1932

Abstract

Stem cells are a powerful resource for many applications including regenerative medicine, patient-specific disease modeling, and toxicology screening. However, eliciting the desired behavior from stem cells, such as expansion in a naïve state or differentiation into a particular mature lineage, remains challenging. Drawing inspiration from the native stem cell niche, hydrogel platforms have been developed to regulate stem cell fate by controlling microenvironmental parameters including matrix mechanics, degradability, cell-adhesive ligand presentation, local microstructure, and cell–cell interactions. We survey techniques for modulating hydrogel properties and review the effects of microenvironmental parameters on maintaining stemness and controlling differentiation for a variety of stem cell types. Looking forward, we envision future hydrogel designs spanning a spectrum of complexity, ranging from simple, fully defined materials for industrial expansion of stem cells to complex, biomimetic systems for organotypic cell culture models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-062117-120954
2018-06-04
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/20/1/annurev-bioeng-062117-120954.html?itemId=/content/journals/10.1146/annurev-bioeng-062117-120954&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Trounson A, DeWitt ND 2016. Pluripotent stem cells progressing to the clinic. Nat. Rev. Mol. Cell. Biol. 17:194–200
    [Google Scholar]
  2. 2.  Goldman S 2005. Stem and progenitor cell–based therapy of the human central nervous system. Nat. Biotechnol. 23:862–71
    [Google Scholar]
  3. 3.  Scadden DT 2006. The stem-cell niche as an entity of action. Nature 441:1075–79
    [Google Scholar]
  4. 4.  Li L, Xie T 2005. Stem cell niche: structure and function. Annu. Rev. Cell Dev. Biol. 21:605–31
    [Google Scholar]
  5. 5.  Lee KY, Mooney DJ 2001. Hydrogels for tissue engineering. Chem. Rev. 101:1869–79
    [Google Scholar]
  6. 6.  Ratner BD, Bryant SJ 2004. Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6:41–75
    [Google Scholar]
  7. 7.  Barczyk M, Carracedo S, Gullberg D 2010. Integrins. Cell Tissue Res 339:269–80
    [Google Scholar]
  8. 8.  Iskratsch T, Wolfenson H, Sheetz MP 2014. Appreciating force and shape—the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell. Biol. 15:825–33
    [Google Scholar]
  9. 9.  Parsons JT, Horwitz AR, Schwartz MA 2010. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell. Biol. 11:633–43
    [Google Scholar]
  10. 10.  Fedorchak GR, Lammerding AKJ 2014. Cellular mechanosensing: getting to the nucleus of it all. Prog. Biophys. Mol. Biol. 115:76–92
    [Google Scholar]
  11. 11.  Gefen A, Margulies SS 2004. Are in vivo and in situ brain tissues mechanically similar?. J. Biomech. 37:1339–52
    [Google Scholar]
  12. 12.  Rho JY, Ashman RB, Turner CH 1993. Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J. Biomech. 26:111–19
    [Google Scholar]
  13. 13.  Miyake K, Satomi N, Sasaki S 2006. Elastic modulus of polystyrene film from near surface to bulk measured by nanoindentation using atomic force microscopy. Appl. Phys. Lett. 86:031925
    [Google Scholar]
  14. 14.  Engler AJ, Sen S, Sweeney HL, Discher DE 2006. Matrix elasticity directs stem cell lineage specification. Cell 126:677–89
    [Google Scholar]
  15. 15.  Saha K, Irwin EF, Kozhukh J, Schaffer DV, Healy KE 2007. Biomimetic interfacial interpenetrating polymer networks control neural stem cell behavior. J. Biomed. Mater. Res. A 81:240–49
    [Google Scholar]
  16. 16.  Lutolf MP, Hubbell JA 2003. Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 4:713–22
    [Google Scholar]
  17. 17.  Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA et al. 2010. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9:518–26
    [Google Scholar]
  18. 18.  Burdick JA, Chung C, Jia X, Randolph MA, Langer R 2005. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6:386–91
    [Google Scholar]
  19. 19.  Baker BM, Chen CS 2012. Deconstructing the third dimension—how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125:3015–24
    [Google Scholar]
  20. 20.  Levental I, Georges PC, Janmey PA 2007. Soft biological materials and their impact on cell function. Soft Matter 3:299–306
    [Google Scholar]
