1932

Abstract

Biosensors first appeared several decades ago to address the need for monitoring physiological parameters such as oxygen or glucose in biological fluids such as blood. More recently, a new wave of biosensors has emerged in order to provide more nuanced and granular information about the composition and function of living cells. Such biosensors exist at the confluence of technology and medicine and often strive to connect cell phenotype or function to physiological or pathophysiological processes. Our review aims to describe some of the key technological aspects of biosensors being developed for cell analysis. The technological aspects covered in our review include biorecognition elements used for biosensor construction, methods for integrating cells with biosensors, approaches to single-cell analysis, and the use of nanostructured biosensors for cell analysis. Our hope is that the spectrum of possibilities for cell analysis described in this review may pique the interest of biomedical scientists and engineers and may spur new collaborations in the area of using biosensors for cell analysis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071114-040525
2015-12-07
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/17/1/annurev-bioeng-071114-040525.html?itemId=/content/journals/10.1146/annurev-bioeng-071114-040525&mimeType=html&fmt=ahah

Literature Cited

  1. Wang J. 1.  2007. Electrochemical glucose biosensors. Chem. Rev. 108:814–25 [Google Scholar]
  2. Clark LC Jr, Lyons C. 2.  1962. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. NY Acad. Sci. 102:29–45 [Google Scholar]
  3. Czerkinsky CC, Nilsson LA, Nygren H, Ouchterlony O, Tarkowski A. 3.  1983. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J. Immunol. Methods 65:109–21 [Google Scholar]
  4. Lalvani A, Pareek M. 4.  2010. Interferon gamma release assays: principles and practice. Enferm. Infecc. Microbiol. Clin. 28:245–52 [Google Scholar]
  5. Zhu H, Stybayeva GS, Macal M, George MD, Dandekar S, Revzin A. 5.  2008. A microdevice for multiplexed detection of T-cell secreted cytokines. Lab Chip 8:2197–205 [Google Scholar]
  6. Stybayeva G, Mudanyali O, Seo S, Silangcruz J, Macal M. 6.  et al. 2010. Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function. Anal. Chem. 82:3736–44 [Google Scholar]
  7. Chen A, Vu T, Stybayeva G, Pan T, Revzin A. 7.  2013. Reconfigurable microfluidics combined with antibody microarrays for enhanced detection of T-cell secreted cytokines. Biomicrofluidics 7:24105 [Google Scholar]
  8. Zheng CH, Wang JW, Pang YH, Wang JB, Li WB. 8.  et al. 2012. High-throughput immunoassay through in-channel microfluidic patterning. Lab Chip 12:2487–90 [Google Scholar]
  9. Bailey RC, Kwong GA, Radu CG, Witte ON, Heath JR. 9.  2007. DNA-encoded antibody libraries: a unified platform for multiplexed cell sorting and detection of genes and proteins. J. Am. Chem. Soc. 129:1959–67 [Google Scholar]
  10. Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ. 10.  et al. 2006. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3:995–1000 [Google Scholar]
  11. Jarvius M, Paulsson J, Weibrecht I, Leuchowius KJ, Andersson AC. 11.  et al. 2007. In situ detection of phosphorylated platelet-derived growth factor receptor β using a generalized proximity ligation method. Mol. Cell. Proteomics 6:1500–9 [Google Scholar]
  12. Homola J. 12.  2003. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377:528–39 [Google Scholar]
