1932

Abstract

Biological replicators, from genes within a genome to whole organisms, are locked in conflicts. Comparative genomics has revealed a staggering diversity of molecular armaments and mechanisms regulating their deployment, collectively termed biological conflict systems. These encompass toxins used in inter- and intraspecific interactions, self/nonself discrimination, antiviral immune mechanisms, and counter-host effectors deployed by viruses and intragenomic selfish elements. These systems possess shared syntactical features in their organizational logic and a set of effectors targeting genetic information flow through the Central Dogma, certain membranes, and key molecules like NAD+. These principles can be exploited to discover new conflict systems through sensitive computational analyses. This has led to significant advances in our understanding of the biology of these systems and furnished new biotechnological reagents for genome editing, sequencing, and beyond. We discuss these advances using specific examples of toxins, restriction-modification, apoptosis, CRISPR/second messenger–regulated systems, and other enigmatic nucleic acid–targeting systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-122220-101119
2022-08-10
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/5/1/annurev-biodatasci-122220-101119.html?itemId=/content/journals/10.1146/annurev-biodatasci-122220-101119&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Godfrey-Smith P. 2000. The replicator in retrospect. Biol. Philos. 15:403–23
    [Google Scholar]
  2. 2.
    Hull DL. 1980. Individuality and selection. Annu. Rev. Ecol. Syst. 11:311–32
    [Google Scholar]
  3. 3.
    Maynard Smith JSE 1997. The Major Transitions in Evolution Oxford: Oxford Univ. Press
  4. 4.
    Austin B, Trivers R, Burt A. 2009. Genes in Conflict: The Biology of Selfish Genetic Elements Cambridge, MA: Harvard Univ. Press
  5. 5.
    Hurst LD, Atlan A, Bengtsson BO. 1996. Genetic conflicts. Q. Rev. Biol. 71:317–64
    [Google Scholar]
  6. 6.
    Michod RE. 1996. Cooperation and conflict in the evolution of individuality. II. Conflict mediation. Proc. Biol. Sci. 263:813–22
    [Google Scholar]
  7. 7.
    Michod RE, Herron MD. 2006. Cooperation and conflict during evolutionary transitions in individuality. J. Evol. Biol. 19:1406–9
    [Google Scholar]
  8. 8.
    Dawkins R, Krebs JR. 1979. Arms races between and within species. Proc. R. Soc. B 205:489–511
    [Google Scholar]
  9. 9.
    Maynard Smith J. 1998. Evolutionary Genetics Oxford: Oxford Univ. Press
  10. 10.
    Werren JH. 2011. Selfish genetic elements, genetic conflict, and evolutionary innovation. PNAS 108:Suppl. 210863–70
    [Google Scholar]
  11. 11.
    Brown GG, Finnegan PM. 1989. RNA plasmids. Int. Rev. Cytol. 117:1–56
    [Google Scholar]
  12. 12.
    Kobayashi I. 2001. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29:3742–56
    [Google Scholar]
  13. 13.
    Delarue M, Poch O, Tordo N, Moras D, Argos P. 1990. An attempt to unify the structure of polymerases. Protein Eng 3:461–67
    [Google Scholar]
  14. 14.
    Iyer LM, Aravind L. 2012. Insights from the architecture of the bacterial transcription apparatus. J. Struct. Biol. 179:299–319
    [Google Scholar]
  15. 15.
    Iyer LM, Koonin EV, Leipe DD, Aravind L. 2005. Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members. Nucleic Acids Res 33:3875–96
    [Google Scholar]
  16. 16.
    Smith JM, Price G 1973. The logic of animal conflict. Nature 246:15–18
    [Google Scholar]
  17. 17.
    Ulvestad E. 2009. Cooperation and conflict in host-microbe relations. APMIS 117:311–22
    [Google Scholar]
  18. 18.
    Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M et al. 2020. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577:519–25
    [Google Scholar]
  19. 19.
    Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J et al. 2015. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–79
    [Google Scholar]
  20. 20.
    Wernegreen JJ. 2004. Endosymbiosis: lessons in conflict resolution. PLOS Biol 2:e68
    [Google Scholar]
  21. 21.
    Gomez-Valero L, Buchrieser C. 2019. Intracellular parasitism, the driving force of evolution of Legionella pneumophila and the genus Legionella. Microbes Infect 21:230–36
    [Google Scholar]
  22. 22.
    Schwyter L, Igler C, Hall A, Wendling C. 2020. Plasmids and temperate phages influence each other's transfer rates. Access Microbiol. 2:7A140
    [Google Scholar]
  23. 23.
    Meir M, Harel N, Miller D, Gelbart M, Eldar A et al. 2020. Competition between social cheater viruses is driven by mechanistically different cheating strategies. Sci. Adv. 6:34eabb7990
    [Google Scholar]
  24. 24.
    Naito T, Kusano K, Kobayashi I. 1995. Selfish behavior of restriction-modification systems. Science 267:897–99
    [Google Scholar]
  25. 25.
    Rawlings DE. 1999. Proteic toxin-antitoxin, bacterial plasmid addiction systems and their evolution with special reference to the pas system of pTF-FC2. FEMS Microbiol. Lett. 176:269–77
    [Google Scholar]
  26. 26.
    Coffman KA, Burke GR. 2020. Genomic analysis reveals an exogenous viral symbiont with dual functionality in parasitoid wasps and their hosts. PLOS Pathog 16:e1009069
    [Google Scholar]
  27. 27.
    Drezen JM, Leobold M, Bezier A, Huguet E, Volkoff AN, Herniou EA. 2017. Endogenous viruses of parasitic wasps: variations on a common theme. Curr. Opin. Virol. 25:41–48
    [Google Scholar]
  28. 28.
    Iyer LM, Balaji S, Koonin EV, Aravind L. 2006. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res 117:156–84
    [Google Scholar]
  29. 29.
    Krupovic M, Dolja VV, Koonin EV. 2019. Origin of viruses: primordial replicators recruiting capsids from hosts. Nat. Rev. Microbiol. 17:449–58
    [Google Scholar]
  30. 30.
    Van Valen L. 1973. A new evolutionary law. Evol. Theory 1:1–30
    [Google Scholar]
  31. 31.
    Walsh C, Wencewicz TA. 2016. Antibiotics: Challenges, Mechanisms, Opportunities. Washington, DC: ASM
  32. 32.
    Leipe DD, Aravind L, Koonin EV. 1999. Did DNA replication evolve twice independently?. Nucleic Acids Res 27:3389–401
    [Google Scholar]
  33. 33.
    Doolittle WF. 1999. Phylogenetic classification and the universal tree. Science 284:2124–29
    [Google Scholar]
  34. 34.
    Burroughs AM, Aravind L. 2016. RNA damage in biological conflicts and the diversity of responding RNA repair systems. Nucleic Acids Res 44:8525–55
    [Google Scholar]
  35. 35.
    Cook GM, Robson JR, Frampton RA, McKenzie J, Przybilski R et al. 2013. Ribonucleases in bacterial toxin-antitoxin systems. Biochim. Biophys. Acta 1829:523–31
    [Google Scholar]
  36. 36.
    Trummal K, Aaspollu A, Tonismagi K, Samel M, Subbi J et al. 2014. Phosphodiesterase from Vipera lebetina venom—structure and characterization. Biochimie 106:48–55
    [Google Scholar]
  37. 37.
    Jablonska J, Matelska D, Steczkiewicz K, Ginalski K. 2017. Systematic classification of the His-Me finger superfamily. Nucleic Acids Res 45:11479–94
    [Google Scholar]
  38. 38.
    Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L. 2012. Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol. Direct 7:18Comprehensively studies polymorphic toxins presenting a model for computational analysis of biological conflict systems.
