1932

Abstract

MicroRNAs (miRNAs) are short noncoding RNAs that can regulate all steps of gene expression (induction, transcription, and translation). Several virus families, primarily double-stranded DNA viruses, encode small RNAs (sRNAs), including miRNAs. These virus-derived miRNAs (v-miRNAs) help the virus evade the host's innate and adaptive immune system and maintain an environment of chronic latent infection. In this review, the functions of the sRNA-mediated virus–host interactions are highlighted, delineating their implication in chronic stress, inflammation, immunopathology, and disease. We provide insights into the latest viral RNA–based research—in silico approaches for functional characterization of v-miRNAs and other RNA types. The latest research can assist toward the identification of therapeutic targets to combat viral infections.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-122220-111429
2023-08-10
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/6/1/annurev-biodatasci-122220-111429.html?itemId=/content/journals/10.1146/annurev-biodatasci-122220-111429&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Stenglein MD. 2022. The case for studying new viruses of new hosts. Annu. Rev. Virol. 9:157–72
    [Google Scholar]
  2. 2.
    Lampson GP, Tytell AA, Field AK, Nemes MM, Hilleman MR. 1967. Inducers of interferon and host resistance. I. Double-stranded RNA from extracts of Penicillium funiculosum. PNAS 58:2782–89
    [Google Scholar]
  3. 3.
    Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR. 2006. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J. Virol. 80:105059–64
    [Google Scholar]
  4. 4.
    Crabtree A, Kizer E, Hunter S, Van Leuven J, New D et al. 2019. A rapid method for sequencing double-stranded RNAs purified from yeasts and the identification of a potent K1 killer toxin isolated from Saccharomyces cerevisiae. Viruses 11:70
    [Google Scholar]
  5. 5.
    Kobayashi K, Tomita R, Sakamoto M. 2009. Recombinant plant dsRNA-binding protein as an effective tool for the isolation of viral replicative form dsRNA and universal detection of RNA viruses. J. Gen. Plant Pathol. 75:287–91
    [Google Scholar]
  6. 6.
    Urayama S, Takaki Y, Hagiwara D, Nunoura T. 2020. dsRNA-seq reveals novel RNA virus and virus-like putative complete genome sequences from Hymeniacidon sp. sponge. Microb. Environ. 35:2ME19132
    [Google Scholar]
  7. 7.
    Decker CJ, Parker R. 2014. Analysis of dsRNA from microbial communities identifies dsRNA virus-like elements. Cell Rep. 7:3898–906
    [Google Scholar]
  8. 8.
    Gao Y, Chen S, Halene S, Tebaldi T. 2021. Transcriptome-wide quantification of double-stranded RNAs in live mouse tissues by dsRIP-Seq. STAR Protoc. 2:100366
    [Google Scholar]
  9. 9.
    Niu D-K, Jiang L. 2013. Can ENCODE tell us how much junk DNA we carry in our genome?. Biochem. Biophys. Res. Commun. 430:41340–43
    [Google Scholar]
  10. 10.
    Int. Hum. Genome Seq. Consort 2004. Finishing the euchromatic sequence of the human genome. Nature 431:7011931–45
    [Google Scholar]
  11. 11.
    Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS. 2018. Long non-coding RNA: its evolutionary relics and biological implications in mammals: a review. J. Anim. Sci. Technol. 60:25
    [Google Scholar]
  12. 12.
    Fernandes JCR, Acuña SM, Aoki JI, Floeter-Winter LM, Muxel SM. 2019. Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncod. RNA 5:17
    [Google Scholar]
  13. 13.
    Chew CL, Conos SA, Unal B, Tergaonkar V. 2018. Noncoding RNAs: master regulators of inflammatory signaling. Trends Mol. Med. 24:66–84
    [Google Scholar]
  14. 14.
    Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. 2003. RNA interference: biology, mechanism, and applications. Microbiol. Mol. Biol. Rev. 67:4657–85
    [Google Scholar]
  15. 15.
    Carthew RW, Sontheimer EJ. 2009. Origins and mechanisms of miRNAs and siRNAs. Cell 136:4642–55
    [Google Scholar]
  16. 16.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:6669806–11
    [Google Scholar]
  17. 17.
    Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR et al. 2008. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455:72171193–97
    [Google Scholar]
  18. 18.
