J, Fischer B, Cerda-Moya G et al. 2015. Chromatin signatures at Notch-regulated enhancers reveal large-scale changes in H3K56ac upon activation. EMBO J 34:1889–904
    [Google Scholar]
  112. 112.
    Wang H, Zang C, Taing L, Arnett KL, Wong YJ et al. 2014. NOTCH1-RBPJ complexes drive target gene expression through dynamic interactions with superenhancers. PNAS 111:705–10
    [Google Scholar]
  113. 113.
    Mirny LA, Imakaev M, Abdennur N. 2019. Two major mechanisms of chromosome organization. Curr. Opin. Cell Biol. 58:142–52
    [Google Scholar]
  114. 114.
    Nuebler J, Fudenberg G, Imakaev M, Abdennur N, Mirny LA. 2018. Chromatin organization by an interplay of loop extrusion and compartmental segregation. PNAS 115:E6697–706
    [Google Scholar]
  115. 115.
    Nir G, Farabella I, Perez Estrada C, Ebeling CG, Beliveau BJ et al. 2018. Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLOS Genet 14:e1007872
    [Google Scholar]
  116. 116.
    Dixon JR, Selvaraj S, Yue F, Kim A, Li Y et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–80
    [Google Scholar]
  117. 117.
    Sanborn AL, Rao SS, Huang SC, Durand NC, Huntley MH et al. 2015. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. PNAS 112:E6456–65
    [Google Scholar]
  118. 118.
    Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. 2016. Formation of chromosomal domains by loop extrusion. Cell Rep 15:2038–49
    [Google Scholar]
  119. 119.
    Franke M, Ibrahim DM, Andrey G, Schwarzer W, Heinrich V et al. 2016. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538:265–69
    [Google Scholar]
  120. 120.
    Despang A, Schopflin R, Franke M, Ali S, Jerkovic I et al. 2019. Functional dissection of the Sox9–Kcnj2 locus identifies nonessential and instructive roles of TAD architecture. Nat. Genet. 51:1263–71
    [Google Scholar]
  121. 121.
    Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO et al. 2016. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351:1454–58
    [Google Scholar]
  122. 122.
    Weischenfeldt J, Dubash T, Drainas AP, Mardin BR, Chen Y et al. 2017. Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking. Nat. Genet. 49:65–74
    [Google Scholar]
  123. 123.
    Akdemir KC, Le VT, Chandran S, Li Y, Verhaak RG et al. 2020. Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nat. Genet. 52:294–305
    [Google Scholar]
  124. 124.
    Di Pierro M, Zhang B, Aiden EL, Wolynes PG, Onuchic JN. 2016. Transferable model for chromosome architecture. PNAS 113:12168–73
    [Google Scholar]
  125. 125.
    Qi Y, Zhang B. 2019. Predicting three-dimensional genome organization with chromatin states. PLOS Comput. Biol. 15:e1007024
    [Google Scholar]
  126. 126.
    Zhou J, Ma J, Chen Y, Cheng C, Bao B et al. 2019. Robust single-cell Hi-C clustering by convolution- and random-walk-based imputation. PNAS 116:14011–18
    [Google Scholar]
  127. 127.
    Gursoy G, Xu Y, Kenter AL, Liang J. 2017. Computational construction of 3D chromatin ensembles and prediction of functional interactions of alpha-globin locus from 5C data. Nucleic Acids Res 45:11547–58
    [Google Scholar]
  128. 128.
    Baxter JS, Leavy OC, Dryden NH, Maguire S, Johnson N et al. 2018. Capture Hi-C identifies putative target genes at 33 breast cancer risk loci. Nat. Commun. 9:1028
    [Google Scholar]
  129. 129.
    Fudenberg G, Abdennur N, Imakaev M, Goloborodko A, Mirny LA. 2017. Emerging evidence of chromosome folding by loop extrusion. Cold Spring Harb. Symp. Quant. Biol. 82:45–55
    [Google Scholar]
  130. 130.
    Rao SSP, Huang SC, St Hilaire BG, Engreitz JM, Perez EM et al. 2017. Cohesin loss eliminates all loop domains. Cell 171:305–20.e24
    [Google Scholar]
  131. 131.
    Trieu T, Oluwadare O, Cheng J. 2019. Hierarchical reconstruction of high-resolution 3D models of large chromosomes. Sci. Rep. 9:4971
    [Google Scholar]
  132. 132.
    Bianco S, Lupianez DG, Chiariello AM, Annunziatella C, Kraft K et al. 2018. Polymer physics predicts the effects of structural variants on chromatin architecture. Nat. Genet. 50:662–67
    [Google Scholar]
  133. 133.