    [Google Scholar]
  39. 39.
    Walsh MJ, Dodd JE, Hautbergue GM. 2013. Ribosome-inactivating proteins: potent poisons and molecular tools. Virulence 4:774–84
    [Google Scholar]
  40. 40.
    Aravind L, Zhang D, de Souza RF, Anand S, Iyer LM. 2015. The natural history of ADP-ribosyltransferases and the ADP-ribosylation system. Curr. Top. Microbiol. Immunol. 384:3–32
    [Google Scholar]
  41. 41.
    Jankevicius G, Ariza A, Ahel M, Ahel I. 2016. The toxin-antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA. Mol. Cell 64:1109–16
    [Google Scholar]
  42. 42.
    Nakano T, Matsushima-Hibiya Y, Yamamoto M, Enomoto S, Matsumoto Y et al. 2006. Purification and molecular cloning of a DNA ADP-ribosylating protein, CARP-1, from the edible clam Meretrix lamarckii. PNAS 103:13652–57
    [Google Scholar]
  43. 43.
    Ceyssens PJ, De Smet J, Wagemans J, Akulenko N, Klimuk E et al. 2020. The phage-encoded N-acetyltransferase Rac mediates inactivation of Pseudomonas aeruginosa transcription by cleavage of the RNA polymerase alpha subunit. Viruses 12:9976
    [Google Scholar]
  44. 44.
    Ho M, Mettouchi A, Wilson BA, Lemichez E. 2018. CNF1-like deamidase domains: common Lego bricks among cancer-promoting immunomodulatory bacterial virulence factors. Pathog. Dis. 76:5fty045
    [Google Scholar]
  45. 45.
    Koch T, Ruger W. 1994. The ADP-ribosyltransferases (gpAlt) of bacteriophages T2, T4, and T6: sequencing of the genes and comparison of their products. Virology 203:294–98
    [Google Scholar]
  46. 46.
    Daugherty MD, Young JM, Kerns JA, Malik HS. 2014. Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. PLOS Genet 10:e1004403
    [Google Scholar]
  47. 47.
    Castro-Roa D, Garcia-Pino A, De Gieter S, van Nuland NAJ, Loris R, Zenkin N 2013. The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu. Nat. Chem. Biol. 9:811–17
    [Google Scholar]
  48. 48.
    Jurenas D, Garcia-Pino A, Van Melderen L. 2017. Novel toxins from type II toxin-antitoxin systems with acetyltransferase activity. Plasmid 93:30–35
    [Google Scholar]
  49. 49.
    Koludarov I, Aird SD. 2019. Snake venom NAD glycohydrolases: primary structures, genomic location, and gene structure. PeerJ 7:e6154
    [Google Scholar]
  50. 50.
    Essuman K, Summers DW, Sasaki Y, Mao X, Yim AKY et al. 2018. TIR domain proteins are an ancient family of NAD+-consuming enzymes. Curr. Biol. 28:421–30.e4Presents wet lab demonstration of TIR domains as NADases.
    [Google Scholar]
  51. 51.
    Freire DM, Gutierrez C, Garza-Garcia A, Grabowska AD, Sala AJ et al. 2019. An NAD+ phosphorylase toxin triggers Mycobacterium tuberculosis cell death. Mol. Cell 73:1282–91.e8
    [Google Scholar]
  52. 52.
    Smith CL, Ghosh J, Elam JS, Pinkner JS, Hultgren SJ et al. 2011. Structural basis of Streptococcus pyogenes immunity to its NAD+ glycohydrolase toxin. Structure 19:192–202
    [Google Scholar]
  53. 53.
    Ka D, Oh H, Park E, Kim JH, Bae E. 2020. Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD+ degradation. Nat. Commun. 11:2816
    [Google Scholar]
  54. 54.