    Wianny F, Zernicka-Goetz M. 2000. Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol. 2:270–75
    [Google Scholar]
  19. 19.
    Zhou R, Rana TM. 2013. RNA-based mechanisms regulating host–virus interactions. Immunol. Rev. 253:97–111
    [Google Scholar]
  20. 20.
    Ha M, Kim VN. 2014. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15:8509–24
    [Google Scholar]
  21. 21.
    Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD. 2003. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:2199–208
    [Google Scholar]
  22. 22.
    Friedman RC, Farh KK-H, Burge CB, Bartel DP. 2009. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19:92–105
    [Google Scholar]
  23. 23.
    Han T-S, Hur K, Cho H-S, Ban HS. 2020. Epigenetic associations between lncRNA/circRNA and miRNA in hepatocellular carcinoma. Cancers 12:92622
    [Google Scholar]
  24. 24.
    Ebert MS, Sharp PA. 2012. Roles for MicroRNAs in conferring robustness to biological processes. Cell 149:3515–24
    [Google Scholar]
  25. 25.
    Weber F, Kochs G, Haller O. 2004. Inverse interference: how viruses fight the interferon system. Viral Immunol. 17:4498–515
    [Google Scholar]
  26. 26.
    Carl JW, Trgovcich J, Hannenhalli S. 2013. Widespread evidence of viral miRNAs targeting host pathways. BMC Bioinform. 14:Suppl. 2S3
    [Google Scholar]
  27. 27.
    Mishra R, Kumar A, Ingle H, Kumar H. 2020. The interplay between viral-derived miRNAs and host immunity during infection. Front. Immunol. 10:3079
    [Google Scholar]
  28. 28.
    Grundhoff A, Sullivan CS. 2011. Virus-encoded microRNAs. Virology 411:2325–43
    [Google Scholar]
  29. 29.
    Farrell PJ. 2018. Epstein–Barr virus and cancer. Annu. Rev. Pathol. 14:29–53
    [Google Scholar]
  30. 30.
    Draborg AH, Duus K, Houen G. 2012. Epstein-Barr virus and systemic lupus erythematosus. Clin. Dev. Immunol. 2012:370516
    [Google Scholar]
  31. 31.
    Barcelos F, Martins C, Monteiro R, Cardigos J, Prussiani T et al. 2021. Association between EBV serological patterns and lymphocytic profile of SjS patients support a virally triggered autoimmune epithelitis. Sci. Rep. 11:4082
    [Google Scholar]
  32. 32.
    Balandraud N, Roudier J. 2018. Epstein-Barr virus and rheumatoid arthritis. Joint Bone Spine 85:2165–70
    [Google Scholar]
  33. 33.
    Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ et al. 2022. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375:6578296–301
    [Google Scholar]
  34. 34.
    Murata T, Tsurumi T. 2014. Switching of EBV cycles between latent and lytic states: regulation of EBV reactivation. Rev. Med. Virol. 24:3142–53
    [Google Scholar]
  35. 35.
    Sausen D, Bhutta M, Gallo E, Dahari H, Borenstein R. 2021. Stress-induced Epstein-Barr virus reactivation. Biomolecules 11:91380
    [Google Scholar]
  36. 36.
    Pfeffer S, Zavolan M, Grässer FA, Chien M, Russo JJ et al. 2004. Identification of virus-encoded microRNAs. Science 304:5671734–36
    [Google Scholar]
  37. 37.
    Grundhoff A, Sullivan CS, Ganem D. 2006. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12:5733–50
    [Google Scholar]
  38. 38.
    Klinke O, Feederle R, Delecluse H-J. 2014. Genetics of Epstein–Barr virus microRNAs. Semin. Cancer Biol. 26:52–59
    [Google Scholar]
  39. 39.
    Wang M, Gu B, Chen X, Wang Y, Li P, Wang K. 2019. The function and therapeutic potential of Epstein-Barr virus-encoded microRNAs in cancer. Mol. Ther. Nucleic Acids 17:657–68
    [Google Scholar]
  40. 40.
    Anand L, Rodriguez Lopez CM. 2022. ChromoMap: an R package for interactive visualization of multi-omics data and annotation of chromosomes. BMC Bioinform. 23:33
    [Google Scholar]
  41. 41.