  21. 21.  Liu Z, Bilston L 2000. On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour. Biorheology 37:191–201
    [Google Scholar]
  22. 22.  Geerligs M, Peters GW, Ackermans PA, Oomens CW, Baaijens FP 2008. Linear viscoelastic behavior of subcutaneous adipose tissue. Biorheology 45:677–88
    [Google Scholar]
  23. 23.  Knapp DM, Barocas VH, Moon AG 1997. Rheology of reconstituted type I collagen gel in confined compression. J. Rheol. 41:971–93
    [Google Scholar]
  24. 24.  Janmey PA, Amis EJ, Ferry JD 1983. Rheology of fibrin clots. VI. Stress relaxation, creep, and differential dynamic modulus of fine clots in large shearing deformations. J. Rheol. 27:135–53
    [Google Scholar]
  25. 25.  Haugh MG, Heilshorn SC 2016. Integrating concepts of material mechanics, ligand chemistry, dimensionality and degradation to control differentiation of mesenchymal stem cells. Curr. Opin. Solid State Mater. Sci. 20:171–79
    [Google Scholar]
  26. 26.  Cameron AR, Frith JE, Cooper-White JJ 2011. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32:5979–93
    [Google Scholar]
  27. 27.  Chaudhuri O, Gu L, Darnell M, Klumpers D, Bencherif SA et al. 2015. Substrate stress relaxation regulates cell spreading. Nat. Commun. 6:6365
    [Google Scholar]
  28. 28.  Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA et al. 2016. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15:326–34
    [Google Scholar]
  29. 29.  McKinnon DD, Domaille DW, Cha JN, Anseth KS 2014. Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. Adv. Mater. 26:865–72
    [Google Scholar]
  30. 30.  Sawhney AS, Pathak CP, Hubbell JA 1993. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α-hydroxy acid) diacrylate macromers. Macromolecules 26:581–87
    [Google Scholar]
  31. 31.  Bryant SJ, Anseth KS 2001. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. 59:63–72
    [Google Scholar]
  32. 32.  Lutolf MP, Raeber GP, Zisch AH, Tirelli N, Hubbell JA 2003. Cell-responsive synthetic hydrogels. Adv. Mater. 15:888–92
    [Google Scholar]
  33. 33.  Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE et al. 2003. Synthetic matrix metalloproteinase–sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. PNAS 100:5413–18
    [Google Scholar]
  34. 34.  Kloxin AM, Kasko AM, Salinas CN, Anseth KS 2009. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324:59–63
    [Google Scholar]
  35. 35.  Ruoslahti E, Pierschbacher MD 1987. New perspectives in cell adhesion: RGD and integrins. Science 238:491–97
    [Google Scholar]
  36. 36.  Hersel U, Dahmen C, Kessler H 2003. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–415
    [Google Scholar]
  37. 37.  Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF 1997. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385:537–40
    [Google Scholar]
  38. 38.  Rahmany MB, Van Dyke M 2013. Biomimetic approaches to modulate cellular adhesion in biomaterials: a review. Acta Biomater 9:5431–37
    [Google Scholar]
  39. 39.  Silva G, Czeisler C, Niece K, Beniash E, Harrington D et al. 2004. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–55
    [Google Scholar]
  40. 40.  Mehta M, Madl CM, Lee S, Duda GN, Mooney DJ 2015. The collagen I mimetic peptide DGEA enhances an osteogenic phenotype in mesenchymal stem cells when presented from cell-encapsulating hydrogels. J. Biomed. Mater. Res. A 103:3516–25
    [Google Scholar]
  41. 41.  Jongpaiboonkit L, King WJ, Murphy WL 2009. Screening for 3D environments that support human mesenchymal stem cell viability using hydrogel arrays. Tissue Eng. A 15:343–53
    [Google Scholar]
  42. 42.  Lam J, Carmichael ST, Lowry WE, Segura T 2015. Hydrogel design of experiments methodology to optimize hydrogel for iPSC-NPC culture. Adv. Healthc. Mater. 4:534–39
    [Google Scholar]
  43. 43.  Maheshwari G, Brown G, Lauffenburger DA, Wells A, Griffith LG 2000. Cell adhesion and motility depend on nanoscale RGD clustering. J. Cell Sci. 113:1677–86
    [Google Scholar]
  44. 44.  Lee KY, Alsberg E, Hsiong SX, Comisar WA, Linderman JJ et al. 2004. Nanoscale adhesion ligand organization regulates osteoblast proliferation and differentiation. Nano Lett 4:1501–6
    [Google Scholar]
  45. 45.  Comisar WA, Kazmers NH, Mooney DJ, Linderman JJ 2007. Engineering RGD nanopatterned hydrogels to control preosteoblast behavior: a combined computational and experimental approach. Biomaterials 28:4409–17
