1932

Abstract

Traditionally, cell analysis has focused on using molecular biomarkers for basic research, cell preparation, and clinical diagnostics; however, new microtechnologies are enabling evaluation of the mechanical properties of cells at throughputs that make them amenable to widespread use. We review the current understanding of how the mechanical characteristics of cells relate to underlying molecular and architectural changes, describe how these changes evolve with cell-state and disease processes, and propose promising biomedical applications that will be facilitated by the increased throughput of mechanical testing: from diagnosing cancer and monitoring immune states to preparing cells for regenerative medicine. We provide background about techniques that laid the groundwork for the quantitative understanding of cell mechanics and discuss current efforts to develop robust techniques for rapid analysis that aim to implement mechanophenotyping as a routine tool in biomedicine. Looking forward, we describe additional milestones that will facilitate broad adoption, as well as new directions not only in mechanically assessing cells but also in perturbing them to passively engineer cell state.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071114-040545
2015-12-07
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/17/1/annurev-bioeng-071114-040545.html?itemId=/content/journals/10.1146/annurev-bioeng-071114-040545&mimeType=html&fmt=ahah

Literature Cited

  1. Janmey PA, McCulloch CA. 1.  2007. Cell mechanics: integrating cell responses to mechanical stimuli. Annu. Rev. Biomed. Eng. 9:1–34 [Google Scholar]
  2. Swift J, Discher DE. 2.  2014. The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue. J. Cell Sci. 127:3005–15 [Google Scholar]
  3. Isermann P, Lammerding J. 3.  2013. Nuclear mechanics and mechanotransduction in health and disease. Curr. Biol. 23:R1113–21 [Google Scholar]
  4. Qin Z, Kreplak L, Buehler MJ. 4.  2009. Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments. PLOS ONE 4e7294 [Google Scholar]
  5. Seltmann K, Fritsch AW, Kas JA, Magin TM. 5.  2013. Keratins significantly contribute to cell stiffness and impact invasive behavior. PNAS 110:18507–12 [Google Scholar]
  6. Guo M, Ehrlicher AJ, Mahammad S, Fabich H, Jensen MH. 6.  et al. 2013. The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics. Biophys. J. 105:1562–68 [Google Scholar]
  7. Rotsch C, Radmacher M. 7.  2000. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys. J. 78:520–35 [Google Scholar]
  8. Heidemann SR, Kaech S, Buxbaum RE, Matus A. 8.  1999. Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J. Cell Biol. 145:109–22 [Google Scholar]
  9. Mahaffy RE, Shih CK, MacKintosh FC, Kas J. 9.  2000. Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys. Rev. Lett. 85:880–83 [Google Scholar]
  10. Elson EL. 10.  1988. Cellular mechanics as an indicator of cytoskeletal structure and function. Annu. Rev. Biophys. Biophys. Chem. 17:397–430 [Google Scholar]
  11. Janmey PA. 11.  1998. The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol. Rev. 78:763–81 [Google Scholar]
  12. Stossel TP. 12.  1984. Contribution of actin to the structure of the cytoplasmic matrix. J. Cell Biol. 99:S15–21 [Google Scholar]
  13. Darling EM, Zauscher S, Block JA, Guilak F. 13.  2007. A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential?. Biophys. J. 92:1784–91 [Google Scholar]