    Dölken L, Malterer G, Erhard F, Kothe S, Friedel CC et al. 2010. Systematic analysis of viral and cellular microRNA targets in cells latently infected with human γ-herpesviruses by RISC immunoprecipitation assay. Cell Host Microbe 7:4324–34
    [Google Scholar]
  42. 42.
    Cai L-M, Lyu X-M, Luo W-R, Cui X-F, Ye Y-F et al. 2015. EBV-miR-BART7-3p promotes the EMT and metastasis of nasopharyngeal carcinoma cells by suppressing the tumor suppressor PTEN. Oncogene 34:172156–66
    [Google Scholar]
  43. 43.
    Cai L, Li J, Zhang X, Lu Y, Wang J et al. 2015. Gold nano-particles (AuNPs) carrying anti-EBV-miR-BART7-3p inhibit growth of EBV-positive nasopharyngeal carcinoma. Oncotarget 6:107838–50
    [Google Scholar]
  44. 44.
    Iizasa H, Wulff B-E, Alla NR, Maragkakis M, Megraw M et al. 2010. Editing of Epstein-Barr virus-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency. J. Biol. Chem. 285:4333358–70
    [Google Scholar]
  45. 45.
    Lu Y, Qin Z, Wang J, Zheng X, Lu J et al. 2017. Epstein-Barr virus miR-BART6-3p inhibits the RIG-I pathway. J. Innate Immun. 9:6574–86
    [Google Scholar]
  46. 46.
    Barth S, Pfuhl T, Mamiani A, Ehses C, Roemer K et al. 2007. Epstein–Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res. 36:2666–75
    [Google Scholar]
  47. 47.
    Lo AKF, To KF, Lo KW, Lung RWM, Hui JWY et al. 2007. Modulation of LMP1 protein expression by EBV-encoded microRNAs. PNAS 104:4116164–69
    [Google Scholar]
  48. 48.
    Nahand JS, Mahjoubin-Tehran M, Moghoofei M, Pourhanifeh MH, Mirzaei HR et al. 2020. Exosomal miRNAs: novel players in viral infection. Epigenomics 12:4353–70
    [Google Scholar]
  49. 49.
    Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MAJ, Hopmans ES et al. 2010. Functional delivery of viral miRNAs via exosomes. PNAS 107:146328–33
    [Google Scholar]
  50. 50.
    Haneklaus M, Gerlic M, Kurowska-Stolarska M, Rainey A-A, Pich D et al. 2012. Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1β production. J. Immunol. 189:83795–99
    [Google Scholar]
  51. 51.
    Yogev O, Henderson S, Hayes MJ, Marelli SS, Ofir-Birin Y et al. 2017. Herpesviruses shape tumour microenvironment through exosomal transfer of viral microRNAs. PLOS Pathog. 13:8e1006524
    [Google Scholar]
  52. 52.
    Swaminathan G, Martin-Garcia J, Navas-Martin S. 2013. RNA viruses and microRNAs: challenging discoveries for the 21st century. Physiol. Genom. 45:221035–48
    [Google Scholar]
  53. 53.
    Nanbo A, Furuyama W, Lin Z. 2021. RNA virus-encoded miRNAs: current insights and future challenges. Front. Microbiol. 12:679210
    [Google Scholar]
  54. 54.
    Nisole S, Saïb A. 2004. Early steps of retrovirus replicative cycle. Retrovirology 1:9
    [Google Scholar]
  55. 55.
    Bennasser Y, Le S-Y, Yeung M, Jeang K-T. 2004. HIV-1 encoded candidate micro-RNAs and their cellular targets. Retrovirology 1:43
    [Google Scholar]
  56. 56.
    Omoto S, Ito M, Tsutsumi Y, Ichikawa Y, Okuyama H et al. 2004. HIV-1 nef suppression by virally encoded microRNA. Retrovirology 1:44
    [Google Scholar]
  57. 57.
    Bennasser Y, Le S-Y, Benkirane M, Jeang K-T. 2005. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 22:5607–19
    [Google Scholar]
  58. 58.
    Schopman NCT, Willemsen M, Liu YP, Bradley T, van Kampen A et al. 2012. Deep sequencing of virus-infected cells reveals HIV-encoded small RNAs. Nucleic Acids Res. 40:414–27
    [Google Scholar]
  59. 59.