    [Google Scholar]
  46. 46.  Khetan S, Guvendiren M, Legant WR, Cohen DM, Chen CS, Burdick JA 2013. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12:458–65
    [Google Scholar]
  47. 47.  Vincent LG, Engler AJ 2013. Stem cell differentiation: Post-degradation forces kick. Nat. Mater. 12:384–86
    [Google Scholar]
  48. 48.  Seo J-H, Kakinoki S, Inoue Y, Yamaoka T, Ishihara K, Yui N 2013. Inducing rapid cellular response on RGD-binding threaded macromolecular surfaces. J. Am. Chem. Soc. 135:5513–16
    [Google Scholar]
  49. 49.  Tong X, Yang F 2016. Sliding hydrogels with mobile molecular ligands and crosslinks as 3D stem cell niche. Adv. Mater. 28:7257–63
    [Google Scholar]
  50. 50.  Ekerdt BL, Segalman RA, Schaffer DV 2013. Spatial organization of cell-adhesive ligands for advanced cell culture. Biotechnol. J. 8:1411–23
    [Google Scholar]
  51. 51.  Luo Y, Shoichet MS 2004. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat. Mater. 3:249–53
    [Google Scholar]
  52. 52.  DeForest CA, Polizzotti BD, Anseth KS 2009. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater. 8:659–64
    [Google Scholar]
  53. 53.  Petersen S, Alonso JM, Specht A, Duodu P, Goeldner M, del Campo A 2008. Phototriggering of cell adhesion by caged cyclic RGD peptides. Angew. Chem. Int. Ed. 47:3192–95
    [Google Scholar]
  54. 54.  Ohmuro-Matsuyama Y, Tatsu Y 2008. Photocontrolled cell adhesion on a surface functionalized with a caged arginine–glycine–aspartate peptide. Angew. Chem. Int. Ed. 47:7527–29
    [Google Scholar]
  55. 55.  Lee TT, García JR, Paez JI, Singh A, Phelps EA et al. 2015. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat. Mater. 14:352–60
    [Google Scholar]
  56. 56.  DeForest CA, Anseth KS 2011. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem. 3:925–31
    [Google Scholar]
  57. 57.  DeForest CA, Anseth KS 2012. Photoreversible patterning of biomolecules within click-based hydrogels. Angew. Chem. Int. Ed. 51:1816–19
    [Google Scholar]
  58. 58.  DeForest CA, Tirrell DA 2015. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat. Mater. 14:523–31
    [Google Scholar]
  59. 59.  Mosiewicz KA, Kolb L, van der Vlies AJ, Martino MM, Lienemann PS et al. 2013. In situ cell manipulation through enzymatic hydrogel photopatterning. Nat. Mater. 12:1072–78
    [Google Scholar]
  60. 60.  Boekhoven J, Pérez CMR, Sur S, Worthy A, Stupp SI 2013. Dynamic display of bioactivity through host–guest chemistry. Angew. Chem. Int. Ed. 52:12077–80
    [Google Scholar]
  61. 61.  Neirynck P, Schimer J, Jonkheijm P, Milroy L-G, Cigler P, Brunsveld L 2015. Carborane-β-cyclodextrin complexes as a supramolecular connector for bioactive surfaces. J. Mater. Chem. B 3:539–45
    [Google Scholar]
  62. 62.  Liu B, Liu Y, Riesberg JJ, Shen W 2010. Dynamic presentation of immobilized ligands regulated through biomolecular recognition. J. Am. Chem. Soc. 132:13630–32
    [Google Scholar]
  63. 63.  Zhang Z, Chen N, Li S, Battig MR, Wang Y 2012. Programmable hydrogels for controlled cell catch and release using hybridized aptamers and complementary sequences. J. Am. Chem. Soc. 134:15716–19
    [Google Scholar]
  64. 64.  Freeman R, Stephanopoulos N, Álvarez Z, Lewis JA, Sur S et al. 2017. Instructing cells with programmable peptide DNA hybrids. Nat. Commun. 8:15982
    [Google Scholar]
  65. 65.  Ushiki T 2002. Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch. Histol. Cytol. 65:109–26
    [Google Scholar]
  66. 66.  Petrie RJ, Doyle AD, Yamada KM 2009. Random versus directionally persistent cell migration. Nat. Rev. Mol. Cell. Biol. 10:538–49
    [Google Scholar]
  67. 67.  Sill TJ, von Recum HA 2008. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006
    [Google Scholar]
  68. 68.  Haines-Butterick L, Rajagopal K, Branco M, Salick D, Rughani R et al. 2007. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. PNAS 104:7791–96
    [Google Scholar]
  69. 69.  Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A et al. 2009. Rational design and application of responsive α-helical peptide hydrogels. Nat. Mater. 8:596–600
    [Google Scholar]
  70. 70.  Jayawarna V, Ali M, Jowitt TA, Miller AF, Saiani A et al. 2006. Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides. Adv. Mater. 18:611–14