  13. Stybayeva G, Kairova M, Ramanculov E, Simonian AL, Revzin A. 13.  2010. Detecting interferon-γ release from human CD4 T-cells using surface plasmon resonance. Colloids Surf. B Biointerfaces 80:251–55 [Google Scholar]
  14. Gao Y, Gan Q, Xin Z, Cheng X, Bartoli FJ. 14.  2011. Plasmonic Mach–Zehnder interferometer for ultrasensitive on-chip biosensing. ACS Nano 5:9836–44 [Google Scholar]
  15. Gao Y, Xin Z, Zeng B, Gan Q, Cheng X, Bartoli FJ. 15.  2013. Plasmonic interferometric sensor arrays for high-performance label-free biomolecular detection. Lab Chip 13:4755–64 [Google Scholar]
  16. Wang SP, Ramachandran A, Ja SJ. 16.  2009. Integrated microring resonator biosensors for monitoring cell growth and detection of toxic chemicals in water. Biosens. Bioelectron. 24:3061–66 [Google Scholar]
  17. Luchansky MS, Bailey RC. 17.  2011. Rapid, multiparameter profiling of cellular secretion using silicon photonic microring resonator arrays. J. Am. Chem. Soc. 133:20500–6 [Google Scholar]
  18. Tyagi S, Kramer FR. 18.  1996. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14:303–8 [Google Scholar]
  19. Okamoto A. 19.  2011. ECHO probes: a concept of fluorescence control for practical nucleic acid sensing. Chem. Soc. Rev. 40:5815–28 [Google Scholar]
  20. Seferos DS, Giljohann DA, Hill HD, Prigodich AE, Mirkin CA. 20.  2007. Nano-flares: probes for transfection and mRNA detection in living cells. J. Am. Chem. Soc. 129:15477–79 [Google Scholar]
  21. Prigodich AE, Randeria PS, Briley WE, Kim NJ, Daniel WL. 21.  et al. 2012. Multiplexed nanoflares: mRNA detection in live cells. Anal. Chem. 84:2062–66 [Google Scholar]
  22. Ingebrandt S, Offenhausser A. 22.  2006. Label-free detection of DNA using field-effect transistors. Phys. Status Solidi A 203:3399–411 [Google Scholar]
  23. Ellington AD, Szostak JW. 23.  1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–22 [Google Scholar]
  24. Xiao Y, Piorek BD, Plaxco KW, Heeger AJ. 24.  2005. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. J. Am. Chem. Soc. 127:17990–91 [Google Scholar]
  25. Xiao Y, Lubin AA, Heeger AJ, Plaxco KW. 25.  2005. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew. Chem. Int. Ed. 44:5456–59 [Google Scholar]
  26. Liu Y, Yan J, Howland MC, Kwa T, Revzin A. 26.  2011. Micropatterned aptasensors for continuous monitoring of cytokine release from human leukocytes. Anal. Chem. 83:8286–92 [Google Scholar]
  27. Liu Y, Kwa T, Revzin A. 27.  2012. Simultaneous detection of cell-secreted TNF-α, and IFN-γ using micropatterned aptamer-modified electrodes. Biomaterials 33:7347–55 [Google Scholar]
  28. Zhou Q, Kwa T, Gao YD, Liu Y, Rahimian A, Revzin A. 28.  2014. On-chip regeneration of aptasensors for monitoring cell secretion. Lab. Chip 14:276–9 [Google Scholar]
  29. Gao Y, Zhou Q, Matharu Z, Liu Y, Kwa T, Revzin A. 29.  2014. A mathematical method for extracting cell secretion rate from affinity biosensors continuously monitoring cell activity. Biomicrofluidics 8:021501 [Google Scholar]
  30. Kwa T, Zhou Q, Gao Y, Rahimian A, Kwon L. 30.  et al. 2014. Reconfigurable microfluidics with integrated aptasensors for monitoring intercellular communication. Lab Chip 14:1695–704 [Google Scholar]
  31. Ferguson BS, Hoggarth DA, Maliniak D, Ploense K, White RJ. 31.  et al. 2013. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals. Sci. Transl. Med. 5:213ra165 [Google Scholar]