    Lefebvre G, Desfarges S, Uyttebroeck F, Muñoz M, Beerenwinkel N et al. 2011. Analysis of HIV-1 expression level and sense of transcription by high-throughput sequencing of the infected cell. J. Virol. 85:136205–11
    [Google Scholar]
  60. 60.
    Dolja VV, Koonin EV. 2018. Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res. 244:36–52
    [Google Scholar]
  61. 61.
    Riley KJ-L, Rabinowitz GS, Steitz JA. 2010. Comprehensive analysis of rhesus lymphocryptovirus microRNA expression. J. Virol. 84:105148–57
    [Google Scholar]
  62. 62.
    Rosa MD, Gottlieb E, Lerner MR, Steitz JA. 1981. Striking similarities are exhibited by two small Epstein-Barr virus-encoded ribonucleic acids and the adenovirus-associated ribonucleic acids VAI and VAII. Mol. Cell. Biol. 1:785–96
    [Google Scholar]
  63. 63.
    Lee N, Pimienta G, Steitz JA. 2012. AUF1/hnRNP D is a novel protein partner of the EBER1 noncoding RNA of Epstein-Barr virus. RNA 18:112073–82
    [Google Scholar]
  64. 64.
    Schwemmle M, Clemens MJ, Hilse K, Pfeifer K, Tröster H et al. 1992. Localization of Epstein-Barr virus-encoded RNAs EBER-1 and EBER-2 in interphase and mitotic Burkitt lymphoma cells. PNAS 89:2110292–96
    [Google Scholar]
  65. 65.
    Sharp TV, Schwemmle M, Jeffrey I, Laing K, Mellor H et al. 1993. Comparative analysis of the regulation of the interferoninducible protein kinase PKR by Epstein-Barr virus RNAs EBER-1 and EBER-2 and adenovirus VA, RNA. Nucleic Acids Res. 21:194483–90
    [Google Scholar]
  66. 66.
    Samanta M, Iwakiri D, Kanda T, Imaizumi T, Takada K. 2006. EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN. EMBO J. 25:184207–14
    [Google Scholar]
  67. 67.
    Baglio SR, van Eijndhoven MAJ, Koppers-Lalic D, Berenguer J, Lougheed SM et al. 2016. Sensing of latent EBV infection through exosomal transfer of 5′pppRNA. PNAS 113:5E587–96
    [Google Scholar]
  68. 68.
    Ahmed W, Tariq S, Khan G. 2018. Tracking EBV-encoded RNAs (EBERs) from the nucleus to the excreted exosomes of B-lymphocytes. Sci. Rep. 8:15438
    [Google Scholar]
  69. 69.
    Iwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T et al. 2009. Epstein-Barr virus (EBV)–encoded small RNA is released from EBV-infected cells and activates signaling from toll-like receptor 3. J. Exp. Med. 206:102091–99
    [Google Scholar]
  70. 70.
    Lerner MR, Andrews NC, Miller G, Steitz JA. 1981. Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. PNAS 78:2805–9
    [Google Scholar]
  71. 71.
    Fournier B, Boutboul D, Bruneau J, Miot C, Boulanger C et al. 2020. Rapid identification and characterization of infected cells in blood during chronic active Epstein-Barr virus infection. J. Exp. Med. 217:11e20192262
    [Google Scholar]
  72. 72.
    Nachmani D, Lankry D, Wolf DG, Mandelboim O. 2010. The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination. Nat. Immunol. 11:9806–13
    [Google Scholar]
  73. 73.
    Stern-Ginossar N, Elefant N, Zimmermann A, Wolf DG, Biton M et al. 2015. Host immune system gene targeting by a viral miRNA. Science 317:5836376–81
    [Google Scholar]
  74. 74.
    Bauman Y, Nachmani D, Vitenshtein A, Tsukerman P, Drayman N et al. 2011. An identical miRNA of the human JC and BK polyoma viruses targets the stress-induced ligand ULBP3 to escape immune elimination. Cell Host Microbe 9:293–102
    [Google Scholar]
  75. 75.
    Callegari S, Gastaldello S, Faridani OR, Masucci MG. 2014. Epstein-Barr virus encoded microRNAs target SUMO-regulated cellular functions. FEBS J. 281:214935–50
    [Google Scholar]
  76. 76.
