1932

Abstract

The need for hydration monitoring is significant, especially for the very young and elderly populations who are more vulnerable to becoming dehydrated and suffering from the effects that dehydration brings. This need has been among the drivers of considerable effort in the academic and commercial sectors to provide a means for monitoring hydration status, with a special interest in doing so outside the hospital or clinical setting. This review of emerging technologies provides an overview of many technology approaches that, on a theoretical basis, have sensitivity to water and are feasible as a routine measurement. We review the evidence of technical validation and of their use in humans. Finally, we highlight the essential need for these technologies to be rigorously evaluated for their diagnostic potential, as a necessary step to meet the need for hydration monitoring outside of the clinical environment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-062117-121028
2023-06-08
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/25/1/annurev-bioeng-062117-121028.html?itemId=/content/journals/10.1146/annurev-bioeng-062117-121028&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Lacey J, Corbett J, Forni L, Hooper L, Hughes F et al. 2019. A multidisciplinary consensus on dehydration: definitions, diagnostic methods and clinical implications. Ann. Med. 51:3–4232–51
    [Google Scholar]
  2. 2.
    Santillanes G, Rose E 2018. Evaluation and management of dehydration in children. Emerg. Med. Clin. 36:2259–73
    [Google Scholar]
  3. 3.
    Mackenzie A, Barnes G, Shann F. 1989. Clinical signs of dehydration in children. Lancet North Am. Ed. 334:8663605–7
    [Google Scholar]
  4. 4.
    Canavan A, Arant BS Jr. 2009. Diagnosis and management of dehydration in children. Am. Fam. Physician. 80:7692–96
    [Google Scholar]
  5. 5.
    Vega RM, Avva U. 2020. Pediatric Dehydration Tampa, FL: StatPearls Publishing
  6. 6.
    Miller HJ. 2015. Dehydration in the older adult. J. Gerontol. Nurs. 41:98–13
    [Google Scholar]
  7. 7.
    Edmonds CJ, Foglia E, Booth P, Fu CH, Gardner M. 2021. Dehydration in older people: a systematic review of the effects of dehydration on health outcomes, healthcare costs and cognitive performance. Arch. Gerontol. Geriatr. 95:104380
    [Google Scholar]
  8. 8.
    Hooper L, Abdelhamid A, Attreed NJ, Campbell WW, Channell AM et al. 2015. Clinical symptoms, signs and tests for identification of impending and current water-loss dehydration in older people. Cochrane Database Systematic Rev. 2015:4CD009647
    [Google Scholar]
  9. 9.
    Bunn DK, Hooper L. 2019. Signs and symptoms of low-intake dehydration do not work in older care home residents—DRIE diagnostic accuracy study. J. Am. Med. Dir. Assoc. 20:8963–70
    [Google Scholar]
  10. 10.
    Aloia JF, Vaswani A, Flaster E, Ma R. 1998. Relationship of body water compartments to age, race, and fat-free mass. J. Lab. Clin. Med. 132:6483–90
    [Google Scholar]
  11. 11.
    Chumlea WC, Guo SS, Zeller CM, Reo NV, Siervogel RM. 1999. Total body water data for white adults 18 to 64 years of age: the Fels Longitudinal Study. Kidney Int. 56:1244–52
    [Google Scholar]
  12. 12.
    Mitchell H, Hamilton T, Steggerda F, Bean H. 1945. The chemical composition of the adult human body and its bearing on the biochemistry of growth. J. Biol. Chem. 158:3625–37
    [Google Scholar]
  13. 13.
    Cheuvront SN, Kenefick RW. 2011. Dehydration: physiology, assessment, and performance effects. Compr. Physiol. 4:1257–85
    [Google Scholar]
  14. 14.
    Cheuvront SN, Kenefick RW, Heavens KR, Spitz MG. 2014. A comparison of whole blood and plasma osmolality and osmolarity. J. Clin. Lab. Anal. 28:5368–73
    [Google Scholar]
  15. 15.
    Freedman S. 2022. Oral rehydration therapy. UpToDate https://www.uptodate.com/contents/oral-rehydration-therapy
    [Google Scholar]
  16. 16.
    Creditor MC. 1993. Hazards of hospitalization of the elderly. Ann. Intern. Med. 118:3219–23
    [Google Scholar]
  17. 17.