  32. Hamaguichi N, Ellington AD, Stanton M. 32.  2001. Aptamer beacons for the direct detection of proteins. Anal. Biochem. 294:126–31 [Google Scholar]
  33. McCauley TG, Hamaguichi N, Stanton M. 33.  2003. Aptamer-based biosensor array for detection and quantification of biological macromolecules. Anal. Biochem. 319:244–50 [Google Scholar]
  34. Tan WH, Wang KM, Drake TJ. 34.  2004. Molecular beacons. Curr. Opin. Chem. Biol. 8:547–53 [Google Scholar]
  35. Qiu L, Zhang T, Jiang J, Wu C, Zhu G. 35.  et al. 2014. Cell membrane-anchored biosensors for real-time monitoring of the cellular microenvironment. J. Am. Chem. Soc. 136:13090–93 [Google Scholar]
  36. Zhao W, Schafer S, Choi J, Yamanaka YJ, Lombardi ML. 36.  et al. 2011. Cell-surface sensors for real-time probing of cellular environments. Nat. Nanotechnol. 6:524–31 [Google Scholar]
  37. Cho H, Yeh EC, Sinha R, Laurence TA, Bearinger JP, Lee LP. 37.  2012. Single-step nanoplasmonic VEGF165 aptasensor for early cancer diagnosis. ACS Nano 6:7607–14 [Google Scholar]
  38. Zheng D, Seferos DS, Giljohann DA, Patel PC, Mirkin CA. 38.  2009. Aptamer nano-flares for molecular detection in living cells. Nano Lett. 9:3258–61 [Google Scholar]
  39. Hu R, Zhang X, Zhao Z, Zhu G, Chen T. 39.  et al. 2014. DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angew. Chem. Int. Ed. 53:5821–26 [Google Scholar]
  40. Nejadnik MR, Deepak FL, Garcia CD. 40.  2011. Adsorption of glucose oxidase to 3-D scaffolds of carbon nanotubes: analytical applications. Electroanalysis 23:1462–69 [Google Scholar]
  41. Wu P, Shao QA, Hu YJ, Jin JA, Yin YJ. 41.  et al. 2010. Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochim. Acta 55:8606–14 [Google Scholar]
  42. Liu Y, Yu D, Zeng C, Miao Z, Dai L. 42.  2010. Biocompatible graphene oxide-based glucose biosensors. Langmuir 26:6158–60 [Google Scholar]
  43. Yan J, Sun Y, Zhu H, Marcu L, Revzin A. 43.  2009. Enzyme-containing hydrogel micropatterns serving a dual purpose of cell sequestration and metabolite detection. Biosens. Bioelectron. 24:2604–10 [Google Scholar]
  44. Matharu Z, Enomoto J, Revzin A. 44.  2013. Miniature enzyme-based electrodes for detection of hydrogen peroxide release from alcohol-injured hepatocytes. Anal. Chem. 85:932–39 [Google Scholar]
  45. Mok H, Bae KH, Ahn CH, Park TG. 45.  2009. PEGylated and MMP-2 specifically dePEGylated quantum dots: comparative evaluation of cellular uptake. Langmuir 25:1645–50 [Google Scholar]
  46. Shin DS, Liu Y, Gao Y, Kwa T, Matharu Z, Revzin A. 46.  2013. Micropatterned surfaces functionalized with electroactive peptides for detecting protease release from cells. Anal. Chem. 85:220–27 [Google Scholar]
  47. Son KJ, Shin DS, Kwa T, Gao Y, Revzin A. 47.  2013. Micropatterned sensing hydrogels integrated with reconfigurable microfluidics for detecting protease release from cells. Anal. Chem. 85:11893–901 [Google Scholar]
  48. Karlsson AC, Martin JN, Younger SR, Bredt BM, Epling L. 48.  et al. 2003. Comparison of the ELISPOT and cytokine flow cytometry assays for the enumeration of antigen-specific T cells. J. Immunol. Methods 283:141–53 [Google Scholar]
  49. Rettig JR, Folch A. 49.  2005. Large-scale single-cell trapping and imaging using microwell arrays. Anal. Chem. 77:5628–34 [Google Scholar]
  50. Shirasaki Y, Yamagishi M, Suzuki N, Izawa K, Nakahara A. 50.  et al. 2014. Real-time single-cell imaging of protein secretion. Sci. Rep. 4:4736 [Google Scholar]