    Xia T, O'Hara A, Araujo I, Barreto J, Carvalho E et al. 2008. EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1–3. Cancer Res. 68:51436–42
    [Google Scholar]
  77. 77.
    Skinner CM, Ivanov NS, Barr SA, Chen Y, Skalsky RL. 2017. An Epstein-Barr virus microRNA blocks interleukin-1 (IL-1) signaling by targeting IL-1 receptor 1. J. Virol. 91:21e00530–17
    [Google Scholar]
  78. 78.
    Hooykaas MJG, van Gent M, Soppe JA, Kruse E, Boer IGJ et al. 2017. EBV microRNA BART16 suppresses type I IFN signaling. J. Immunol. 198:104062–73
    [Google Scholar]
  79. 79.
    Zhang Y-M, Yu Y, Zhao H-P. 2017. EBV-BART-6-3p and cellular microRNA-197 compromise the immune defense of host cells in EBV-positive Burkitt lymphoma. Mol. Med. Rep. 15:41877–83
    [Google Scholar]
  80. 80.
    Qin Z, Kearney P, Plaisance K, Parsons CH. 2010. Pivotal advance: Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded microRNA specifically induce IL-6 and IL-10 secretion by macrophages and monocytes. J. Leukocyte Biol. 87:25–34
    [Google Scholar]
  81. 81.
    Yang L, Aozasa K, Oshimi K, Takada K. 2004. Epstein-Barr virus (EBV)-encoded RNA promotes growth of EBV-infected T cells through interleukin-9 induction. Cancer Res 64:155332–37
    [Google Scholar]
  82. 82.
    Tastsoglou S, Miliotis M, Kavakiotis I, Alexiou A, Gkotsi EC et al. 2021. PlasmiR: a manual collection of circulating microRNAs of prognostic and diagnostic value. Cancers 13:153680
    [Google Scholar]
  83. 83.
    Huang Z, Shi J, Gao Y, Cui C, Zhang S et al. 2019. HMDD v3.0: a database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 47:D1D1013–17
    [Google Scholar]
  84. 84.
    Loureiro D, Tout I, Narguet S, Benazzouz SM, Mansouri A, Asselah T. 2020. miRNAs as potential biomarkers for viral hepatitis B and C. Viruses 12:121440
    [Google Scholar]
  85. 85.
    Madè A, Greco S, Vausort M, Miliotis M, Schordan E et al. 2022. Association of miR-144 levels in the peripheral blood with COVID-19 severity and mortality. Sci. Rep. 12:20048
    [Google Scholar]
  86. 86.
    Kincaid RP, Sullivan CS. 2012. Virus-encoded microRNAs: an overview and a look to the future. PLOS Pathog. 8:12e1003018
    [Google Scholar]
  87. 87.
    Lindow M, Kauppinen S. 2012. Discovering the first microRNA-targeted drug. J. Cell Biol. 199:3407–12
    [Google Scholar]
  88. 88.
    Gebert LFR, Rebhan MAE, Crivelli SEM, Denzler R, Stoffel M, Hall J. 2014. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res. 42:609–21
    [Google Scholar]
  89. 89.
    Janssen HLA, Zeuzem S. 2013. Treatment of HCV infection by targeting microRNA. New Engl. J. Med. 368:181685–94
    [Google Scholar]
  90. 90.
    van der Ree MH, de Vree JM, Stelma F, Willemse S, van der Valk M et al. 2017. Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1B, double-blind, randomised controlled trial. Lancet 389:10070709–17
    [Google Scholar]
  91. 91.
    Morais P, Adachi H, Yu Y-T. 2021. The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Front. Cell Dev. Biol. 9:789427
    [Google Scholar]
  92. 92.
    Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H et al. 2008. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16:111833–40
    [Google Scholar]
  93. 93.
    Anderson BR, Muramatsu H, Nallagatla SR, Bevilacqua PC, Sansing LH et al. 2010. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 38:175884–92
    [Google Scholar]
  94. 94.
    Boccaletto P, Stefaniak F, Ray A, Cappannini A, Mukherjee S et al. 2022. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 50:D1D231–35
    [Google Scholar]
  95. 95.
    Garbo S, Maione R, Tripodi M, Battistelli C. 2022. Next RNA therapeutics: the mine of non-coding. Int. J. Mol. Sci. 23:137471
    [Google Scholar]
  96. 96.