    Armstrong LE. 2007. Assessing hydration status: the elusive gold standard. J. Am. Coll. Nutr. 26:Suppl. 5575S–84S
    [Google Scholar]
  18. 18.
    Cheuvront SN, Ely BR, Kenefick RW, Sawka MN. 2010. Biological variation and diagnostic accuracy of dehydration assessment markers. Am. J. Clin. Nutr. 92:3565–73
    [Google Scholar]
  19. 19.
    Fortes MB, Owen JA, Raymond-Barker P, Bishop C, Elghenzai S et al. 2015. Is this elderly patient dehydrated? Diagnostic accuracy of hydration assessment using physical signs, urine, and saliva markers. J. Am. Med. Dir. Assoc. 16:3221–28
    [Google Scholar]
  20. 20.
    Pringle K, Shah SP, Umulisa I, Munyaneza RBM, Dushimiyimana JM et al. 2011. Comparing the accuracy of the three popular clinical dehydration scales in children with diarrhea. Int. J. Emer. Med. 4:11–6
    [Google Scholar]
  21. 21.
    Owen JA, Fortes MB, Rahman SU, Jibani M, Walsh NP, Oliver SJ. 2019. Hydration marker diagnostic accuracy to identify mild intracellular and extracellular dehydration. Int. J. Sport Nutr. Exercise Metab. 29:6604–11
    [Google Scholar]
  22. 22.
    Rigaud B, Morucci J-P, Chauveau N. 1996. Bioelectrical impedance techniques in medicine. Part I: bioimpedance measurement. Second section: impedance spectrometry. Crit. Rev. Biomed. Eng. 24:4–6257–351
    [Google Scholar]
  23. 23.
    Khalil SF, Mohktar MS, Ibrahim F 2014. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors 14:610895–928
    [Google Scholar]
  24. 24.
    Mialich MS, Sicchieri JF, Junior AJ. 2014. Analysis of body composition: a critical review of the use of bioelectrical impedance analysis. Int. J. Clin. Nutr. 2:11–10
    [Google Scholar]
  25. 25.
    Ellis KJ, Bell SJ, Chertow GM, Chumlea WC, Knox TA et al. 1999. Bioelectrical impedance methods in clinical research: a follow-up to the NIH Technology Assessment Conference. Nutrition 15:11–12874–80
    [Google Scholar]
  26. 26.
    Moqadam SM, Grewal P, Shokoufi M, Golnaraghi F. 2015. Compression-dependency of soft tissue bioimpedance for in-vivo and in-vitro tissue testing. J. Electr. Bioimpedance 6:122–32
    [Google Scholar]
  27. 27.
    Davydov DM, Boev A, Gorbunov S. 2021. Making the choice between bioelectrical impedance measures for body hydration status assessment. Sci. Rep. 11:11–13
    [Google Scholar]
  28. 28.
    Birgersson U, Birgersson E, Ollmar S. 2012. Estimating electrical properties and the thickness of skin with electrical impedance spectroscopy: mathematical analysis and measurements. J. Electr. Bioimpedance 3:151–60
    [Google Scholar]
  29. 29.
    Osypka M, Gersing E. 1995. Tissue impedance spectra and the appropriate frequencies for EIT. Physiol. Meas. 16:3, Suppl. AA49–55
    [Google Scholar]
  30. 30.
    Schwan HP. 1955. Electrical properties of body tissues and impedance plethysmography. IRE Trans. Med. Electron. PGME-3:32–46
    [Google Scholar]
  31. 31.
    Geddes LA, Baker LE. 1967. The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng. 5:3271–93
    [Google Scholar]
  32. 32.
    Foster KR, Schwan HP. 1989. Dielectric properties of tissues and biological materials: a critical review. Crit. Rev. Biomed. Eng. 17:125–104
    [Google Scholar]
  33. 33.
    Foster KR, Lukaski HC. 1996. Whole-body impedance—what does it measure?. Am. J. Clin. Nutr. 64:3388S–96S
    [Google Scholar]
  34. 34.
    Kushner RF, Gudivaka R, Schoeller DA. 1996. Clinical characteristics influencing bioelectrical impedance analysis measurements. Am. J. Clin. Nutr. 64:3423S–27S
    [Google Scholar]
  35. 35.
    Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M et al. 2004. Bioelectrical impedance analysis—part I: review of principles and methods. Clin. Nutr. 23:51226–43
    [Google Scholar]
  36. 36.
    Thomas B, Ward L, Cornish B. 1998. Bioimpedance spectrometry in the determination of body water compartments: accuracy and clinical significance. Appl. Radiat. Isot. 49:5–6447–55
    [Google Scholar]
  37. 37.
    Buchholz AC, Bartok C, Schoeller DA. 2004. The validity of bioelectrical impedance models in clinical populations. Nutr. Clin. Pract. 19:5433–46
    [Google Scholar]
  38. 38.
    O'Brien C, Young A, Sawka M. 2002. Bioelectrical impedance to estimate changes in hydration status. Int. J. Sports Med. 23:05361–66
    [Google Scholar]
  39. 39.
    Kushner R, Schoeller DA, Fjeld CR, Danford L. 1992. Is the impedance index (ht2/R) significant in predicting total body water?. Am. J. Clin. Nutr. 56:5835–39
    [Google Scholar]
  40. 40.
    Suprasongsin C, Kalhan S, Arslanian S. 1995. Determination of body composition in children and adolescents: validation of bioelectrical impedance with isotope dilution technique. J. Pediatr. Endocrinol. Metab. 8:2103–10
    [Google Scholar]
  41. 41.
    Kotler DP, Burastero S, Wang J, Pierson RN Jr. 1996. Prediction of body cell mass, fat-free mass, and total body water with bioelectrical impedance analysis: effects of race, sex, and disease. Am. J. Clin. Nutr. 64:3489S–97S
    [Google Scholar]
  42. 42.
    Segal K, Van Loan M, Fitzgerald P, Hodgdon J, Van Itallie TB. 1988. Lean body mass estimation by bioelectrical impedance analysis: a four-site cross-validation study. Am. J. Clin. Nutr. 47:17–14
    [Google Scholar]
  43. 43.
    Segal KR, Burastero S, Chun A, Coronel P, Pierson RN Jr., Wang J. 1991. Estimation of extracellular and total body water by multiple-frequency bioelectrical-impedance measurement. Am. J. Clin. Nutr. 54:126–29
    [Google Scholar]
  44. 44.
    Bussolotto M, Ceccon A, Sergi G, Giantin V, Beninca P, Enzi G. 1999. Assessment of body composition in elderly: accuracy of bioelectrical impedance analysis. Gerontology 45:139–43
    [Google Scholar]
  45. 45.
    O'Brien C, Baker-Fulco CJ, Young AJ, Sawka MN. 1999. Bioimpedance assessment of hypohydration. Med. Sci. Sports Exerc. 31:1466–71
    [Google Scholar]
  46. 46.
    Hutcheson L, Berg KE, Prentice E 1988. Body impedance analysis and body water loss. Res. Q. Exerc. Sport. 59:4359–62
    [Google Scholar]
  47. 47.
    Thompson D, Thompson W, Prestridge T, Bailey J, Bean M et al. 1991. Effects of hydration and dehydration on body composition analysis: a comparative study of bioelectric impedance analysis and hydrodensitometry. J. Sports Med. Phys. Fitness 31:4565–70
    [Google Scholar]
  48. 48.
    Ho LT, Kushner RF, Schoeller DA, Gudivaka R, Spiegel DM. 1994. Bioimpedance analysis of total body water in hemodialysis patients. Kidney Int. 46:51438–42
    [Google Scholar]
  49. 49.
    Asselin M, Kriemler S, Chettle D, Webber C, Bar-Or O, McNeill F. 1998. Hydration status assessed by multi-frequency bioimpedance analysis. Appl. Radiat. Isot. 49:5–6495–97
    [Google Scholar]
  50. 50.
    Deurenberg P, Schouten F. 1992. Loss of total body water and extracellular water assessed by multifrequency impedance. Eur. J. Clin. Nutr. 46:4247–55
    [Google Scholar]
  51. 51.
    Pearman P, Hunter G, Hendricks C, O'Sullivan P. 1989. Comparison of hydrostatic weighing and bioelectric impedance measurements in determining body composition pre- and postdehydration. J. Orthop. Sports Phys. Ther. 10:11451–55
    [Google Scholar]
  52. 52.