  51. Guldevall K, Vanherberghen B, Frisk T, Hurtig J, Christakou AE. 51.  et al. 2010. Imaging immune surveillance of individual natural killer cells confined in microwell arrays. PLOS ONE 5:e15453 [Google Scholar]
  52. Zhu H, Stybayeva G, Silangcruz J, Yan J, Ramanculov E. 52.  et al. 2009. Detecting cytokine release from single T-cells. Anal. Chem. 81:8150–56 [Google Scholar]
  53. Revzin A, Tompkins RG, Toner M. 53.  2003. Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass. Langmuir 19:9855–62 [Google Scholar]
  54. Guan Z, Jia S, Zhu Z, Zhang M, Yang CJ. 54.  2014. Facile and rapid generation of large-scale microcollagen gel array for long-term single-cell 3D culture and cell proliferation heterogeneity analysis. Anal. Chem. 86:2789–97 [Google Scholar]
  55. Wood DK, Weingeist DM, Bhatia SN, Engelward BP. 55.  2010. Single cell trapping and DNA damage analysis using microwell arrays. PNAS 107:10008–13 [Google Scholar]
  56. Jin A, Ozawa T, Tajiri K, Obata T, Kondo S. 56.  et al. 2009. A rapid and efficient single-cell manipulation method for screening antigen-specific antibody-secreting cells from human peripheral blood. Nat. Med. 15:1088–92 [Google Scholar]
  57. Love JC, Ronan JL, Grotenbreg GM, van der Veen AG, Ploegh HL. 57.  2006. A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat. Biotechnol. 24:703–7 [Google Scholar]
  58. Han Q, Bradshaw EM, Nilsson B, Hafler DA, Love JC. 58.  2010. Multidimensional analysis of the frequencies and rates of cytokine secretion from single cells by quantitative microengraving. Lab Chip 10:1391–400 [Google Scholar]
  59. Yamanaka YJ, Berger CT, Sips M, Cheney PC, Alter G, Love JC. 59.  2012. Single-cell analysis of the dynamics and functional outcomes of interactions between human natural killer cells and target cells. Integr. Biol. (Camb.) 4:1175–84 [Google Scholar]
  60. Smith EJ, Schulze S, Kiravittaya S, Mei YF, Sanchez S, Schmidt OG. 60.  2011. Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors. Nano Lett. 11:4037–42 [Google Scholar]
  61. Mei Y, Huang G, Solovev AA, Ureña EB, Mönch I. 61.  et al. 2008. Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv. Mater. 20:4085–90 [Google Scholar]
  62. Salazar GT, Wang Y, Young G, Bachman M, Sims CE. 62.  et al. 2007. Micropallet arrays for the separation of single, adherent cells. Anal. Chem. 79:682–87 [Google Scholar]
  63. Castellarnau M, Szeto GL, Su HW, Tokatlian T, Love JC. 63.  et al. 2015. Stochastic particle barcoding for single-cell tracking and multiparametric analysis. Small 11:489–98 [Google Scholar]
  64. Moon S, Ceyhan E, Gurkan UA, Demirci U. 64.  2011. Statistical modeling of single target cell encapsulation. PLOS ONE 6:e21580 [Google Scholar]
  65. Chabert M, Viovy JL. 65.  2008. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. PNAS 105:3191–96 [Google Scholar]
  66. Edd JF, Di Carlo D, Humphry KJ, Koster S, Irimia D. 66.  et al. 2008. Controlled encapsulation of single-cells into monodisperse picoliter drops. Lab Chip 8:1262–64 [Google Scholar]
  67. Joensson HN, Samuels ML, Brouzes ER, Medkova M, Uhlen M. 67.  et al. 2009. Detection and analysis of low-abundance cell-surface biomarkers using enzymatic amplification in microfluidic droplets. Angew. Chem. Int. Ed. 48:2518–21 [Google Scholar]