    Althurwi HN, Alharthy KM, Albaqami FF, Altharawi A, Javed MR et al. 2022. mRNA-based vaccine designing against Epstein-Barr virus to induce an immune response using immunoinformatic and molecular modelling approaches. Int. J. Environ. Res. Public Health 19:2013054
    [Google Scholar]
  97. 97.
    Huo H, Hu G. 2019. CRISPR/Cas9-mediated LMP1 knockout inhibits Epstein-Barr virus infection and nasopharyngeal carcinoma cell growth. Infect. Agents Cancer 14:30
    [Google Scholar]
  98. 98.
    Akidil E, Albanese M, Buschle A, Ruhle A, Pich D et al. 2021. Highly efficient CRISPR-Cas9-mediated gene knockout in primary human B cells for functional genetic studies of Epstein-Barr virus infection. PLOS Pathog. 17:4e1009117
    [Google Scholar]
  99. 99.
    Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D. 2005. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435:7042682–86
    [Google Scholar]
  100. 100.
    Castelli M, Sekanina L, Zhang M, Cagnoni S, García-Sánchez P, eds. 2018. Genetic Programming: Proceedings of the 21st European Conference (EuroGP 2018) Cham, Switz.: Springer Int.
  101. 101.
    Glazov EA, Horwood PF, Assavalapsakul W, Kongsuwan K, Mitchell RW et al. 2010. Characterization of microRNAs encoded by the bovine herpesvirus 1 genome. J. Gen. Virol. 91:32–41
    [Google Scholar]
  102. 102.
    Besecker MI, Harden ME, Li G, Wang X-J, Griffiths A. 2009. Discovery of herpes B virus-encoded microRNAs. J. Virol. 83:73413–16
    [Google Scholar]
  103. 103.
    Cui C, Griffiths A, Li G, Silva LM, Kramer MF et al. 2006. Prediction and identification of herpes simplex virus 1-encoded microRNAs. J. Virol. 80:115499–508
    [Google Scholar]
  104. 104.
    Timoneda O, Núñez-Hernández F, Balcells I, Muñoz M, Castelló A et al. 2014. The role of viral and host microRNAs in the Aujeszky's disease virus during the infection process. PLOS ONE 9:e86965
    [Google Scholar]
  105. 105.
    Jurak I, Kramer MF, Mellor JC, van Lint AL, Roth FP et al. 2010. Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2. J. Virol. 84:94659–72
    [Google Scholar]
  106. 106.
    Waidner LA, Morgan RW, Anderson AS, Bernberg EL, Kamboj S et al. 2009. MicroRNAs of Gallid and Meleagrid herpesviruses show generally conserved genomic locations and are virus-specific. Virology 388:128–36
    [Google Scholar]
  107. 107.
    Yao Y, Smith LP, Petherbridge L, Watson M, Nair V. 2012. Novel microRNAs encoded by duck enteritis virus. J. Gen. Virol. 93:71530–36
    [Google Scholar]
  108. 108.
    Kincaid RP, Burke JM, Sullivan CS. 2012. RNA virus microRNA that mimics a B-cell oncomiR. PNAS 109:83077–82
    [Google Scholar]
  109. 109.
    Rosewick N, Momont M, Durkin K, Takeda H, Caiment F et al. 2013. Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma. PNAS 110:62306–11
    [Google Scholar]
  110. 110.
    Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C et al. 2005. Identification of microRNAs of the herpesvirus family. Nat. Methods 2:4269–76
    [Google Scholar]
  111. 111.
    Rachamadugu R, Lee JY, Wooming A, Kong B-W. 2009. Identification and expression analysis of infectious laryngotracheitis virus encoding microRNAs. Virus Genes 39:3301–8
    [Google Scholar]
  112. 112.
    Dölken L, Perot J, Cognat V, Alioua A, John M et al. 2007. Mouse cytomegalovirus microRNAs dominate the cellular small RNA profile during lytic infection and show features of posttranscriptional regulation. J. Virol. 81:2413771–82
    [Google Scholar]
  113. 113.
    Yao Y, Zhao Y, Xu H, Smith LP, Lawrie CH et al. 2007. Marek's disease virus type 2 (MDV-2)-encoded microRNAs show no sequence conservation with those encoded by MDV-1. J. Virol. 81:137164–70
    [Google Scholar]
  114. 114.