    Dal Cin S, Braga M, Molinari M, Cristallo M, Di Carlo V. 1992. Role of bioelectrical impedance analysis in acutely dehydrated subjects. Clin. Nutr. 11:3128–33
    [Google Scholar]
  53. 53.
    Van Loan M, Kopp L, King J, Wong W, Mayclin P. 1995. Fluid changes during pregnancy: use of bioimpedance spectroscopy. J. Appl. Physiol. 78:31037–42
    [Google Scholar]
  54. 54.
    Saunders MJ, Blevins JE, Broeder CE. 1998. Effects of hydration changes on bioelectrical impedance in endurance trained individuals. Med. Sci. Sports Exerc. 30:6885–92
    [Google Scholar]
  55. 55.
    Röthlingshöfer L, Ulbrich M, Hahne S, Leonhardt S. 2011. Monitoring change of body fluid during physical exercise using bioimpedance spectroscopy and finite element simulations. J. Electr. Bioimpedance 2:179–85
    [Google Scholar]
  56. 56.
    Beckmann L, Hahne S, Medrano G, Kim S, Walter M, Leonhardt S. 2009. Monitoring change of body fluids during physical exercise using bioimpedance spectroscopy. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society4465–68. New York: IEEE
    [Google Scholar]
  57. 57.
    Teruel-Briones JL, Fernández-Lucas M, Ruiz-Roso G, Sánchez-Ramírez H, Rivera-Gorrin M et al. 2012. Análisis de concordancia entre la bioimpedancia vectorial y la espectroscópica. Nefrología (Madrid). 32:3389–95
    [Google Scholar]
  58. 58.
    Rikkert MGO, Deurenberg P, Jansen RW, van't Hof MA, Hoefnagels WH. 1997. Validation of multi-frequency bioelectrical impedance analysis in detecting changes in fluid balance of geriatric patients. J. Am. Geriatr. Soc. 45:111345–51
    [Google Scholar]
  59. 59.
    Kotanko P, Levin NW, Zhu F. 2008. Current state of bioimpedance technologies in dialysis. Nephrol. Dial. Transplant. 23:3808–12
    [Google Scholar]
  60. 60.
    van der Sande FM, van de Wal-Visscher ER, Stuard S, Moissl U, Kooman JP. 2020. Using bioimpedance spectroscopy to assess volume status in dialysis patients. Blood. Purif. 49:1–2178–84
    [Google Scholar]
  61. 61.
    Scharfetter H, Hartinger P, Hinghofer-Szalkay H, Hutten H. 1998. A model of artefacts produced by stray capacitance during whole body or segmental bioimpedance spectroscopy. Physiol. Meas. 19:2247
    [Google Scholar]
  62. 62.
    Evans W, McClagish H, Trudgett C. 1998. Factors affecting the in vivo precision of bioelectrical impedance analysis. Appl. Radiat. Isot. 49:5–6485–87
    [Google Scholar]
  63. 63.
    Dunbar CC, Melahrinides E, Michielli DW, Kalinski MI. 1994. Effects of small errors in electrode placement on body composition assessment by bioelectrical impedance. Res. Q. Exerc. Sport. 65:3291–94
    [Google Scholar]
  64. 64.
    Marquez JC, Seoane F, Lindecrantz K. 2011. Skin-electrode contact area in electrical bioimpedance spectroscopy. Influence in total body composition assessment. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society1867–70. New York: IEEE
    [Google Scholar]
  65. 65.
    Nickerson BS, Esco MR, Bishop PA, Kliszczewicz BM, Williford HN et al. 2017. Effects of heat exposure on body water assessed using single-frequency bioelectrical impedance analysis and bioimpedance spectroscopy. Int. J. Exerc. Sci. 10:71085
    [Google Scholar]
  66. 66.
    Buono MJ, Burke S, Endemann S, Graham H, Gressard C et al. 2004. The effect of ambient air temperature on whole-body bioelectrical impedance. Physiol. Meas. 25:1119
    [Google Scholar]
  67. 67.
    Mayrovitz HN, Grammenos A, Corbitt K, Bartos S. 2017. Age-related changes in male forearm skin-to-fat tissue dielectric constant at 300 MHz. Clin. Physiol. Funct. Imaging. 37:2198–204
    [Google Scholar]
  68. 68.