    [Google Scholar]
  71. 71.  Xia X-X, Xu Q, Hu X, Qin G, Kaplan DL 2011. Tunable self-assembly of genetically engineered silk-elastin-like protein polymers. Biomacromolecules 12:3844–50
    [Google Scholar]
  72. 72.  Koutsopoulos S 2016. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: progress, design guidelines, and applications. J. Biomed. Mater. Res. A 104:1002–16
    [Google Scholar]
  73. 73.  Kulangara K, Leong KW 2009. Substrate topography shapes cell function. Soft Matter 5:4072–76
    [Google Scholar]
  74. 74.  Unadkat HV, Hulsman M, Cornelissen K, Papenburg BJ, Truckenmüller RK et al. 2011. An algorithm-based topographical biomaterials library to instruct cell fate. PNAS 108:16565–70
    [Google Scholar]
  75. 75.  Mascharak S, Benitez PL, Proctor AC, Madl CM, Hu KH et al. 2017. YAP-dependent mechanotransduction is required for proliferation and migration on native-like substrate topography. Biomaterials 115:155–66
    [Google Scholar]
  76. 76.  Annabi N, Nichol JW, Zhong X, Ji C, Koshy S et al. 2010. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. B 16:371–83
    [Google Scholar]
  77. 77.  Han L-H, Yu S, Wang T, Behn AW, Yang F 2013. Microribbon-like elastomers for fabricating macroporous and highly flexible scaffolds that support cell proliferation in 3D. Adv. Funct. Mater. 23:346–58
    [Google Scholar]
  78. 78.  Griffin DR, Weaver WM, Scumpia PO, Carlo DD, Segura T 2015. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14:737–44
    [Google Scholar]
  79. 79.  Sussman EM, Halpin MC, Muster J, Moon RT, Ratner BD 2014. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann. Biomed. Eng. 42:1508–16
    [Google Scholar]
  80. 80.  Nelson CM, VanDuijn MM, Inman JL, Fletcher DA, Bissell MJ 2006. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314:298–300
    [Google Scholar]
  81. 81.  Paschos NK, Brown WE, Eswaramoorthy R, Hu JC, Athanasiou KA 2015. Advances in tissue engineering through stem cell–based co-culture. J. Tissue Eng. Regen. Med. 9:488–503
    [Google Scholar]
  82. 82.  Kaji H, Camci-Unal G, Langer R, Khademhosseini A 2011. Engineering systems for the generation of patterned co-cultures for controlling cell–cell interactions. Biochim. Biophys. Acta Gen. Subj. 1810:239–50
    [Google Scholar]
  83. 83.  Kuhl PR, Griffith LG 1996. Tethered epidermal growth factor as a paradigm for growth factor induced stimulation from the solid phase. Nat. Med. 2:1022–27
    [Google Scholar]
  84. 84.  Fan VH, Au A, Tamama K, Littrell R, Richardson LB et al. 2007. Tethered EGF provides a survival advantage to mesenchymal stem cells. Stem Cells 25:1241–51
    [Google Scholar]
  85. 85.  Cabanas-Danés J, Rodrigues ED, Landman E, van Weerd J, van Blitterswijk C et al. 2014. A supramolecular host–guest carrier system for growth factors employing VHH fragments. J. Am. Chem. Soc. 136:12675–81
    [Google Scholar]
  86. 86.  Cambria E, Renggli K, Ahrens CC, Cook CD, Kroll C et al. 2015. Covalent modification of synthetic hydrogels with bioactive proteins via sortase-mediated ligation. Biomacromolecules 16:2316–26
    [Google Scholar]
  87. 87.  Webber MJ, Tongers J, Newcomb CJ, Marquardt K-T, Bauersachs J et al. 2011. Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. PNAS 108:13438–43
    [Google Scholar]
  88. 88.  Madl CM, Mehta M, Duda GN, Heilshorn SC, Mooney DJ 2014. Presentation of BMP-2 mimicking peptides in 3D hydrogels directs cell fate commitment in osteoblasts and mesenchymal stem cells. Biomacromolecules 15:445–55
    [Google Scholar]
  89. 89.  Cai L, Dinh CB, Heilshorn SC 2014. One-pot synthesis of elastin-like polypeptide hydrogels with grafted VEGF-mimetic peptides. Biomater. Sci. 2:757–65
    [Google Scholar]
  90. 90.  Hudalla GA, Murphy WL 2011. Biomaterials that regulate growth factor activity via bioinspired interactions. Adv. Funct. Mater. 21:1754–68
    [Google Scholar]
  91. 91.  Cook CD, Hill AS, Guo M, Stockdale L, Papps JP et al. 2017. Local remodeling of synthetic extracellular matrix microenvironments by co-cultured endometrial epithelial and stromal cells enables long-term dynamic physiological function. Integr. Biol. 9:271–89
    [Google Scholar]
  92. 92.  Martino MM, Briquez PS, Güç E, Tortelli F, Kilarski WW et al. 2014. Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science 343:885–88