    Kang TS, Georgieva D, Genov N, Murakami MT, Sinha M et al. 2011. Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J 278:4544–76
    [Google Scholar]
  55. 55.
    Severin GB, Ramliden MS, Hawver LA, Wang K, Pell ME et al. 2018. Direct activation of a phospholipase by cyclic GMP-AMP in El Tor Vibrio cholerae. PNAS 115:E6048–55
    [Google Scholar]
  56. 56.
    Dal Peraro M, van der Goot FG. 2016. Pore-forming toxins: ancient, but never really out of fashion. Nat. Rev. Microbiol. 14:77–92
    [Google Scholar]
  57. 57.
    Ruhl S, Broz P. 2021. Regulation of lytic and non-lytic functions of gasdermin pores. J. Mol. Biol. 434:4167246
    [Google Scholar]
  58. 58.
    Gilbert RJ. 2002. Pore-forming toxins. Cell Mol. Life Sci. 59:832–44
    [Google Scholar]
  59. 59.
    Frank SA, Schmid-Hempel P. 2019. Evolution of negative immune regulators. PLOS Pathog 15:e1007913
    [Google Scholar]
  60. 60.
    Goeders N, Van Melderen L. 2014. Toxin-antitoxin systems as multilevel interaction systems. Toxins 6:304–24
    [Google Scholar]
  61. 61.
    Anantharaman V, Aravind L. 2003. New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system. Genome Biol 4:R81
    [Google Scholar]
  62. 62.
    Strasser A, Vaux DL. 2018. Viewing BCL2 and cell death control from an evolutionary perspective. Cell Death Differ 25:13–20
    [Google Scholar]
  63. 63.
    Arber W. 1974. DNA modification and restriction. Prog. Nucleic Acid Res. Mol. Biol. 14:1–37
    [Google Scholar]
  64. 64.
    Bickle TA, Kruger DH. 1993. Biology of DNA restriction. Microbiol. Rev. 57:434–50
    [Google Scholar]
  65. 65.
    Roberts RJ. 1987. Restriction and modification enzymes and their recognition sequences. Gene Amplif. Anal. 5:1–49
    [Google Scholar]
  66. 66.
    Murray NE. 2000. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol. . Mol. Biol. Rev. 64:412–34
    [Google Scholar]
  67. 67.
    Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA et al. 2003. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31:1805–12
    [Google Scholar]
  68. 68.
    Hille F, Charpentier E. 2016. CRISPR-Cas: biology, mechanisms and relevance. Philos. Trans. R. Soc. B 371:20150496
    [Google Scholar]
  69. 69.
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS et al. 2020. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18:67–83
    [Google Scholar]
  70. 70.
    Varble A, Marraffini LA. 2019. Three new Cs for CRISPR: collateral, communicate, cooperate. Trends Genet 35:446–56
    [Google Scholar]
  71. 71.
    Boehm T, Hirano M, Holland SJ, Das S, Schorpp M, Cooper MD. 2018. Evolution of alternative adaptive immune systems in vertebrates. Annu. Rev. Immunol. 36:19–42
    [Google Scholar]
  72. 72.
    Flajnik MF, Kasahara M. 2010. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat. Rev. Genet. 11:47–59
    [Google Scholar]
  73. 73.
    Conticello SG. 2008. The AID/APOBEC family of nucleic acid mutators. Genome Biol 9:229
    [Google Scholar]
  74. 74.
    Moris A, Murray S, Cardinaud S. 2014. AID and APOBECs span the gap between innate and adaptive immunity. Front. Microbiol. 5:534
    [Google Scholar]
  75. 75.
    Michod RE. 1982. The theory of kin selection. Annu. Rev. Ecol. Syst. 13:23–55
    [Google Scholar]
  76. 76.
    Durand PM, Sym S, Michod RE. 2016. Programmed cell death and complexity in microbial systems. Curr. Biol. 26:R587–93
    [Google Scholar]
  77. 77.