  14. Darling EM, Topel M, Zauscher S, Vail TP, Guilak F. 14.  2008. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J. Biomech. 41:454–64 [Google Scholar]
  15. González-Cruz RD, Fonseca VC, Darling EM. 15.  2012. Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. PNAS 109:E1523–29 [Google Scholar]
  16. Maloney JM, Nikova D, Lautenschlager F, Clarke E, Langer R. 16.  et al. 2010. Mesenchymal stem cell mechanics from the attached to the suspended state. Biophys. J. 99:2479–87 [Google Scholar]
  17. McMahon HT, Gallop JL. 17.  2005. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–96 [Google Scholar]
  18. Stewart MP, Helenius J, Toyoda Y, Ramanathan SP, Muller DJ, Hyman AA. 18.  2011. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469:226–30 [Google Scholar]
  19. Mundel P, Reiser J, Zuniga Mejia, Borja A, Pavenstadt H, Davidson GR. 19.  et al. 1997. Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp. Cell Res. 236:248–58 [Google Scholar]
  20. Titushkin I, Cho M. 20.  2006. Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers. Biophys. J. 90:2582–91 [Google Scholar]
  21. Wang N, Butler JP, Ingber DE. 21.  1993. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–27 [Google Scholar]
  22. Hur SC, Henderson-MacLennan NK, McCabe ER, Di Carlo D. 22.  2011. Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 11:912–20 [Google Scholar]
  23. Ribeiro AS, Dahl KN. 23.  2010. The nucleus as a central structure in defining the mechanical properties of stem cells. Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE831–34 New York: IEEE (Inst. Electr. Electron. Eng.) [Google Scholar]
  24. Chalut KJ, Hopfler M, Lautenschlager F, Boyde L, Chan CJ. 24.  et al. 2012. Chromatin decondensation and nuclear softening accompany Nanog downregulation in embryonic stem cells. Biophys. J. 103:2060–70 [Google Scholar]
  25. Darling EM. 25.  2011. Force scanning: a rapid, high-resolution approach for spatial mechanical property mapping. Nanotechnology 22:175707 [Google Scholar]
  26. Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC. 26.  et al. 2013. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104 [Google Scholar]
  27. Stewart CL, Kozlov S, Fong LG, Young SG. 27.  2007. Mouse models of the laminopathies. Exp. Cell Res. 313:2144–56 [Google Scholar]
  28. Darling EM, Zauscher S, Guilak F. 28.  2006. Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthr. Cartil. 14:571–79 [Google Scholar]
  29. Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, Chizhik SA, Zhdanov RI. 29.  2007. Atomic force microscopy probing of cell elasticity. Micron 38:824–33 [Google Scholar]
  30. Kanthilal M, Darling EM. 30.  2014. Characterization of mechanical and regenerative properties of human, adipose stromal cells. Cell. Mol. Bioeng. 7:585–597 [Google Scholar]
  31. Benzina O, Szabo V, Lucas O, Saab MB, Cloitre T. 31.  et al. 2013. Changes induced by peripheral nerve injury in the morphology and nanomechanics of sensory neurons. J. Biomed. Opt. 18:106014 [Google Scholar]
  32. Rosenbluth MJ, Lam WA, Fletcher DA. 32.  2006. Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys. J. 90:2994–3003 [Google Scholar]
  33. Wu X, Sun Z, Foskett A, Trzeciakowski JP, Meininger GA, Muthuchamy M. 33.  2010. Cardiomyocyte contractile status is associated with differences in fibronectin and integrin interactions. Am. J. Physiol. Heart Circ. Physiol. 298:H2071–81 [Google Scholar]
  34. Azeloglu EU, Bhattacharya J, Costa KD. 34.  2008. Atomic force microscope elastography reveals phenotypic differences in alveolar cell stiffness. J. Appl. Physiol. 105:652–61 [Google Scholar]