    [Google Scholar]
  93. 93.  Nguyen EH, Schwartz MP, Murphy WL 2011. Biomimetic approaches to control soluble concentration gradients in biomaterials. Macromol. Biosci. 11:483–92
    [Google Scholar]
  94. 94.  Nagaoka M, Ise H, Akaike T 2002. Immobilized E-cadherin model can enhance cell attachment and differentiation of primary hepatocytes but not proliferation. Biotechnol. Lett. 24:1857–62
    [Google Scholar]
  95. 95.  Cosgrove BD, Mui KL, Driscoll TP, Caliari SR, Mehta KD et al. 2016. N-Cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells. Nat. Mater. 15:1297–306
    [Google Scholar]
  96. 96.  Bian L, Guvendiren M, Mauck RL, Burdick JA 2013. Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis. PNAS 110:10117–22
    [Google Scholar]
  97. 97.  Straley KS, Heilshorn SC 2009. Design and adsorption of modular engineered proteins to prepare customized, neuron-compatible coatings. Front. Neuroeng. 2:9
    [Google Scholar]
  98. 98.  Chen KG, Mallon BS, McKay RDG, Robey PG 2014. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell 14:13–26
    [Google Scholar]
  99. 99.  Azarin SM, Palecek SP 2010. Matrix revolutions: a trinity of defined substrates for long-term expansion of human ESCs. Cell Stem Cell 7:7–8
    [Google Scholar]
  100. 100.  Rodin S, Domogatskaya A, Ström S, Hansson EM, Chien KR et al. 2010. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat. Biotechnol. 28:611–15
    [Google Scholar]
  101. 101.  Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y et al. 2010. Synthetic peptide–acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat. Biotechnol. 28:606–10
    [Google Scholar]
  102. 102.  Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH et al. 2010. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat. Biotechnol. 28:581–83
    [Google Scholar]
  103. 103.  Dzhoyashvili NA, Shen S, Rochev YA 2015. Natural and synthetic materials for self-renewal, long-term maintenance, and differentiation of induced pluripotent stem cells. Adv. Healthc. Mater. 4:2342–59
    [Google Scholar]
  104. 104.  Chowdhury F, Li Y, Poh Y-C, Yokohama-Tamaki T, Wang N, Tanaka TS 2010. Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell–matrix tractions. PLOS ONE 5:e15655
    [Google Scholar]
  105. 105.  McDevitt TC 2013. Scalable culture of human pluripotent stem cells in 3D. PNAS 110:20852–53
    [Google Scholar]
  106. 106.  Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G 2007. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. PNAS 104:11298–303
    [Google Scholar]
  107. 107.  Siti-Ismail N, Bishop AE, Polak JM, Mantalaris A 2008. The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials 29:3946–52
    [Google Scholar]
  108. 108.  Lei Y, Schaffer DV 2013. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. PNAS 110:E5039–48
    [Google Scholar]
  109. 109.  Crane GM, Jeffery E, Morrison SJ 2017. Adult haematopoietic stem cell niches. Nat. Rev. Immunol. 17:573–90
    [Google Scholar]
  110. 110.  Holst J, Watson S, Lord MS, Eamegdool SS, Bax DV et al. 2010. Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nat. Biotechnol. 28:1123–28
    [Google Scholar]
  111. 111.  Choi JS, Harley BAC 2017. Marrow-inspired matrix cues rapidly affect early fate decisions of hematopoietic stem and progenitor cells. Sci. Adv. 3:e1600455
    [Google Scholar]
  112. 112.  Prewitz MC, Seib FP, von Bonin M, Friedrichs J, Stißel A et al. 2013. Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments. Nat. Methods 10:788–94
    [Google Scholar]
  113. 113.  Lutolf MP, Doyonnas R, Havenstrite K, Koleckar K, Blau HM 2009. Perturbation of single hematopoietic stem cell fates in artificial niches. Integr. Biol. 1:59–69
    [Google Scholar]
  114. 114.  Chamberlain G, Fox J, Ashton B, Middleton J 2007. Mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–49
    [Google Scholar]
  115. 115.  Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R et al. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284:143–47
    [Google Scholar]
  116. 116.  Yang C, Tibbitt MW, Basta L, Anseth KS 2014. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13:645–52
    [Google Scholar]
  117. 117.  Li CX, Talele NP, Boo S, Koehler A, Knee-Walden E et al. 2017. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nat. Mater. 16:379–89