    Oluwadare O, Highsmith M, Cheng J. 2019. An overview of methods for reconstructing 3-D chromosome and genome structures from Hi-C data. Biol. Proced. Online 21:7
    [Google Scholar]
  134. 134.
    Cheng RR, Contessoto VG, Lieberman Aiden E, Wolynes PG, Di Pierro M, Onuchic JN. 2020. Exploring chromosomal structural heterogeneity across multiple cell lines. eLife 9:e60312
    [Google Scholar]
  135. 135.
    Contessoto VG, Cheng RR, Hajitaheri A, Dodero-Rojas E, Mello MF et al. 2021. The Nucleome Data Bank: web-based resources to simulate and analyze the three-dimensional genome. Nucleic Acids Res 49:D172–82
    [Google Scholar]
  136. 136.
    Abbas A, He X, Niu J, Zhou B, Zhu G et al. 2019. Integrating Hi-C and FISH data for modeling of the 3D organization of chromosomes. Nat. Commun. 10:2049
    [Google Scholar]
  137. 137.
    Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ et al. 2016. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529:418–22
    [Google Scholar]
  138. 138.
    Su JH, Zheng P, Kinrot SS, Bintu B, Zhuang X. 2020. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell 182:1641–59.e26
    [Google Scholar]
  139. 139.
    Takei Y, Yun J, Zheng S, Ollikainen N, Pierson N et al. 2021. Integrated spatial genomics reveals global architecture of single nuclei. Nature 590:344–50
    [Google Scholar]
  140. 140.
    Nguyen HQ, Chattoraj S, Castillo D, Nguyen SC, Nir G et al. 2020. 3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing. Nat. Methods 17:822–32
    [Google Scholar]
  141. 141.
    Bintu B, Mateo LJ, Su JH, Sinnott-Armstrong NA, Parker M et al. 2018. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362:6413eaau1783
    [Google Scholar]
  142. 142.
    Spielmann M, Lupianez DG, Mundlos S. 2018. Structural variation in the 3D genome. Nat. Rev. Genet. 19:453–67
    [Google Scholar]
  143. 143.
    Sahni N, Yi S, Taipale M, Fuxman Bass JI, Coulombe-Huntington J et al. 2015. Widespread macromolecular interaction perturbations in human genetic disorders. Cell 161:647–60
    [Google Scholar]
  144. 144.
    Ng PK, Li J, Jeong KJ, Shao S, Chen H et al. 2018. Systematic functional annotation of somatic mutations in cancer. Cancer Cell 33:450–62.e10
    [Google Scholar]
  145. 145.
    Zhao J, Cheng F, Zhao Z. 2017. Tissue-specific signaling networks rewired by major somatic mutations in human cancer revealed by proteome-wide discovery. Cancer Res 77:2810–21
    [Google Scholar]
  146. 146.
    Shen Q, Cheng F, Song H, Lu W, Zhao J et al. 2017. Proteome-scale investigation of protein allosteric regulation perturbed by somatic mutations in 7,000 cancer genomes. Am. J. Hum. Genet. 100:5–20
    [Google Scholar]
  147. 147.
    Chen S, Fragoza R, Klei L, Liu Y, Wang J et al. 2018. An interactome perturbation framework prioritizes damaging missense mutations for developmental disorders. Nat. Genet. 50:1032–40
    [Google Scholar]
  148. 148.
    Cheng F, Zhao J, Wang Y, Lu W, Liu Z et al. 2021. Comprehensive characterization of protein–protein interactions perturbed by disease mutations. Nat. Genet. 53:342–53
    [Google Scholar]
  149. 149.
    Mosca R, Ceol A, Aloy P. 2013. Interactome3D: adding structural details to protein networks. Nat. Methods 10:47–53
    [Google Scholar]
  150. 150.
    Meyer MJ, Beltran JF, Liang S, Fragoza R, Rumack A et al. 2018. Interactome INSIDER: a structural interactome browser for genomic studies. Nat. Methods 15:107–14
    [Google Scholar]
  151. 151.
    Gainza P, Sverrisson F, Monti F, Rodola E, Boscaini D et al. 2020. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods 17:184–92
    [Google Scholar]
  152. 152.
    Zhou Y, Zhao J, Fang J, Martin W, Li L et al. 2021. My personal mutanome: a computational genomic medicine platform for searching network perturbing alleles linking genotype to phenotype. Genome Biol 22:53
    [Google Scholar]
  153. 153.
    Nussinov R, Jang H, Nir G, Tsai CJ, Cheng F. 2021. A new precision medicine initiative at the dawn of exascale computing. Signal. Transduct. Target Ther. 6:3
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-122220-012951
Loading
/content/journals/10.1146/annurev-biodatasci-122220-012951
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error