    Porter E, O'Halloran M 2017. Investigation of histology region in dielectric measurements of heterogeneous tissues. IEEE Trans. Antennas Propag. 65:105541–52
    [Google Scholar]
  69. 69.
    La Gioia A, Porter E, Merunka I, Shahzad A, Salahuddin S et al. 2018. Open-ended coaxial probe technique for dielectric measurement of biological tissues: challenges and common practices. Diagnostics 8:240
    [Google Scholar]
  70. 70.
    Meaney PM, Gregory AP, Epstein NR, Paulsen KD. 2014. Microwave open-ended coaxial dielectric probe: interpretation of the sensing volume re-visited. BMC Med. Phys. 14:11–11
    [Google Scholar]
  71. 71.
    Taylor ZD, Singh RS, Bennett DB, Tewari P, Kealey CP et al. 2011. THz medical imaging: in vivo hydration sensing. IEEE Trans. Terahertz Sci. Technol. 1:1201–19
    [Google Scholar]
  72. 72.
    Agilent Technol 2004. Microwave dielectric spectroscopy workshop: “Measure the difference.” Workshop Present. Agilent, Santa Clara, CA: accessed May 2022. https://academy.cba.mit.edu/classes/input_devices/DS.pdf
  73. 73.
    Agilent Technol 2005. Basics of measuring the dielectric properties of materials Appl. Note, Agilent Santa Clara, CA: accessed May 2022. https://academy.cba.mit.edu/classes/input_devices/meas.pdf
  74. 74.
    Gabriel C, Gabriel S, Corthout E. 1996. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41:112231
    [Google Scholar]
  75. 75.
    Siegel PH. 2004. Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52:102438–47
    [Google Scholar]
  76. 76.
    Joisel A, Mallorqui J, Broquetas A, Geffrin J, Joachimowicz N et al. 1999. Microwave imaging techniques for biomedical applications. IMTC/99, Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (Cat No 99CH36309)1591–96. New York: IEEE
    [Google Scholar]
  77. 77.
    Peyman A, Rezazadeh A, Gabriel C. 2001. Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies. Phys. Med. Biol. 46:61617
    [Google Scholar]
  78. 78.
    Shahzad A, Khan S, Jones M, Dwyer RM, O'Halloran M 2017. Investigation of the effect of dehydration on tissue dielectric properties in ex vivo measurements. Biomed. Phys. Eng. Expr. 3:4045001
    [Google Scholar]
  79. 79.
    Pollacco DA, Farina L, Wismayer PS, Farrugia L, Sammut CV. 2018. Characterization of the dielectric properties of biological tissues and their correlation to tissue hydration. IEEE Trans. Dielectr. Electr. Insul. 25:62191–97
    [Google Scholar]
  80. 80.
    Brendtke R, Wiehl M, Groeber F, Schwarz T, Walles H, Hansmann J. 2016. Feasibility study on a microwave-based sensor for measuring hydration level using human skin models. PLOS ONE 11:4e0153145
    [Google Scholar]
  81. 81.
    Peng Y, Shi C, Wu X, Zhu Y, Zhuang S. 2020. Terahertz imaging and spectroscopy in cancer diagnostics: a technical review. BME Front. 2020:2547609
    [Google Scholar]
  82. 82.
    Lindley-Hatcher H, Stantchev R, Chen X, Hernandez-Serrano AI, Hardwicke J, Pickwell-MacPherson E. 2021. Real time THz imaging—opportunities and challenges for skin cancer detection. Appl. Phys. Lett. 118:23230501
    [Google Scholar]
  83. 83.
    Ash C, Dubec M, Donne K, Bashford T. 2017. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med. Sci. 32:81909–18
    [Google Scholar]
  84. 84.
    Wilson RH, Nadeau KP, Jaworski FB, Tromberg BJ, Durkin AJ. 2015. Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization. J. Biomed. Opt. 20:3030901
    [Google Scholar]
  85. 85.
    Sekar SKV, Bargigia I, Dalla Mora A, Taroni P, Ruggeri A et al. 2017. Diffuse optical characterization of collagen absorption from 500 to 1700 nm. J. Biomed. Opt. 22:1015006
    [Google Scholar]
  86. 86.