    [Google Scholar]
  118. 118.  McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE et al. 2011. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat. Mater. 10:637–44
    [Google Scholar]
  119. 119.  Bai T, Sun F, Zhang L, Sinclair A, Liu S et al. 2014. Restraint of the differentiation of mesenchymal stem cells by a nonfouling zwitterionic hydrogel. Angew. Chem. Int. Ed. 53:12729–34
    [Google Scholar]
  120. 120.  Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N et al. 2009. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459:262–65
    [Google Scholar]
  121. 121.  Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME et al. 2016. Designer matrices for intestinal stem cell and organoid culture. Nature 539:560–64
    [Google Scholar]
  122. 122.  DiMarco RL, Dewi RE, Bernal G, Kuo C, Heilshorn SC 2015. Protein-engineered scaffolds for in vitro 3D culture of primary adult intestinal organoids. Biomater. Sci. 3:1376–85
    [Google Scholar]
  123. 123.  Yin H, Price F, Rudnicki MA 2013. Satellite cells and the muscle stem cell niche. Physiol. Rev. 93:23–67
    [Google Scholar]
  124. 124.  Gilbert PM, Havenstrite KL, Magnusson KEG, Sacco A, Leonardi NA et al. 2010. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–81
    [Google Scholar]
  125. 125.  Cosgrove BD, Gilbert PM, Porpiglia E, Mourkioti F, Lee SP et al. 2014. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat. Med. 20:255–64
    [Google Scholar]
  126. 126.  Quarta M, Brett JO, DiMarco R, Morree AD, Boutet SC et al. 2016. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat. Biotechnol. 34:752–59
    [Google Scholar]
  127. 127.  Tong Z, Solanki A, Hamilos A, Levy O, Wen K et al. 2015. Application of biomaterials to advance induced pluripotent stem cell research and therapy. EMBO J 34:987–1008
    [Google Scholar]
  128. 128.  Seale NM, Varghese S 2016. Biomaterials for pluripotent stem cell engineering: from fate determination to vascularization. J. Mater. Chem. B 4:3454–63
    [Google Scholar]
  129. 129.  Evans ND, Minelli C, Gentleman E, LaPointe V, Patankar SN et al. 2009. Substrate stiffness affects early differentiation events in embryonic stem cells. Eur. Cells Mater. 18:1–14
    [Google Scholar]
  130. 130.  Przybyla L, Lakins JN, Weaver VM 2016. Tissue mechanics orchestrate Wnt-dependent human embryonic stem cell differentiation. Cell Stem Cell 19:462–75
    [Google Scholar]
  131. 131.  Sun Y, Yong KMA, Villa-Diaz LG, Zhang X, Chen W et al. 2014. Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nat. Mater. 13:599–604
    [Google Scholar]
  132. 132.  Musah S, Wrighton PJ, Zaltsman Y, Zhong X, Zorn S et al. 2014. Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. PNAS 111:13805–10
    [Google Scholar]
  133. 133.  Zoldan J, Karagiannis ED, Lee CY, Anderson DG, Langer R, Levenberg S 2011. The influence of scaffold elasticity on germ layer specification of human embryonic stem cells. Biomaterials 32:9612–21
    [Google Scholar]
  134. 134.  Chen W, Villa-Diaz LG, Sun Y, Weng S, Kim JK et al. 2012. Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. ACS Nano 6:4094–103
    [Google Scholar]
  135. 135.  Xie J, Willerth SM, Li X, Macewan MR, Rade A et al. 2009. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 30:354–62
    [Google Scholar]
  136. 136.  Lee MR, Kwon KW, Jung H, Kim HN, Suh KY et al. 2010. Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials 31:4360–66
    [Google Scholar]
  137. 137.  Kim JH, Kim HW, Cha KJ, Han J, Jang YJ et al. 2016. Nanotopography promotes pancreatic differentiation of human embryonic stem cells and induced pluripotent stem cells. ACS Nano 10:3342–55
    [Google Scholar]
  138. 138.  Dickinson LE, Kusuma S, Gerecht S 2011. Reconstructing the differentiation niche of embryonic stem cells using biomaterials. Macromol. Biosci. 11:36–49
    [Google Scholar]
  139. 139.  Dixon JE, Shah DA, Rogers C, Hall S, Weston N et al. 2014. Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation. PNAS 111:5580–85
    [Google Scholar]
  140. 140.  Ferreira LS, Gerecht S, Fuller J, Shieh HF, Vunjak-Novakovic G, Langer R 2007. Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials 28:2706–17
    [Google Scholar]
  141. 141.  Reilly GC, Engler AJ 2010. Intrinsic extracellular matrix properties regulate stem cell differentiation. J. Biomech. 43:55–62