    Reese TA, Xia J, Johnson LS, Zhou X, Zhang W, Virgin HW. 2010. Identification of novel microRNA-like molecules generated from herpesvirus and host tRNA transcripts. J. Virol. 84:1910344–53
    [Google Scholar]
  115. 115.
    Zhu JY, Strehle M, Frohn A, Kremmer E, Höfig KP et al. 2010. Identification and analysis of expression of novel microRNAs of murine gammaherpesvirus 68. J. Virol. 84:1910266–75
    [Google Scholar]
  116. 116.
    Wu Y-Q, Chen D-J, He H-B, Chen D-S, Chen L-L et al. 2012. Pseudorabies virus infected porcine epithelial cell line generates a diverse set of host microRNAs and a special cluster of viral microRNAs. PLOS ONE 7:e30988
    [Google Scholar]
  117. 117.
    Schäfer A, Cai X, Bilello JP, Desrosiers RC, Cullen BR. 2007. Cloning and analysis of microRNAs encoded by the primate γ-herpesvirus rhesus monkey rhadinovirus. Virology 364:21–27
    [Google Scholar]
  118. 118.
    Kuhn DE, Martin MM, Feldman DS, Terry AV, Nuovo GJ, Elton TS. 2008. Experimental validation of miRNA targets. Methods 44:47–54
    [Google Scholar]
  119. 119.
    Thomson DW, Bracken CP, Goodall GJ. 2011. Experimental strategies for microRNA target identification. Nucleic Acids Res. 39:166845–53
    [Google Scholar]
  120. 120.
    Hafner M, Katsantoni M, Köster T, Marks J, Mukherjee J et al. 2021. CLIP and complementary methods. Nat. Rev. Methods Primers 1:20
    [Google Scholar]
  121. 121.
    Skalsky RL, Kang D, Linnstaedt SD, Cullen BR. 2014. Evolutionary conservation of primate lymphocryptovirus microRNA targets. J. Virol. 88:31617–35
    [Google Scholar]
  122. 122.
    Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. 2008. Widespread changes in protein synthesis induced by microRNAs. Nature 455:720958–63
    [Google Scholar]
  123. 123.
    Skalsky RL, Corcoran DL, Gottwein E, Frank CL, Kang D et al. 2012. The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLOS Pathog. 8:e1002484
    [Google Scholar]
  124. 124.
    Zhao W, Li Q, Sun M, Xiao Y, Cui F. 2022. Interaction between endogenous microRNAs and virus-derived small RNAs controls viral replication in insect vectors. PLOS Pathog. 18:7e1010709
    [Google Scholar]
  125. 125.
    Haecker I, Gay LA, Yang Y, Hu J, Morse AM et al. 2012. Ago HITS-CLIP expands understanding of Kaposi's sarcoma-associated herpesvirus miRNA function in primary effusion lymphomas. PLOS Pathog. 8:8e1002884
    [Google Scholar]
  126. 126.
    Riley KJ, Rabinowitz GS, Yario TA, Luna JM, Darnell RB, Steitz JA. 2012. EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J. 31:92207–21
    [Google Scholar]
  127. 127.
    Paraskevopoulou MD, Karagkouni D, Vlachos IS, Tastsoglou S, Hatzigeorgiou AG. 2018. microCLIP super learning framework uncovers functional transcriptome-wide miRNA interactions. Nat. Commun. 9:3601
    [Google Scholar]
  128. 128.
    Khorshid M, Hausser J, Zavolan M, van Nimwegen E. 2013. A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat. Methods 10:3253–55
    [Google Scholar]
  129. 129.
    Erhard F, Dölken L, Jaskiewicz L, Zimmer R. 2013. PARma: identification of microRNA target sites in AGO-PAR-CLIP data. Genome Biol. 14:7R79
    [Google Scholar]
  130. 130.
    Helwak A, Kudla G, Dudnakova T, Tollervey D. 2013. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:3654–65
    [Google Scholar]
  131. 131.
    Moore MJ, Scheel TKH, Luna JM, Park CY, Fak JJ et al. 2015. miRNA-target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity. Nat. Commun. 6:8864
    [Google Scholar]
  132. 132.