  35. Bennett V. 35.  1985. The membrane skeleton of human erythrocytes and its implications for more complex cells. Annu. Rev. Biochem. 54:273–304 [Google Scholar]
  36. Rand RP, Burton AC. 36.  1964. Mechanical properties of the red cell membrane. I. Membrane stiffness and intracellular pressure. Biophys. J. 4:115–35 [Google Scholar]
  37. Hochmuth RM, Mohandas N, Blackshear PL Jr. 37.  1973. Measurement of elastic-modulus for red-cell membrane using a fluid mechanical technique. Biophys. J. 13:747–62 [Google Scholar]
  38. Engler AJ, Sen S, Sweeney HL, Discher DE. 38.  2006. Matrix elasticity directs stem cell lineage specification. Cell 126:677–89 [Google Scholar]
  39. Nobusue H, Onishi N, Shimizu T, Sugihara E, Oki Y. 39.  et al. 2014. Regulation of MKL1 via actin cytoskeleton dynamics drives adipocyte differentiation. Nat. Commun. 5:3368 [Google Scholar]
  40. Labriola NR, Darling EM. 40.  2015. Temporal heterogeneity in single-cell gene expression and mechanical properties during adipogenic differentiation. J. Biomech. 48:1058–66 [Google Scholar]
  41. Tuan RS, Boland G, Tuli R. 41.  2003. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res. Ther. 5:32–45 [Google Scholar]
  42. Ekpenyong AE, Whyte G, Chalut K, Pagliara S, Lautenschlager F. 42.  et al. 2012. Viscoelastic properties of differentiating blood cells are fate- and function-dependent. PLOS ONE 7:e45237 [Google Scholar]
  43. Bongiorno T, Kazlow J, Mezencev R, Griffiths S, Olivares-Navarrete R. 43.  et al. 2014. Mechanical stiffness as an improved single-cell indicator of osteoblastic human mesenchymal stem cell differentiation. J. Biomech. 47:2197–204 [Google Scholar]
  44. Suresh S. 44.  2007. Biomechanics and biophysics of cancer cells. Acta Biomater. 3:413–38 [Google Scholar]
  45. Kumar S, Weaver VM. 45.  2009. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28:113–27 [Google Scholar]
  46. Swaminathan V, Mythreye K, O'Brien ET, Berchuck A, Blobe GC, Superfine R. 46.  2011. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 71:5075–80 [Google Scholar]
  47. Cross SE, Jin YS, Rao J, Gimzewski JK. 47.  2007. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2:780–83 [Google Scholar]
  48. Remmerbach TW, Wottawah F, Dietrich J, Lincoln B, Wittekind C, Guck J. 48.  2009. Oral cancer diagnosis by mechanical phenotyping. Cancer Res. 69:1728–32 [Google Scholar]
  49. Fedosov DA, Lei H, Caswell B, Suresh S, Karniadakis GE. 49.  2011. Multiscale modeling of red blood cell mechanics and blood flow in malaria. PLOS Comput. Biol. 7:e1002270 [Google Scholar]
  50. Cranston HA, Boylan CW, Carroll GL, Sutera SP, Williamson JR. 50.  et al. 1984. Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science 223:400–3 [Google Scholar]
  51. Zheng Y, Nguyen J, Wei Y, Sun Y. 51.  2013. Recent advances in microfluidic techniques for single-cell biophysical characterization. Lab Chip 13:2464–83 [Google Scholar]
  52. Kirschenbaum LA, Aziz M, Astiz ME, Saha DC, Rackow EC. 52.  2000. Influence of rheologic changes and platelet–neutrophil interactions on cell filtration in sepsis. Am. J. Respir. Crit. Care Med. 161:1602–7 [Google Scholar]
  53. Trickey WR, Lee GM, Guilak F. 53.  2000. Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J. Orthop. Res. 18:891–98 [Google Scholar]
  54. Xue F, Lennon AB, McKayed KK, Campbell VA, Prendergast PJ. 54.  2013. Effect of membrane stiffness and cytoskeletal element density on mechanical stimuli within cells: an analysis of the consequences of ageing in cells. Comput. Methods Biomech. Biomed. Eng. 18:468–76 [Google Scholar]