    [Google Scholar]
  142. 142.  Huebsch N, Lippens E, Lee K, Mehta M, Koshy ST et al. 2015. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat. Mater. 14:1269–77
    [Google Scholar]
  143. 143.  Cameron AR, Frith JE, Gomez GA, Yap AS, Cooper-White JJ 2014. The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells. Biomaterials 35:1857–68
    [Google Scholar]
  144. 144.  Darnell M, Young S, Gu L, Shah N, Lippens E et al. 2017. Substrate stress-relaxation regulates scaffold remodeling and bone formation in vivo. Adv. Healthc. Mater. 6:1601185
    [Google Scholar]
  145. 145.  Wojtowicz AM, Shekaran A, Oest ME, Dupont KM, Templeman KL et al. 2010. Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials 31:2574–82
    [Google Scholar]
  146. 146.  Mhanna R, Öztürk E, Vallmajo-Martin Q, Millan C, Müller M, Zenobi-Wong M 2014. GFOGER-modified MMP-sensitive polyethylene glycol hydrogels induce chondrogenic differentiation of human mesenchymal stem cells. Tissue Eng. A 20:1165–74
    [Google Scholar]
  147. 147.  Frith JE, Mills RJ, Hudson JE, Cooper-White JJ 2012. Tailored integrin–extracellular matrix interactions to direct human mesenchymal stem cell differentiation. Stem Cells Dev 21:2442–56
    [Google Scholar]
  148. 148.  Wang T, Lai JH, Han L-H, Tong X, Yang F 2014. Chondrogenic differentiation of adipose-derived stromal cells in combinatorial hydrogels containing cartilage matrix proteins with decoupled mechanical stiffness. Tissue Eng. A 20:2131–39
    [Google Scholar]
  149. 149.  Lee JS, Lee JS, Murphy WL 2010. Modular peptides promote human mesenchymal stem cell differentiation on biomaterial surfaces. Acta Biomater 6:21–28
    [Google Scholar]
  150. 150.  Lee SS, Hsu EL, Mendoza M, Ghodasra J, Nickoli MS et al. 2015. Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv. Healthc. Mater. 4:131–41
    [Google Scholar]
  151. 151.  Vega SL, Kwon M, Mauck RL, Burdick JA 2016. Single cell imaging to probe mesenchymal stem cell N-cadherin mediated signaling within hydrogels. Ann. Biomed. Eng. 44:1921–30
    [Google Scholar]
  152. 152.  Stukel JM, Willits RK 2016. Mechanotransduction of neural cells through cell–substrate interactions. Tissue Eng. B 22:173–82
    [Google Scholar]
  153. 153.  Yao S, Liu X, Wang X, Merolli A, Chen X, Cui F 2013. Directing neural stem cell fate with biomaterial parameters for injured brain regeneration. Prog. Nat. Sci. Mater. Int. 23:103–12
    [Google Scholar]
  154. 154.  Saha K, Keung AJ, Irwin EF, Li Y, Little L et al. 2008. Substrate modulus directs neural stem cell behavior. Biophys. J. 95:4426–38
    [Google Scholar]
  155. 155.  Leipzig ND, Shoichet MS 2009. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30:6867–78
    [Google Scholar]
  156. 156.  Keung AJ, de Juan-Pardo EM, Schaffer DV, Kumar S 2011. Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells. Stem Cells 29:1886–97
    [Google Scholar]
  157. 157.  Rammensee S, Kang MS, Georgiou K, Kumar S, Schaffer DV 2017. Dynamics of mechanosensitive neural stem cell differentiation. Stem Cells 35:497–506
    [Google Scholar]
  158. 158.  Keung AJ, Dong M, Schaffer DV, Kumar S 2013. Pan-neuronal maturation but not neuronal subtype differentiation of adult neural stem cells is mechanosensitive. Sci. Rep. 3:1817
    [Google Scholar]
  159. 159.  Banerjee A, Arha M, Choudhary S, Ashton RS, Bhatia SR et al. 2009. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30:4695–99
    [Google Scholar]
  160. 160.  Aurand ER, Wagner JL, Shandas R, Bjugstad KB 2014. Hydrogel formulation determines cell fate of fetal and adult neural progenitor cells. Stem Cell Res 12:11–23
    [Google Scholar]
  161. 161.  Lampe KJ, Bjugstad KB, Mahoney MJ 2010. Impact of degradable macromer content in a poly(ethylene glycol) hydrogel on neural cell metabolic activity, redox state, proliferation, and differentiation. Tissue Eng. A 16:1857–66
    [Google Scholar]
  162. 162.  Lim SH, Liu XY, Song H, Yarema KJ, Mao H-Q 2010. The effect of nanofiber-guided cell alignment on the preferential differentiation of neural stem cells. Biomaterials 31:9031–39
    [Google Scholar]
  163. 163.  Aizawa Y, Leipzig N, Zahir T, Shoichet M 2008. The effect of immobilized platelet derived growth factor AA on neural stem/progenitor cell differentiation on cell-adhesive hydrogels. Biomaterials 29:4676–83