    Kaur G, Burroughs AM, Iyer LM, Aravind L. 2020. Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. eLife 9:e52696Discusses the discovery of the ternary systems linking prokaryotic antimobile element immunity with eukaryotic apoptosis.
    [Google Scholar]
  78. 78.
    Kaur G, Iyer LM, Burroughs AM, Aravind L. 2021. Bacterial death and TRADD-N domains help define novel apoptosis and immunity mechanisms shared by prokaryotes and metazoans. eLife 10:e70394First describes bacterial death and TRADD-N domains elucidating the bacterial roots of metazoan apoptosis.
    [Google Scholar]
  79. 79.
    Wall D. 2016. Kin recognition in bacteria. Annu. Rev. Microbiol. 70:143–60
    [Google Scholar]
  80. 80.
    Athukoralage JS, Graham S, Rouillon C, Gruschow S, Czekster CM, White MF. 2020. The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling. eLife 9:e52696
    [Google Scholar]
  81. 81.
    Burroughs AM, Aravind L. 2020. Identification of uncharacterized components of prokaryotic immune systems and their diverse eukaryotic reformulations. J. Bacteriol. 202:e00365–20
    [Google Scholar]
  82. 82.
    Burroughs AM, Zhang D, Schaffer DE, Iyer LM, Aravind L. 2015. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Res 43:10633–54First unifies second messenger–dependent conflict systems under a common rubric.
    [Google Scholar]
  83. 83.
    Lowey B, Whiteley AT, Keszei AFA, Morehouse BR, Mathews IT et al. 2020. CBASS immunity uses CARF-related effectors to sense 3′-5′- and 2′-5′-linked cyclic oligonucleotide signals and protect bacteria from phage infection. Cell 182:38–49.e17Shows that the SAVED and CARF second messenger sensors have a common evolutionary origin.
    [Google Scholar]
  84. 84.
    Makarova KS, Anantharaman V, Grishin NV, Koonin EV, Aravind L. 2014. CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems. Front. Genet. 5:102
    [Google Scholar]
  85. 85.
    Whiteley AT, Eaglesham JB, de Oliveira Mann CC, Morehouse BR, Lowey B et al. 2019. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature 567:194–99
    [Google Scholar]
  86. 86.
    Kranzusch PJ, Wilson SC, Lee AS, Berger JM, Doudna JA, Vance RE. 2015. Ancient origin of cGAS-STING reveals mechanism of universal 2′,3′ cGAMP signaling. Mol. Cell 59:891–903
    [Google Scholar]
  87. 87.
    Morehouse BR, Govande AA, Millman A, Keszei AFA, Lowey B et al. 2020. STING cyclic dinucleotide sensing originated in bacteria. Nature 586:429–33
    [Google Scholar]
  88. 88.
    Athukoralage JS, Rouillon C, Graham S, Gruschow S, White MF. 2018. Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate. Nature 562:277–80Shows CARF domains as CRISPR system cyclic oligonucleotide–sensing and cleaving enzymes.
    [Google Scholar]
  89. 89.
    Kazlauskiene M, Kostiuk G, Venclovas C, Tamulaitis G, Siksnys V. 2017. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 357:605–9
    [Google Scholar]
  90. 90.
    Niewoehner O, Garcia-Doval C, Rostol JT, Berk C, Schwede F et al. 2017. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature 548:543–48
    [Google Scholar]
  91. 91.
    Ye Q, Lau RK, Mathews IT, Birkholz EA, Watrous JD et al. 2019. HORMA domain proteins and a Trip13-like ATPase regulate bacterial cGAS-like enzymes to mediate bacteriophage immunity. Mol. Cell 77:4709–22.e7
    [Google Scholar]
  92. 92.
    Johnson AG, Wein T, Mayer ML, Duncan-Lowey B, Yirmiya E et al. 2022. Bacterial gasdermins reveal an ancient mechanism of cell death. Science 375:6577221–25
    [Google Scholar]
  93. 93.