  55. Chahine NO, Blanchette C, Thomas CB, Lu J, Haudenschild D, Loots GG. 55.  2013. Effect of age and cytoskeletal elements on the indentation-dependent mechanical properties of chondrocytes. PLOS ONE 8:e61651 [Google Scholar]
  56. Starodubtseva MN. 56.  2011. Mechanical properties of cells and ageing. Ageing Res. Rev. 10:16–25 [Google Scholar]
  57. Martens JC, Radmacher M. 57.  2008. Softening of the actin cytoskeleton by inhibition of myosin II. Pflugers Arch. 456:95–100 [Google Scholar]
  58. Krause M, Te Riet J, Wolf K. 58.  2013. Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy. Phys. Biol. 10:065002 [Google Scholar]
  59. Mach AJ, Adeyiga OB, Di Carlo D. 59.  2013. Microfluidic sample preparation for diagnostic cytopathology. Lab Chip 13:1011–26 [Google Scholar]
  60. Hong S, Krafft AE. 60.  2001. Primary effusion lymphoma with herpesvirus 8 DNA in patients coinfected with HIV and hepatitis C virus: a report of 2 cases. AIDS Read. 11:418–22 [Google Scholar]
  61. Sahn SA. 61.  2008. The value of pleural fluid analysis. Am. J. Med. Sci. 335:7–15 [Google Scholar]
  62. Renshaw AA. 62.  2007. Reporting risk of malignancy/dysplasia in cytology: a potential way to improve communication, if not reputation. Cancer 111:465–66 [Google Scholar]
  63. Tse HT, Gossett DR, Moon YS, Masaeli M, Sohsman M. 63.  et al. 2013. Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping. Sci. Transl. Med. 5:212ra163 [Google Scholar]
  64. De Vlaminck I, Valantine HA, Snyder TM, Strehl C, Cohen G. 64.  et al. 2014. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci. Transl. Med. 6:241ra77 [Google Scholar]
  65. Gossett DR, Tse HT, Lee SA, Ying Y, Lindgren AG. 65.  et al. 2012. Hydrodynamic stretching of single cells for large population mechanical phenotyping. PNAS 109:7630–35 [Google Scholar]
  66. Brinkmann V, Zychlinsky A. 66.  2007. Beneficial suicide: why neutrophils die to make NETs. Nat. Rev. Microbiol. 5:577–82 [Google Scholar]
  67. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I. 67.  et al. 2007. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176:231–41 [Google Scholar]
  68. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y. 68.  et al. 2004. Neutrophil extracellular traps kill bacteria. Science 303:1532–35 [Google Scholar]
  69. Camicia G, Pozner R, de Larrañaga G. 69.  2014. Neutrophil extracellular traps in sepsis. Shock 42:286–94 [Google Scholar]
  70. Jordan MA, Wilson L. 70.  1998. Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr. Opin. Cell Biol. 10:123–30 [Google Scholar]
  71. Kavallaris M. 71.  2010. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer 10:194–204 [Google Scholar]
  72. Schilsky RL. 72.  2010. Personalized medicine in oncology: the future is now. Nat. Rev. Drug Discov. 9:363–66 [Google Scholar]
  73. 73. DARPA (Def. Adv. Res. Proj. Agency) 2015. Program information: Dialysis-like therapeutics Arlington, VA: Def. Adv. Res. Proj. Agency http://www.darpa.mil/program/dialysis-like-therapeutics [Google Scholar]
  74. Kang JH, Super M, Yung CW, Cooper RM, Domansky K. 74.  et al. 2014. An extracorporeal blood-cleansing device for sepsis therapy. Nat. Med. 20:1211–16 [Google Scholar]
  75. Auburn S, Marfurt J, Maslen G, Campino S, Ruano Rubio V. 75.  et al. 2013. Effective preparation of Plasmodium vivax field isolates for high-throughput whole genome sequencing. PLOS ONE 8:e53160 [Google Scholar]