    [Google Scholar]
  164. 164.  Stadtfeld M, Hochedlinger K 2010. Induced pluripotency: history, mechanisms, and applications. Genes Dev 24:2239–63
    [Google Scholar]
  165. 165.  Choi B, Park K-S, Kim J-H, Ko K-W, Kim J-S et al. 2016. Stiffness of hydrogels regulates cellular reprogramming efficiency through mesenchymal-to-epithelial transition and stemness markers.. Macromol. Biosci. 16:199–206
    [Google Scholar]
  166. 166.  Downing TL, Soto J, Morez C, Houssin T, Fritz A et al. 2013. Biophysical regulation of epigenetic state and cell reprogramming. Nat. Mater. 12:1154–62
    [Google Scholar]
  167. 167.  Caiazzo M, Okawa Y, Ranga A, Piersigilli A, Tabata Y, Lutolf MP 2016. Defined three-dimensional microenvironments boost induction of pluripotency. Nat. Mater. 15:344–52
    [Google Scholar]
  168. 168.  Sia J, Sun R, Chua J, Li S 2016. Dynamic culture improves cell reprogramming efficiency. Biomaterials 92:36–45
    [Google Scholar]
  169. 169.  Mohr JC, Zhang J, Azarin SM, Soerens AG, de Pablo JJ et al. 2010. The microwell control of embryoid body size in order to regulate cardiac differentiation of human embryonic stem cells. Biomaterials 31:1885–93
    [Google Scholar]
  170. 170.  Carpenedo RL, Sargent CY, McDevitt TC 2007. Rotary suspension culture enhances the efficiency, yield, and homogeneity of embryoid body differentiation. Stem Cells 25:2224–34
    [Google Scholar]
  171. 171.  Selekman JA, Das A, Grundl NJ, Palecek SP 2013. Improving efficiency of human pluripotent stem cell differentiation platforms using an integrated experimental and computational approach. Biotechnol. Bioeng. 110:3024–37
    [Google Scholar]
  172. 172.  Mei Y, Gerecht S, Taylor M, Urquhart AJ, Bogatyrev SR et al. 2009. Mapping the interactions among biomaterials, adsorbed proteins, and human embryonic stem cells. Adv. Mater. 21:2781–86
    [Google Scholar]
  173. 173.  Flaim CJ, Chien S, Bhatia SN 2005. An extracellular matrix microarray for probing cellular differentiation. Nat. Methods 2:119–25
    [Google Scholar]
  174. 174.  Titmarsh DM, Ovchinnikov DA, Wolvetang EJ, Cooper-White JJ 2013. Full factorial screening of human embryonic stem cell maintenance with multiplexed microbioreactor arrays. Biotechnol. J. 8:822–34
    [Google Scholar]
  175. 175.  Gobaa S, Hoehnel S, Roccio M, Negro A, Kobel S, Lutolf MP 2011. Artificial niche microarrays for probing single stem cell fate in high throughput. Nat. Methods 8:949–55
    [Google Scholar]
  176. 176.  Ranga A, Gobaa S, Okawa Y, Mosiewicz K, Negro A, Lutolf MP 2014. 3D niche microarrays for systems-level analyses of cell fate. Nat. Commun. 5:4324
    [Google Scholar]
  177. 177.  Le NNT Zorn S, Schmitt SK, Gopalan P, Murphy WL 2016. Hydrogel arrays formed via differential wettability patterning enable combinatorial screening of stem cell behavior. Acta Biomater 34:93–103
    [Google Scholar]
  178. 178.  Kim HD, Lee EA, Choi YH, An YH, Koh RH et al. 2016. High throughput approaches for controlled stem cell differentiation. Acta Biomater 34:21–29
    [Google Scholar]
  179. 179.  Nguyen EH, Daly WT, Le NNT Farnoodian M, Belair DG et al. 2017. Versatile synthetic alternatives to Matrigel for vascular toxicity screening and stem cell expansion. Nat. Biomed. Eng. 1:0096
    [Google Scholar]
  180. 180.  Lancaster MA, Knoblich JA 2014. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125
    [Google Scholar]
  181. 181.  Lancaster MA, Corsini NS, Wolfinger S, Gustafson EH, Phillips AW et al. 2017. Guided self-organization and cortical plate formation in human brain organoids. Nat. Biotechnol. 35:659–66
    [Google Scholar]
  182. 182.  Shao Y, Taniguchi K, Gurdziel K, Townshend RF, Xue X et al. 2016. Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche. Nat. Mater. 16:419–25
    [Google Scholar]
  183. 183.  Murphy SV, Atala A 2014. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–85
    [Google Scholar]
  184. 184.  Sears NA, Seshadri DR, Dhavalikar PS, Cosgriff-Hernandez E 2016. A review of three-dimensional printing in tissue engineering. Tissue Eng. B 22:298–310
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-062117-120954
Loading
/content/journals/10.1146/annurev-bioeng-062117-120954
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error