Full text loading...
Abstract
Since its inception just over a half century ago, the field of biomaterials has seen a consistent growth with a steady introduction of new ideas and productive branches. This review describes where we have been, the state of the art today, and where we might be in 10 or 20 years. Herein, we highlight some of the latest advancements in biomaterials that aim to control biological responses and ultimately heal. This new generation of biomaterials includes surface modification of materials to overcome nonspecific protein adsorption in vivo, precision immobilization of signaling groups on surfaces, development of synthetic materials with controlled properties for drug and cell carriers, biologically inspired materials that mimic natural processes, and design of sophisticated three-dimensional (3-D) architectures to produce well-defined patterns for diagnostics, e.g., biological microelectromechanical systems (bioMEMs), and tissue engineering.