    Sordillo LA, Pratavieira S, Pu Y, Salas-Ramirez K, Shi L et al. 2014. Third therapeutic spectral window for deep tissue imaging. Proc. SPIE 8940:89400V
    [Google Scholar]
  87. 87.
    Cuccia DJ, Bevilacqua FP, Durkin AJ, Ayers FR, Tromberg BJ. 2009. Quantitation and mapping of tissue optical properties using modulated imaging. J. Biomed. Opt. 14:2024012
    [Google Scholar]
  88. 88.
    Visser C, Scheffer C, Dellimore K, Kieser E, Smith J. 2015. Development of a diagnostic dehydration screening sensor based on infrared spectrometry. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)1271–74. New York: IEEE
    [Google Scholar]
  89. 89.
    Matousek P, Stone N. 2016. Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring. Chem. Soc. Rev. 45:71794–802
    [Google Scholar]
  90. 90.
    Unal M, Uppuganti S, Leverant CJ, Creecy A, Granke M et al. 2018. Assessing glycation-mediated changes in human cortical bone with Raman spectroscopy. J. Biophotonics 11:8e201700352
    [Google Scholar]
  91. 91.
    Caspers PJ, Bruining HA, Puppels GJ, Lucassen GW, Carter EA. 2001. In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. J. Investig. Dermatol. 116:3434–42
    [Google Scholar]
  92. 92.
    Nakagawa N, Matsumoto M, Sakai S. 2010. In vivo measurement of the water content in the dermis by confocal Raman spectroscopy. Skin Res. Technol. 16:2137–41
    [Google Scholar]
  93. 93.
    Beecher HK. 1946. Preparation of battle casualties for surgery. Anesthesiology 7:104
    [Google Scholar]
  94. 94.
    Physiopedia 2020. Capillary refill test. Physiopedia accessed July 25, 2022. https://www.physio-pedia.com/Capillary_Refill_Test
    [Google Scholar]
  95. 95.
    Pickard A, Karlen W, Ansermino JM 2011. Capillary refill time: Is it still a useful clinical sign?. Anesth. Analg. 113:1120–23
    [Google Scholar]
  96. 96.
    Fleming S, Gill P, Jones C, Taylor JA, Van den Bruel A et al. 2015. The diagnostic value of capillary refill time for detecting serious illness in children: a systematic review and meta-analysis. PLOS ONE 10:9e0138155
    [Google Scholar]
  97. 97.
    Shavit I, Brant R, Nijssen-Jordan C, Galbraith R, Johnson DW. 2006. A novel imaging technique to measure capillary-refill time: improving diagnostic accuracy for dehydration in young children with gastroenteritis. Pediatrics 118:62402–8
    [Google Scholar]
  98. 98.
    Tavassolian N, Li M, Vassiliou CC, Cima MJ. 2014. A novel magnetic relaxation-based platform for hydration monitoring. IEEE Sensors J. 14:82851–55
    [Google Scholar]
  99. 99.
    Li M, Vassiliou CC, Colucci LA, Cima MJ. 2015. 1H nuclear magnetic resonance (NMR) as a tool to measure dehydration in mice. NMR Biomed. 28:81031–39
    [Google Scholar]
  100. 100.
    Bashyam A, Li M, Cima MJ. 2018. Design and experimental validation of Unilateral Linear Halbach magnet arrays for single-sided magnetic resonance. J. Magn. Reson. 292:36–43
    [Google Scholar]
  101. 101.
    Sarvazyan A, Tatarinov A, Sarvazyan N. 2005. Ultrasonic assessment of tissue hydration status. Ultrasonics 43:8661–71
    [Google Scholar]
  102. 102.
    Utter AC, McAnulty SR, Sarvazyan A, Query MC, Landram MJ. 2010. Evaluation of ultrasound velocity to assess the hydration status of wrestlers. J. Strength Cond. Res. 24:61451–57
    [Google Scholar]
  103. 103.
    Sarvazyan A, Tsyuryupa S, Calhoun M, Utter A 2016. Acoustical method of whole-body hydration status monitoring. Acoust. Phys. 62:4514–22
    [Google Scholar]
  104. 104.
    Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K et al. 2016. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529:7587509–14
    [Google Scholar]
  105. 105.
