1932

Abstract

Rapid diagnostic tests (point-of-care devices) are critical components of informed patient care and public health monitoring (surveillance applications). We propose that among the many rapid diagnostics platforms that have been tested or are in development, lateral flow immunoassays and synthetic biology–based diagnostics (including CRISPR-based diagnostics) represent the best overall options given their ease of use, scalability for manufacturing, sensitivity, and specificity. This review describes the identification of lateral flow immunoassay monoclonal antibody pairs that detect and distinguish between closely related pathogens and that are used in combination with functionalized multicolored nanoparticles and computational methods to deconvolute data. We also highlight the promise of synthetic biology–based diagnostic tests, which use synthetic genetic circuits that activate upon recognition of a pathogen-associated nucleic acid sequence, and discuss how the combined or parallel use of lateral flow immunoassays and synthetic biology tools may represent the future of scalable rapid diagnostics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-060418-052240
2020-06-04
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/22/1/annurev-bioeng-060418-052240.html?itemId=/content/journals/10.1146/annurev-bioeng-060418-052240&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Banerjee R, Jaiswal A. 2018. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst 143:1970–96
    [Google Scholar]
  2. 2. 
    Wild D, ed. 2013. The Immunoassay Handbook: Theory and Applications of Ligand Binding, ELISA and Related Techniques Oxford: Elsevier, 4th ed..
    [Google Scholar]
  3. 3. 
    Leuvering JH, Thal PJ, van der Waart M, Schuurs AH 1980. Sol particle immunoassay (SPIA). J. Immunoass. 1:77–91
    [Google Scholar]
  4. 4. 
    Isaacs FJ, Dwyer DJ, Ding CM, Pervouchine DD, Cantor CR, Collins JJ 2004. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22:841–47
    [Google Scholar]
  5. 5. 
    Cameron DE, Bashor CJ, Collins JJ 2014. A brief history of synthetic biology. Nat. Rev. Microbiol. 12:381–90
    [Google Scholar]
  6. 6. 
    Elowitz MB, Leibler S. 2000. A synthetic oscillatory network of transcriptional regulators. Nature 403:335–38
    [Google Scholar]
  7. 7. 
    Gardner TS, Cantor CR, Collins JJ 2000. Construction of a genetic toggle switch in Escherichia coli. . Nature 403:339–42
    [Google Scholar]
  8. 8. 
    Slomovic S, Pardee K, Collins JJ 2015. Synthetic biology devices for in vitro and in vivo diagnostics. PNAS 112:14429–35
    [Google Scholar]
  9. 9. 
    Glushakova LG, Alto BW, Kim MS, Hutter D, Bradley A et al. 2019. Multiplexed kit based on Luminex technology and achievements in synthetic biology discriminates Zika, chikungunya, and dengue viruses in mosquitoes. BMC Infect. Dis. 19:418
    [Google Scholar]
  10. 10. 
    McGregor AC, Moore DA. 2015. Infectious causes of fever of unknown origin. Clin. Med. 15:285–87
    [Google Scholar]
  11. 11. 
    Bosch I, de Puig H, Hiley M, Carre-Camps M, Perdomo-Celis F et al. 2017. Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum. Sci. Transl. Med. 9:eaan1589
    [Google Scholar]
  12. 12. 
    de Puig H, Federici S, Baxamusa SH, Bergese P, Hamad-Schifferli K 2011. Quantifying the nanomachinery of the nanoparticle–biomolecule interface. Small 7:2477–84
    [Google Scholar]
  13. 13. 
    de Puig H, Tam JO, Yen C-W, Gehrke L, Hamad-Schifferli K 2015. The extinction coefficient of gold nanostars. J. Phys. Chem. C 119:17408–15
    [Google Scholar]
  14. 14. 
    Tam JO, de Puig H, Yen C-W, Bosch I, Gómez-Márquez J et al. 2016. A comparison of nanoparticle–antibody conjugation strategies in sandwich immunoassays. J. Immunoass. Immunochem. 38:355–77
    [Google Scholar]
  15. 15. 
    Yen C-W, de Puig H, Tam JO, Gómez-Márquez J, Bosch I et al. 2015. Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses. Lab Chip 15:1638–41
    [Google Scholar]
  16. 16. 
    Homan KA, Souza M, Truby R, Luke GP, Green C et al. 2012. Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging. ACS Nano 6:641–50
    [Google Scholar]
  17. 17. 
    de Puig H, Bosch I, Gehrke L, Hamad-Schifferli K 2017. Challenges of the nano–bio interface in lateral flow and dipstick immunoassays. Trends Biotechnol 35:1169–80
    [Google Scholar]
  18. 18. 
    Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H 1986. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51:263–73
    [Google Scholar]
  19. 19. 
    Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT et al. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–54
    [Google Scholar]
  20. 20. 
    Zarei M. 2017. Advances in point-of-care technologies for molecular diagnostics. Biosens. Bioelectron. 98:494–506
    [Google Scholar]
  21. 21. 
    Loonen AJ, Schuurman R, van den Brule AJ 2012. Highlights from the 7th European Meeting on Molecular Diagnostics. Expert Rev. Mol. Diagn. 12:17–19
    [Google Scholar]
  22. 22. 
    Bar T, Kubista M, Tichopad A 2012. Validation of kinetics similarity in qPCR. Nucleic Acids Res 40:1395–406
    [Google Scholar]
  23. 23. 