    Krishnan A, Burroughs AM, Iyer LM, Aravind L. 2020. Comprehensive classification of ABC ATPases and their functional radiation in nucleoprotein dynamics and biological conflict systems. Nucleic Acids Res 48:10045–75
    [Google Scholar]
  94. 94.
    Makarova KS, Wolf YI, Snir S, Koonin EV. 2011. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J. Bacteriol. 193:6039–56
    [Google Scholar]
  95. 95.
    Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A et al. 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359:6379eaar4120
    [Google Scholar]
  96. 96.
    Makarova KS, Anantharaman V, Aravind L, Koonin EV. 2012. Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes. Biol. Direct 7:40
    [Google Scholar]
  97. 97.
    Anantharaman V, Makarova KS, Burroughs AM, Koonin EV, Aravind L. 2013. Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biol. Direct 8:15
    [Google Scholar]
  98. 98.
    Bitton L, Klaiman D, Kaufmann G. 2015. Phage T4-induced DNA breaks activate a tRNA repair-defying anticodon nuclease. Mol. Microbiol. 97:898–910
    [Google Scholar]
  99. 99.
    Davidov E, Kaufmann G. 2008. RloC: a wobble nucleotide-excising and zinc-responsive bacterial tRNase. Mol. Microbiol. 69:1560–74Demonstrates RNA anticodon–cleaving activity as a backup against restriction failure.
    [Google Scholar]
  100. 100.
    Seed KD. 2015. Battling phages: how bacteria defend against viral attack. PLOS Pathog 11:e1004847
    [Google Scholar]
  101. 101.
    Green ER, Mecsas J. 2016. Bacterial secretion systems: an overview. Microbiol. Spectr. 4:14.1.13
    [Google Scholar]
  102. 102.
    Korotkov KV, Sandkvist M, Hol WG. 2012. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat. Rev. Microbiol. 10:336–51
    [Google Scholar]
  103. 103.
    Cascales E, Christie PJ. 2003. The versatile bacterial type IV secretion systems. Nat. Rev. Microbiol. 1:137–49
    [Google Scholar]
  104. 104.
    Simeone R, Bottai D, Brosch R. 2009. ESX/type VII secretion systems and their role in host–pathogen interaction. Curr. Opin. Microbiol. 12:4–10
    [Google Scholar]
  105. 105.
    Burroughs AM, Iyer LM, Aravind L. 2007. Comparative genomics and evolutionary trajectories of viral ATP dependent DNA-packaging systems. Genome Dyn 3:48–65
    [Google Scholar]
  106. 106.
    Thomas S, Holland IB, Schmitt L. 2014. The type 1 secretion pathway—the hemolysin system and beyond. Biochim. Biophys. Acta 1843:1629–41
    [Google Scholar]
  107. 107.
    Eggensperger S, Tampe R. 2015. The transporter associated with antigen processing: a key player in adaptive immunity. Biol. Chem. 396:1059–72
    [Google Scholar]
  108. 108.
    Russell AB, Peterson SB, Mougous JD. 2014. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12:137–48
    [Google Scholar]
  109. 109.
    Yang G, Dowling AJ, Gerike U, ffrench-Constant RH, Waterfield NR. 2006. Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. J. Bacteriol. 188:2254–61
    [Google Scholar]
  110. 110.
    Ghequire MGK, De Mot R. 2015. The tailocin tale: peeling off phage tails. Trends Microbiol 23:587–90
    [Google Scholar]
  111. 111.
    Shneider MM, Buth SA, Ho BT, Basler M, Mekalanos JJ, Leiman PG. 2013. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500:350–53
    [Google Scholar]
  112. 112.
    Busby JN, Panjikar S, Landsberg MJ, Hurst MR, Lott JS. 2013. The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device. Nature 501:547–50
    [Google Scholar]
  113. 113.