  76. Lowry WE, Quan WL. 76.  2010. Roadblocks en route to the clinical application of induced pluripotent stem cells. J. Cell Sci. 123:643–51 [Google Scholar]
  77. Werbowetski-Ogilvie TE, Bosse M, Stewart M, Schnerch A, Ramos-Mejia V. 77.  et al. 2009. Characterization of human embryonic stem cells with features of neoplastic progression. Nat. Biotechnol. 27:91–97 [Google Scholar]
  78. Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE. 78.  2007. Physical plasticity of the nucleus in stem cell differentiation. PNAS 104:15619–24 [Google Scholar]
  79. Lee WC, Shi H, Poon Z, Nyan LM, Kaushik T. 79.  et al. 2014. Multivariate biophysical markers predictive of mesenchymal stromal cell multipotency. PNAS 111:E4409–18 [Google Scholar]
  80. Bao G, Suresh S. 80.  2003. Cell and molecular mechanics of biological materials. Nat. Mater. 2:715–25 [Google Scholar]
  81. Cole KS. 81.  1932. Surface forces of the Arbacia egg. J. Cell. Comp. Physiol. 1:1–9 [Google Scholar]
  82. Harvey EN, Danielli JF. 82.  1938. Properties of the cell surface. Biol. Rev 13:319–341 [Google Scholar]
  83. McConnaughey WB, Petersen NO. 83.  1980. Cell poker: an apparatus for stress-strain measurements on living cells. Rev. Sci. Instrum. 51:575–80 [Google Scholar]
  84. Binnig G, Quate CF, Gerber C. 84.  1986. Atomic force microscope. Phys. Rev. Lett. 56:930–33 [Google Scholar]
  85. Radmacher M, Tillamnn RW, Fritz M, Gaub HE. 85.  1992. From molecules to cells: imaging soft samples with the atomic force microscope. Science 257:1900–5 [Google Scholar]
  86. Shin D, Athanasiou K. 86.  1999. Cytoindentation for obtaining cell biomechanical properties. J. Orthop. Res. 17:880–90 [Google Scholar]
  87. Darling EM, Guilak F. 87.  2008. A neural network model for cell classification based on single-cell biomechanical properties. Tissue Eng. Part A 14:1507–15 [Google Scholar]
  88. Darling EM, Pritchett PE, Evans BA, Superfine R, Zauscher S, Guilak F. 88.  2009. Mechanical properties and gene expression of chondrocytes on micropatterned substrates following dedifferentiation in monolayer. Cell. Mol. Bioeng. 2:395–404 [Google Scholar]
  89. Gilchrist CL, Darling EM, Chen J, Setton LA. 89.  2011. Extracellular matrix ligand and stiffness modulate immature nucleus pulposus cell–cell interactions. PLOS ONE 6:e27170 [Google Scholar]
  90. Gonzalez-Cruz RD, Darling EM. 90.  2013. Adipose-derived stem cell fate is predicted by cellular mechanical properties. Adipocyte 2:87–91 [Google Scholar]
  91. Yim EK, Darling EM, Kulangara K, Guilak F, Leong KW. 91.  2010. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 31:1299–306 [Google Scholar]
  92. Jaasma MJ, Jackson WM, Keaveny TM. 92.  2006. Measurement and characterization of whole-cell mechanical behavior. Ann. Biomed. Eng. 34:748–58 [Google Scholar]
  93. Harris AR, Charras GT. 93.  2011. Experimental validation of atomic force microscopy-based cell elasticity measurements. Nanotechnology 22:345102 [Google Scholar]
  94. Wu HW, Kuhn T, Moy VT. 94.  1998. Mechanical properties of L929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. Scanning 20:389–97 [Google Scholar]
  95. Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK. 95.  1996. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70:556–67 [Google Scholar]
  96. Mitchison JM, Swann MM. 96.  1954. The mechanical properties of the cell surface: I. The cell elastimeter. J. Exp. Biol. 31:443–60 [Google Scholar]
  97. Hochmuth RM. 97.  2000. Micropipette aspiration of living cells. J. Biomech. 33:15–22 [Google Scholar]