    Roper MG, Easley CJ, Landers JP 2005. Advances in polymerase chain reaction on microfluidic chips. Anal. Chem. 77:3887–93
    [Google Scholar]
  24. 24. 
    Mayboroda O, Katakis I, O'Sullivan CK 2018. Multiplexed isothermal nucleic acid amplification. Anal. Biochem. 545:20–30
    [Google Scholar]
  25. 25. 
    Li J, Macdonald J. 2015. Advances in isothermal amplification: novel strategies inspired by biological processes. Biosens. Bioelectron. 64:196–211
    [Google Scholar]
  26. 26. 
    Giuffrida MC, Spoto G. 2017. Integration of isothermal amplification methods in microfluidic devices: recent advances. Biosens. Bioelectron. 90:174–86
    [Google Scholar]
  27. 27. 
    Deiman B, van Aarle P, Sillekens P 2002. Characteristics and applications of nucleic acid sequence–based amplification (NASBA). Mol. Biotechnol. 20:163–79
    [Google Scholar]
  28. 28. 
    Pardee K, Green AA, Ferrante T, Cameron DE, DaleyKeyser A et al. 2014. Paper-based synthetic gene networks. Cell 159:940–54
    [Google Scholar]
  29. 29. 
    Pardee K, Green AA, Takahashi MK, Braff D, Lambert G et al. 2016. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165:1255–66
    [Google Scholar]
  30. 30. 
    Green AA, Silver PA, Collins JJ, Yin P 2014. Toehold switches: de-novo-designed regulators of gene expression. Cell 159:925–39
    [Google Scholar]
  31. 31. 
    Takahashi MK, Tan X, Dy AJ, Braff D, Akana RT et al. 2018. A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat. Commun. 9:3347
    [Google Scholar]
  32. 32. 
    Gu W, Crawford ED, O'Donovan BD, Wilson MR, Chow ED et al. 2016. Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. Genome Biol 17:41
    [Google Scholar]
  33. 33. 
    Muller V, Rajer F, Frykholm K, Nyberg LK, Quaderi S et al. 2016. Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping. Sci. Rep. 6:37938
    [Google Scholar]
  34. 34. 
    Zhang BB, Wang Q, Xu XH, Xia Q, Long FF et al. 2018. Detection of target DNA with a novel Cas9/sgRNAs-associated reverse PCR (CARP) technique. Anal. Bioanal. Chem. 410:2889–900
    [Google Scholar]
  35. 35. 
    Lee SH, Yu J, Hwang GH, Kim S, Kim HS et al. 2017. CUT-PCR: CRISPR-mediated, ultrasensitive detection of target DNA using PCR. Oncogene 36:6823–29
    [Google Scholar]
  36. 36. 
    Zhang BB, Xia Q, Wang Q, Xia XY, Wang JK 2018. Detecting and typing target DNA with a novel CRISPR-typing PCR (ctPCR) technique. Anal. Biochem. 561:37–46
    [Google Scholar]
  37. 37. 
    Wang Q, Zhang BB, Xu XH, Long FF, Wang JK 2018. CRISPR-typing PCR (ctPCR), a new Cas9-based DNA detection method. Sci. Rep. 8:14126
    [Google Scholar]
  38. 38. 
    Koo B, Kim DE, Kweon J, Jin CE, Kim SH et al. 2018. CRISPR/dCas9-mediated biosensor for detection of tick-borne diseases. Sens. Actuators B 273:316–21
    [Google Scholar]
  39. 39. 
    Hajian R, Balderston S, Tran T, deBoer T, Etienne J et al. 2019. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 3:427–37
    [Google Scholar]
  40. 40. 
    Guk K, Keem JO, Hwang SG, Kim H, Kang T et al. 2017. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex. Biosens. Bioelectron. 95:67–71
    [Google Scholar]
  41. 41. 
    Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ et al. 2017. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356:438–42
    [Google Scholar]
  42. 42. 
    Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F 2018. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360:439–44
    [Google Scholar]
  43. 43. 
    Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC et al. 2018. Field-deployable viral diagnostics using CRISPR-Cas13. Science 360:444–48
    [Google Scholar]
  44. 44. 
    Chen JS, Ma EB, Harrington LB, Da Costa M, Tian XR et al. 2018. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360:436–39
    [Google Scholar]
  45. 45. 
    Li SY, Cheng QX, Wang JM, Li XY, Zhang ZL et al. 2018. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov 4:20
    [Google Scholar]
  46. 46. 
    Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E et al. 2018. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362:839–42
    [Google Scholar]
  47. 47. 
    Bossuyt PMM, Reitsma JB, Linnet K, Moons KGM 2012. Beyond diagnostic accuracy: the clinical utility of diagnostic tests. Clin. Chem. 58:1636–43
    [Google Scholar]
  48. 48. 
    De Paoli P. 2005. Biobanking in microbiology: from sample collection to epidemiology, diagnosis and research. FEMS Microbiol. Rev. 29:897–910
    [Google Scholar]
  49. 49. 
    Dehnavieh R, Haghdoost A, Khosravi A, Hoseinabadi F, Rahimi H et al. 2019. The District Health Information System (DHIS2): a literature review and meta-synthesis of its strengths and operational challenges based on the experiences of 11 countries. Health Inf. Manag. J. 48:62–75
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-060418-052240
Loading
/content/journals/10.1146/annurev-bioeng-060418-052240
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error