  68. El Debs B, Utharala R, Balyasnikova IV, Griffiths AD, Merten CA. 68.  2012. Functional single-cell hybridoma screening using droplet-based microfluidics. PNAS 109:11570–75 [Google Scholar]
  69. Baret J-C, Miller OJ, Taly V, Ryckelynck M, El-Harrak A. 69.  et al. 2009. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9:1850–58 [Google Scholar]
  70. Akbari S, Pirbodaghi T. 70.  2014. A droplet-based heterogeneous immunoassay for screening single cells secreting antigen-specific antibodies. Lab Chip 14:3275–80 [Google Scholar]
  71. Di Carlo D, Wu LY, Lee LP. 71.  2006. Dynamic single cell culture array. Lab Chip 6:1445–49 [Google Scholar]
  72. Chung K, Rivet CA, Kemp ML, Lu H. 72.  2011. Imaging single-cell signaling dynamics with a deterministic high-density single-cell trap array. Anal. Chem. 83:7044–52 [Google Scholar]
  73. Ma C, Fan R, Ahmad H, Shi Q, Comin-Anduix B. 73.  et al. 2011. A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat. Med. 17:738–43 [Google Scholar]
  74. Eyer K, Stratz S, Kuhn P, Kuster SK, Dittrich PS. 74.  2013. Implementing enzyme-linked immunosorbent assays on a microfluidic chip to quantify intracellular molecules in single cells. Anal. Chem. 85:3280–87 [Google Scholar]
  75. Unger MA, Chou H-P, Thorsen T, Scherer A, Quake SR. 75.  2000. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–16 [Google Scholar]
  76. Hochmuth RM. 76.  Micropipette aspiration of living cells 2000. J. Biomech. 33:15–22
  77. Yamamura S, Kishi H, Tokimitsu Y, Kondo S, Honda R. 77.  et al. 2005. Single-cell microarray for analyzing cellular response. Anal. Chem. 77:8050–56 [Google Scholar]
  78. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z. 78.  et al. 1996. Laser capture microdissection. Science 274:998–1001 [Google Scholar]
  79. Jiang X, Ferrigno R, Mrksich M, Whitesides GM. 79.  2003. Electrochemical desorption of self-assembled monolayers noninvasively releases patterned cells from geometrical confinements. J. Am. Chem. Soc. 125:2366–67 [Google Scholar]
  80. Yeo WS, Yousaf MN, Mrksich M. 80.  2003. Dynamic interfaces between cells and surfaces: electroactive substrates that sequentially release and attach cells. J. Am. Chem. Soc. 125:14994–95 [Google Scholar]
  81. Yeo WS, Mrksich M. 81.  2006. Electroactive self-assembled monolayers that permit orthogonal control over the adhesion of cells to patterned substrates. Langmuir 22:10816–20 [Google Scholar]
  82. Zhu H, Yan J, Revzin A. 82.  2008. Catch and release sorting: electrochemical desorption of T-cells from antibody-modified microelectrodes. Colloids Surf. B Biointerfaces 64:260–68 [Google Scholar]
  83. Kim M, Lee JY, Shah SS, Tae G, Revzin A. 83.  2009. On-cue detachment of hydrogels and cells from optically transparent electrodes. Chem. Comm. 39:5865–67 [Google Scholar]
  84. Shah SS, Kim M, Foster E, Vu T, Patel D. 84.  et al. 2012. Electrochemical release of hepatocyte-on-hydrogel microstructures from ITO substrates. Anal. Bioanal. Chem. 402:1847–56 [Google Scholar]
  85. Plouffe BD, Brown MA, Iyer RK, Radisic M, Murthy SK. 85.  2009. Controlled capture and release of cardiac fibroblasts using peptide-functionalized alginate gels in microfluidic channels. Lab Chip 9:1507–10 [Google Scholar]
  86. Hatch A, Hansmann G, Murthy SK. 86.  2011. Engineered alginate hydrogels for effective microfluidic capture and release of endothelial progenitor cells from whole blood. Langmuir 27:4257–64 [Google Scholar]