    Alizadeh A, Burns A, Lenigk R, Gettings R, Ashe J et al. 2018. A wearable patch for continuous monitoring of sweat electrolytes during exertion. Lab Chip 18:172632–41
    [Google Scholar]
  106. 106.
    Rose DP, Ratterman ME, Griffin DK, Hou L, Kelley-Loughnane N et al. 2014. Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans. Biomed. Eng. 62:61457–65
    [Google Scholar]
  107. 107.
    Morgan R, Patterson M, Nimmo M. 2004. Acute effects of dehydration on sweat composition in men during prolonged exercise in the heat. Acta Physiol. Scand. 182:137–43
    [Google Scholar]
  108. 108.
    Armstrong L, Hubbard R, Szlyk P, Matthew W, Sils I 1985. Voluntary dehydration and electrolyte losses during prolonged exercise in the heat. Aviat. Space Environ. Med. 56:8765–70
    [Google Scholar]
  109. 109.
    Costill D, Cote R, Fink W. 1976. Muscle water and electrolytes following varied levels of dehydration in man. J. Appl. Physiol. 40:16–11
    [Google Scholar]
  110. 110.
    Walsh RM, Noakes T, Hawley J, Dennis S 1994. Impaired high-intensity cycling performance time at low levels of dehydration. Int. J. Sports Med. 15:7392–98
    [Google Scholar]
  111. 111.
    Baker LB. 2017. Sweating rate and sweat sodium concentration in athletes: a review of methodology and intra/interindividual variability. Sports Med. 47:1111–28
    [Google Scholar]
  112. 112.
    Mohan AV, Rajendran V, Mishra RK, Jayaraman M. 2020. Recent advances and perspectives in sweat based wearable electrochemical sensors. TrAC Trends Anal. Chem. 131:116024
    [Google Scholar]
  113. 113.
    McCaul M, Glennon T, Diamond D. 2017. Challenges and opportunities in wearable technology for biochemical analysis in sweat. Curr. Opin. Electrochem. 3:146–50
    [Google Scholar]
  114. 114.
    Bandodkar AJ, Wang J. 2014. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32:7363–71
    [Google Scholar]
  115. 115.
    Bandodkar AJ, Jeang WJ, Ghaffari R, Rogers JA. 2019. Wearable sensors for biochemical sweat analysis. Annu. Rev. Anal. Chem. 12:1–22
    [Google Scholar]
  116. 116.
    Coyle S, Morris D, Lau K-T, Diamond D, Taccini N et al. 2009. Textile sensors to measure sweat pH and sweat-rate during exercise. 2009 3rd International Conference on Pervasive Computing Technologies for Healthcare1–6. New York: IEEE
    [Google Scholar]
  117. 117.
    Taylor NA, van den Heuvel AM, Kerry P, McGhee S, Peoples GE et al. 2012. Observations on saliva osmolality during progressive dehydration and partial rehydration. Eur. J. Appl. Physiol. 112:93227–37
    [Google Scholar]
  118. 118.
    Walsh NP, Montague JC, Callow N, Rowlands AV. 2004. Saliva flow rate, total protein concentration and osmolality as potential markers of whole body hydration status during progressive acute dehydration in humans. Arch. Oral Biol. 49:2149–54
    [Google Scholar]
  119. 119.
    Proctor GB, Carpenter GH. 2007. Regulation of salivary gland function by autonomic nerves. Auton. Neurosci. 133:13–18
    [Google Scholar]
  120. 120.
    Begum MN, Johnson CS. 2010. A review of the literature on dehydration in the institutionalized elderly. E. Spen. Eur. E. J. Clin. Nutr. Metab. 5:1e47–53
    [Google Scholar]
  121. 121.
    Xiao H, Barber J, Campbell ES. 2004. Economic burden of dehydration among hospitalized elderly patients. Am. J. Health Syst. Pharm. 61:232534–40
    [Google Scholar]
  122. 122.
    Cheuvront SN, Sawka MN. 2005. Hydration assessment of athletes. Sports Sci. Exch. 18:297
    [Google Scholar]
  123. 123.
    Armstrong LE, Maresh CM, Castellani JW, Bergeron MF, Kenefick RW et al. 1994. Urinary indices of hydration status. Int. J. Sport Nutr. Exercise Metab. 4:3265–79
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-062117-121028
Loading
/content/journals/10.1146/annurev-bioeng-062117-121028
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error