    Egea PF. 2020. Crossing the vacuolar rubicon: structural insights into effector protein trafficking in apicomplexan parasites. Microorganisms 8:6865
    [Google Scholar]
  114. 114.
    Beck JR, Muralidharan V, Oksman A, Goldberg DE. 2014. PTEX component HSP101 mediates export of diverse malaria effectors into host erythrocytes. Nature 511:592–95
    [Google Scholar]
  115. 115.
    de Koning-Ward TF, Gilson PR, Boddey JA, Rug M, Smith BJ et al. 2009. A newly discovered protein export machine in malaria parasites. Nature 459:945–49
    [Google Scholar]
  116. 116.
    Zhang D, Burroughs AM, Vidal ND, Iyer LM, Aravind L. 2016. Transposons to toxins: the provenance, architecture and diversification of a widespread class of eukaryotic effectors. Nucleic Acids Res 44:3513–33
    [Google Scholar]
  117. 117.
    Aravind L, Makarova KS, Koonin EV. 2000. Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res 28:3417–32
    [Google Scholar]
  118. 118.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–402
    [Google Scholar]
  119. 119.
    Eddy SR. 2009. A new generation of homology search tools based on probabilistic inference. Genome Inform 23:205–11
    [Google Scholar]
  120. 120.
    Soding J, Biegert A, Lupas AN. 2005. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–48
    [Google Scholar]
  121. 121.
    Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S et al. 2021. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:871–76
    [Google Scholar]
  122. 122.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–89
    [Google Scholar]
  123. 123.
    Moutinho AF, Bataillon T, Dutheil JY. 2020. Variation of the adaptive substitution rate between species and within genomes. Evol. Ecol. 34:315–38
    [Google Scholar]
  124. 124.
    Shannon CE. 1948. A mathematical theory of communication. Bell System Tech. J. 27:379–423
    [Google Scholar]
  125. 125.
    Krishnan A, Iyer LM, Holland SJ, Boehm T, Aravind L. 2018. Diversification of AID/APOBEC-like deaminases in metazoa: multiplicity of clades and widespread roles in immunity. PNAS 115:E3201–10
    [Google Scholar]
  126. 126.
    Velikovsky CA, Deng L, Tasumi S, Iyer LM, Kerzic MC et al. 2009. Structure of a lamprey variable lymphocyte receptor in complex with a protein antigen. Nat. Struct. Mol. Biol. 16:725–30
    [Google Scholar]
  127. 127.
    Tan Y, Schneider T, Shukla PK, Chandrasekharan MB, Aravind L, Zhang D. 2021. Unification and extensive diversification of M/Orf3-related ion channel proteins in coronaviruses and other nidoviruses. Virus Evol 7:veab014
    [Google Scholar]
  128. 128.
    Manning CD, Schütze H. 2009. Foundations of Statistical Natural Language Processing Cambridge, MA: MIT Press
  129. 129.
    Barabasi AL, Oltvai ZN. 2004. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5:101–13
    [Google Scholar]
  130. 130.
    Iyer LM, Burroughs AM, Anand S, de Souza RF, Aravind L. 2017. Polyvalent proteins, a pervasive theme in the intergenomic biological conflicts of bacteriophages and conjugative elements. J. Bacteriol. 199:15e00245–17
    [Google Scholar]
  131. 131.
    Gonzalez-Montes L, Del Campo I, Garcillan-Barcia MP, de la Cruz F, Moncalian G. 2020. ArdC, a ssDNA-binding protein with a metalloprotease domain, overpasses the recipient hsdRMS restriction system broadening conjugation host range. PLOS Genet 16:e1008750
    [Google Scholar]
  132. 132.
    Girvan M, Newman ME. 2002. Community structure in social and biological networks. PNAS 99:7821–26
    [Google Scholar]
  133. 133.
    Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. 2008. Fast unfolding of communities in large networks. J. Stat. Mech. 2008:P10008
    [Google Scholar]
  134. 134.