  87. Zhang ZY, Chen NC, Li SH, Battig MR, Wang Y. 87.  2012. Programmable hydrogels for controlled cell catch and release using hybridized aptamers and complementary sequences. J. Am. Chem. Soc. 134:15716–19 [Google Scholar]
  88. Gach PC, Attayek PJ, Whittlesey RL, Yeh JJ, Allbritton NL. 88.  2014. Micropallet arrays for the capture, isolation and culture of circulating tumor cells from whole blood of mice engrafted with primary human pancreatic adenocarcinoma. Biosens. Bioelectron. 54:476–83 [Google Scholar]
  89. Gach PC, Wang YL, Phillips C, Sims CE, Allbritton NL. 89.  2011. Isolation and manipulation of living adherent cells by micromolded magnetic rafts. Biomicrofluidics 5:12 [Google Scholar]
  90. Shin DS, You J, Rahimian A, Vu T, Siltanen C. 90.  et al. 2014. Photodegradable hydrogels for capture, detection, and release of live cells. Angew. Chem. Int. Ed. 53:8221–24 [Google Scholar]
  91. Siltanen C, Shin DS, Sutcliffe J, Revzin A. 91.  2013. Micropatterned photodegradable hydrogels for the sorting of microbeads and cells. Angew. Chem. Int. Ed. 52:9224–28 [Google Scholar]
  92. Chan AC, Carter PJ. 92.  2010. Therapeutic antibodies for autoimmunity and inflammation. Nat. Rev. Immunol. 10:301–16 [Google Scholar]
  93. Brekke OH, Sandlie I. 93.  2003. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat. Rev. Drug Discov. 2:52–62 [Google Scholar]
  94. Kida A, Iijima M, Niimi T, Maturana AD, Yoshimoto N, Kuroda S. 94.  2013. Cell surface-fluorescence immunosorbent assay for real-time detection of hybridomas with efficient antibody secretion at the single-cell level. Anal. Chem. 85:1753–59 [Google Scholar]
  95. Chattopadhyay PK, Yu J, Roederer M. 95.  2005. A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles. Nat. Med. 11:1113–17 [Google Scholar]
  96. Gordon S, Taylor PR. 96.  2005. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5:953–64 [Google Scholar]
  97. Lu Y, Chen JJ, Mu L, Xue Q, Wu Y. 97.  et al. 2013. High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity. Anal. Chem. 85:2548–56 [Google Scholar]
  98. Juul S, Ho YP, Koch J, Andersen FF, Stougaard M. 98.  et al. 2011. Detection of single enzymatic events in rare or single cells using microfluidics. ACS Nano 5:8305–10 [Google Scholar]
  99. Sarkar A, Kolitz S, Lauffenburger DA, Han J. 99.  2014. Microfluidic probe for single-cell analysis in adherent tissue culture. Nat. Commun. 5:3421 [Google Scholar]
  100. Kim ST, Kim D-J, Kim T-J, Seo D-W, Kim T-H. 100.  et al. 2010. Novel streptavidin-functionalized silicon nanowire arrays for CD4+ T lymphocyte separation. Nano Lett. 10:2877–83 [Google Scholar]
  101. Nagesha DK, Whitehead MA, Coffer JL. 101.  2005. Biorelevant calcification and non-cytotoxic behavior in silicon nanowires. Adv. Mater. 17:921–24 [Google Scholar]
  102. Cui Y, Wei QQ, Park HK, Lieber CM. 102.  2001. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–92 [Google Scholar]
  103. Zhong ZH, Wang DL, Cui Y, Bockrath MW, Lieber CM. 103.  2003. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302:1377–79 [Google Scholar]
  104. Tao A, Kim F, Hess C, Goldberger J, He RR. 104.  et al. 2003. Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3:1229–33 [Google Scholar]
  105. Whang D, Jin S, Wu Y, Lieber CM. 105.  2003. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3:1255–59 [Google Scholar]
  106. Morales AM, Lieber CM. 106.  1998. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–11 [Google Scholar]