    Gay LA, Sethuraman S, Thomas M, Turner PC, Renne R. 2018. Modified cross-linking, ligation, and sequencing of hybrids (qCLASH) identifies Kaposi's sarcoma-associated herpesvirus microRNA targets in endothelial cells. J. Virol. 92:8e02138–17
    [Google Scholar]
  133. 133.
    Ungerleider N, Bullard W, Kara M, Wang X, Roberts C et al. 2021. EBV miRNAs are potent effectors of tumor cell transcriptome remodeling in promoting immune escape. PLOS Pathog. 17:5e1009217
    [Google Scholar]
  134. 134.
    McGeary SE, Lin KS, Shi CY, Pham TM, Bisaria N et al. 2019. The biochemical basis of microRNA targeting efficacy. Science 366:6472eaav1741
    [Google Scholar]
  135. 135.
    Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T et al. 2013. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res. 41:W1W169–73
    [Google Scholar]
  136. 136.
    Gottwein E, Cullen BR. 2008. Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 3:6375–87
    [Google Scholar]
  137. 137.
    Georgakilas GK, Grioni A, Liakos KG, Chalupova E, Plessas FC, Alexiou P. 2020. Multi-branch convolutional neural network for identification of small non-coding RNA genomic loci. Sci. Rep. 10:9486
    [Google Scholar]
  138. 138.
    Chalupová E, Vaculík O, Poláček J, Jozefov F, Majtner T, Alexiou P 2022. ENNGene: an easy neural network model building tool for genomics. BMC Genom. 23:248
    [Google Scholar]
  139. 139.
    Martinek V, Cechak D, Gresova K, Alexiou P, Simecek P. 2022. Fine-tuning transformers for genomic tasks. bioRxiv 2022.02.07.479412. https://doi.org/10.1101/2022.02.07.479412
  140. 140.
    Ganin Y, Lempitsky V. 2015. Unsupervised domain adaptation by backpropagation. PMLR 37:1180–89
    [Google Scholar]
  141. 141.
    Kozomara A, Birgaoanu M, Griffiths-Jones S. 2019. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47:D1D155–62
    [Google Scholar]
  142. 142.
    Fromm B, Høye E, Domanska D, Zhong X, Aparicio-Puerta E et al. 2022. MirGeneDB 2.1: toward a complete sampling of all major animal phyla. Nucleic Acids Res. 50:D1D204–10
    [Google Scholar]
  143. 143.
    Qureshi A, Thakur N, Monga I, Thakur A, Kumar M. 2014. VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets. Database 2014:bau103
    [Google Scholar]
  144. 144.
    Thakur A, Kumar M. 2022. AntiVIRmiR: a repository of host antiviral miRNAs and their expression along with experimentally validated viral miRNAs and their targets. Front. Genet. 13:971852
    [Google Scholar]
  145. 145.
    Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, Vlachos IS, Tastsoglou S et al. 2018. DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions. Nucleic Acids Res. 46:D1D239–45
    [Google Scholar]
  146. 146.
    Karagkouni D, Paraskevopoulou MD, Tastsoglou S, Skoufos G, Karavangeli A et al. 2019. DIANA-LncBase v3: indexing experimentally supported miRNA targets on non-coding transcripts. Nucleic Acids Res. 48:D101–10
    [Google Scholar]
  147. 147.
    Juzenas S, Lindqvist CM, Ito G, Dolshanskaya Y, Halfvarson J et al. 2020. Depletion of erythropoietic miR-486-5p and miR-451a improves detectability of rare microRNAs in peripheral blood-derived small RNA sequencing libraries. NAR Genom. Bioinform. 2:lqaa008
    [Google Scholar]
  148. 148.
    Moelling K, Broecker F, Russo G, Sunagawa S. 2017. RNase H as gene modifier, driver of evolution and antiviral defense. Front. Microbiol. 8:1745
    [Google Scholar]
  149. 149.
    Decker CJ, Steiner HR, Hoon-Hanks LL, Morrison JH, Haist KC et al. 2019. dsRNA-seq: identification of viral infection by purifying and sequencing dsRNA. Viruses 11:10943
    [Google Scholar]
  150. 150.
    Izumi T, Morioka Y, Urayama S, Motooka D, Tamura T et al. 2021. dsRNA sequencing for RNA virus surveillance using human clinical samples. Viruses 13:71310
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-122220-111429
Loading
/content/journals/10.1146/annurev-biodatasci-122220-111429
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error