    Csardi G, Nepusz T. 2006. The igraph software package for complex network research. InterJournal 1695. http://necsi.org/events/iccs6/papers/c1602a3c126ba822d0bc4293371c.pdf
    [Google Scholar]
  135. 135.
    Gordeeva J, Morozova N, Sierro N, Isaev A, Sinkunas T et al. 2019. BREX system of Escherichia coli distinguishes self from non-self by methylation of a specific DNA site. Nucleic Acids Res 47:253–65
    [Google Scholar]
  136. 136.
    Garcia-Rodriguez G, Charlier D, Wilmaerts D, Michiels J, Loris R 2021. Alternative dimerization is required for activity and inhibition of the HEPN ribonuclease RnlA. Nucleic Acids Res 49:7164–78
    [Google Scholar]
  137. 137.
    Wan H, Otsuka Y, Gao ZQ, Wei Y, Chen Z et al. 2016. Structural insights into the inhibition mechanism of bacterial toxin LsoA by bacteriophage antitoxin Dmd. Mol. Microbiol. 101:757–69
    [Google Scholar]
  138. 138.
    Tsialikas J, Romer-Seibert J. 2015. LIN28: roles and regulation in development and beyond. Development 142:2397–404
    [Google Scholar]
  139. 139.
    Jongruja N, You DJ, Angkawidjaja C, Kanaya E, Koga Y, Kanaya S. 2012. Structure and characterization of RNase H3 from Aquifex aeolicus. FEBS J 279:2737–53
    [Google Scholar]
  140. 140.
    Nowotny M, Cerritelli SM, Ghirlando R, Gaidamakov SA, Crouch RJ, Yang W 2008. Specific recognition of RNA/DNA hybrid and enhancement of human RNase H1 activity by HBD. EMBO J 27:1172–81
    [Google Scholar]
  141. 141.
    El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A et al. 2019. The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–32
    [Google Scholar]
  142. 142.
    Silas S, Mohr G, Sidote DJ, Markham LM, Sanchez-Amat A et al. 2016. Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science 351:aad4234
    [Google Scholar]
  143. 143.
    Millman A, Bernheim A, Stokar-Avihail A, Fedorenko T, Voichek M et al. 2020. Bacterial retrons function in anti-phage defense. Cell 183:1551–61.e12Demonstrates function of the previously mysterious retron-generated DNA-RNA chimeras in antiviral defense.
    [Google Scholar]
  144. 144.
    Burroughs AM, Ando Y, Aravind L. 2014. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing. Wiley Interdiscip. Rev. RNA 5:141–81
    [Google Scholar]
  145. 145.
    Okazaki T, Higuchi M, Takeda K, Iwatsuki-Horimoto K, Kiso M et al. 2015. The ASK family kinases differentially mediate induction of type I interferon and apoptosis during the antiviral response. Sci. Signal. 8:ra78
    [Google Scholar]
  146. 146.
    Aravind L, Burroughs AM, Zhang D, Iyer LM. 2014. Protein and DNA modifications: evolutionary imprints of bacterial biochemical diversification and geochemistry on the provenance of eukaryotic epigenetics. Cold Spring Harb. Perspect. Biol. 6:a016063
    [Google Scholar]
  147. 147.
    Jankovic J. 2004. Botulinum toxin in clinical practice. J. Neurol. Neurosurg. Psychiatry 75:951–57
    [Google Scholar]
  148. 148.
    Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R et al. 2011. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473:394–97
    [Google Scholar]
  149. 149.
    Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV et al. 2020. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583:631–37Describes first use of toxin-derived deaminases as genome-editing reagents.
    [Google Scholar]
  150. 150.
    Li S, Zhang L, Yao Q, Li L, Dong N et al. 2013. Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature 501:242–46
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-122220-101119
Loading
/content/journals/10.1146/annurev-biodatasci-122220-101119
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error