  107. Wu YY, Yang PD. 107.  2001. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123:3165–66 [Google Scholar]
  108. Wu Y, Yan H, Huang M, Messer B, Song JH, Yang P. 108.  2002. Inorganic semiconductor nanowires: rational growth, assembly, and novel properties. Chemistry 8:1260–68 [Google Scholar]
  109. Cui Y, Lauhon LJ, Gudiksen MS, Wang JF, Lieber CM. 109.  2001. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78:2214–16 [Google Scholar]
  110. Duan XF, Huang Y, Cui Y, Wang JF, Lieber CM. 110.  2001. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409:66–69 [Google Scholar]
  111. Duan XF, Lieber CM. 111.  2000. General synthesis of compound semiconductor nanowires. Adv. Mater. 12:298–302 [Google Scholar]
  112. Hou S, Zhao H, Zhao L, Shen Q, Wei KS. 112.  et al. 2013. Capture and stimulated release of circulating tumor cells on polymer-grafted silicon nanostructures. Adv. Mater. 25:1547–51 [Google Scholar]
  113. Yoon HJ, Kozminsky M, Nagrath S. 113.  2014. Emerging role of nanomaterials in circulating tumor cell isolation and analysis. ACS Nano 8:1995–2017 [Google Scholar]
  114. Kim W, Ng JK, Kunitake ME, Conklin BR, Yang P. 114.  2007. Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 129:7228–29 [Google Scholar]
  115. Wang S, Wang H, Jiao J, Chen K-J, Owens GE. 115.  et al. 2009. Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells. Angew. Chem. Int. Ed. 48:8970–73 [Google Scholar]
  116. Chen L, Liu X, Su B, Li J, Jiang L. 116.  et al. 2011. Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces. Adv. Mater. 23:4376–80 [Google Scholar]
  117. Lee S-K, Kim G-S, Wu Y, Kim D-J, Lu Y. 117.  et al. 2012. Nanowire substrate-based laser scanning cytometry for quantitation of circulating tumor cells. Nano Lett. 12:2697–704 [Google Scholar]
  118. Lee S-K, Kim D-J, Lee G, Kim G-S, Kwak M, Fan R. 118.  2014. Specific rare cell capture using micro-patterned silicon nanowire platform. Biosens. Bioelectron. 54:181–88 [Google Scholar]
  119. Qi S, Yi C, Ji S, Fong C-C, Yang M. 119.  2009. Cell adhesion and spreading behavior on vertically aligned silicon nanowire arrays. ACS Appl. Mater. Interfaces 1:30–34 [Google Scholar]
  120. Shalek AK, Robinson JT, Karp ES, Lee JS, Ahn D-R. 120.  et al. 2010. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. PNAS 107:1870–75 [Google Scholar]
  121. Shalek AK, Gaublomme JT, Wang L, Yosef N, Chevrier N. 121.  et al. 2012. Nanowire-mediated delivery enables functional interrogation of primary immune cells: application to the analysis of chronic lymphocytic leukemia. Nano Lett. 12:6498–504 [Google Scholar]
  122. VanDersarl JJ, Xu AM, Melosh NA. 122.  2012. Nanostraws for direct fluidic intracellular access. Nano Lett. 12:3881–86 [Google Scholar]
  123. Timko BP, Cohen-Karni T, Qing Q, Tian B, Lieber CM. 123.  2010. Design and implementation of functional nanoelectronic interfaces with biomolecules, cells, and tissue using nanowire device arrays. IEEE Trans. Nanotechnol. 9:269–80 [Google Scholar]
  124. Lapierre MA, O'Keefe M, Taft BJ, Kelley SO. 124.  2003. Electrocatalytic detection of pathogenic DNA sequences and antibiotic resistance markers. Anal. Chem. 75:6327–33 [Google Scholar]
  125. Das J, Kelley SO. 125.  2013. Tuning the bacterial detection sensitivity of nanostructured microelectrodes. Anal. Chem. 85:7333–38 [Google Scholar]
  126. Soleymani L, Fang Z, Sargent EH, Kelley SO. 126.  2009. Programming the detection limits of biosensors through controlled nanostructuring. Nat. Nanotechnol. 4:844–8 [Google Scholar]
  127. Vasilyeva E, Lam B, Fang Z, Minden MD, Sargent EH, Kelley SO. 127.  2011. Direct genetic analysis of ten cancer cells: tuning sensor structure and molecular probe design for efficient mRNA capture. Angew. Chem.Int. Ed. 50:4137–41 [Google Scholar]
  128. Lam B, Fang Z, Sargent EH, Kelley SO. 128.  2012. Polymerase chain reaction-free, sample-to-answer bacterial detection in 30 minutes with integrated cell lysis. Anal. Chem. 84:21–25 [Google Scholar]
  129. Noy A. 129.  2011. Bionanoelectronics. Adv. Mater. 23:807–20 [Google Scholar]
  130. Huang S-CJ, Artyukhin AB, Martinez JA, Sirbuly DJ, Wang Y. 130.  et al. 2007. Formation, stability, and mobility of one-dimensional lipid bilayers on polysilicon nanowires. Nano Lett. 7:3355–59 [Google Scholar]
  131. Misra N, Martinez JA, Huang S-CJ, Wang Y, Stroeve P. 131.  et al. 2009. Bioelectronic silicon nanowire devices using functional membrane proteins. PNAS 106:13780–84 [Google Scholar]
  132. Huang S-CJ, Artyukhin AB, Misra N, Martinez JA, Stroeve PA. 132.  et al. 2010. Carbon nanotube transistor controlled by a biological ion pump gate. Nano Lett. 10:1812–16 [Google Scholar]
  133. Naylor LH. 133.  1999. Reporter gene technology: the future looks bright. Biochem. Pharmacol. 58:749–57 [Google Scholar]
  134. Tian B, Lieber CM. 134.  2013. Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem. 6:31–51 [Google Scholar]
  135. Nel AE, Maedler L, Velegol D, Xia T, Hoek EMV. 135.  et al. 2009. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8:543–57 [Google Scholar]
  136. Rajendran L, Knoelker H-J, Simons K. 136.  2010. Subcellular targeting strategies for drug design and delivery. Nat. Rev. Drug Discov. 9:29–42 [Google Scholar]
  137. Tian B, Cohen-Karni T, Qing Q, Duan X, Xie P, Lieber CM. 137.  2010. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329:830–34 [Google Scholar]
  138. Tian B, Xie P, Kempa TJ, Bell DC, Lieber CM. 138.  2009. Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 4:824–29 [Google Scholar]
  139. Duan X, Gao R, Xie P, Cohen-Karni T, Qing Q. 139.  et al. 2012. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7:174–79 [Google Scholar]
  140. Gao R, Strehle S, Tian B, Cohen-Karni T, Xie P. 140.  et al. 2012. Outside looking in: nanotube transistor intracellular sensors. Nano Lett. 12:3329–33 [Google Scholar]
  141. Na Y-R, Kim SY, Gaublomme JT, Shalek AK, Jorgolli M. 141.  et al. 2013. Probing enzymatic activity inside living cells using a nanowire-cell “sandwich” assay. Nano Lett. 13:153–58 [Google Scholar]
  142. Rogers JA, Lagally MG, Nuzzo RG. 142.  2011. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477:45–53 [Google Scholar]
  143. Timko BP, Cohen-Karni T, Yu G, Qing Q, Tian B, Lieber CM. 143.  2009. Electrical recording from hearts with flexible nanowire device arrays. Nano Lett. 9:914–18 [Google Scholar]
  144. Kim D-H, Viventi J, Amsden JJ, Xiao J, Vigeland L. 144.  et al. 2010. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9:511–17 [Google Scholar]
  145. Tian B, Liu J, Dvir T, Jin L, Tsui JH. 145.  et al. 2012. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11:986–94 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071114-040525
Loading
/content/journals/10.1146/annurev-bioeng-071114-040525
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error