  98. Rowat AC, Foster LJ, Nielsen MM, Weiss M, Ipsen JH. 98.  2005. Characterization of the elastic properties of the nuclear envelope. J. R. Soc. Interface 2:63–69 [Google Scholar]
  99. Wottawah F, Schinkinger S, Lincoln B, Ananthakrishnan R, Romeyke M. 99.  et al. 2005. Optical rheology of biological cells. Phys. Rev. Lett. 94:098103 [Google Scholar]
  100. Crick FHC, Hughes AFW. 100.  1950. The physical properties of cytoplasm - a study by means of the magnetic particle method. Part I. Experimental. Exp. Cell Res. 1:37–80 [Google Scholar]
  101. Valberg PA. 101.  1984. Magnetometry of ingested particles in pulmonary macrophages. Science 224:513–16 [Google Scholar]
  102. Hoffman BD, Massiera G, Van Citters KM, Crocker JC. 102.  2006. The consensus mechanics of cultured mammalian cells. PNAS 103:10259–64 [Google Scholar]
  103. Ashkin A. 103.  1970. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24:156 [Google Scholar]
  104. Ashkin A. 104.  1997. Optical trapping and manipulation of neutral particles using lasers. PNAS 94:4853–60 [Google Scholar]
  105. Zhang H, Liu KK. 105.  2008. Optical tweezers for single cells. J. R. Soc. Interface 5:671–90 [Google Scholar]
  106. Applegate R Jr, Squier J, Vestad T, Oakey J, Marr D. 106.  2004. Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars. Opt. Express 12:4390–98 [Google Scholar]
  107. Guck J, Ananthakrishnan R, Mahmood H, Moon TJ, Cunningham CC, Kas J. 107.  2001. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81:767–84 [Google Scholar]
  108. Chan CJ, Whyte G, Boyde L, Salbreux G, Guck J. 108.  2014. Impact of heating on passive and active biomechanics of suspended cells. Interface Focus 4:20130069 [Google Scholar]
  109. Buican TN, Smyth MJ, Crissman HA, Salzman GC, Stewart CC, Martin JC. 109.  1987. Automated single-cell manipulation and sorting by light trapping. Appl. Opt. 26:5311–16 [Google Scholar]
  110. Enger J, Goksor M, Ramser K, Hagberg P, Hanstorp D. 110.  2004. Optical tweezers applied to a microfluidic system. Lab Chip 4:196–200 [Google Scholar]
  111. Lincoln B, Wottawah F, Schinkinger S, Ebert S, Guck J. 111.  2007. High-throughput rheological measurements with an optical stretcher. Methods Cell Biol. 83:397–423 [Google Scholar]
  112. Qiu J, Baik AD, Lu XL, Hillman EM, Zhuang Z. 112.  et al. 2014. A noninvasive approach to determine viscoelastic properties of an individual adherent cell under fluid flow. J. Biomech. 47:1537–41 [Google Scholar]
  113. Vanapalli SA, Duits MH, Mugele F. 113.  2009. Microfluidics as a functional tool for cell mechanics. Biomicrofluidics 3:12006 [Google Scholar]
  114. Gifford SC, Frank MG, Derganc J, Gabel C, Austin RH. 114.  et al. 2003. Parallel microchannel-based measurements of individual erythrocyte areas and volumes. Biophys. J. 84:623–33 [Google Scholar]
  115. Korin N, Bransky A, Dinnar U. 115.  2007. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels. J. Biomech. 40:2088–95 [Google Scholar]
  116. Koutsouris D, Guillet R, Lelievre JC, Guillemin MT, Bertholom P. 116.  et al. 1988. Determination of erythrocyte transit times through micropores. I—Basic operational principles. Biorheology 25:763–72 [Google Scholar]
  117. Adamo A, Sharei A, Adamo L, Lee B, Mao S, Jensen KF. 117.  2012. Microfluidics-based assessment of cell deformability. Anal. Chem. 84:6438–43 [Google Scholar]
  118. Byun S, Son S, Amodei D, Cermak N, Shaw J. 118.  et al. 2013. Characterizing deformability and surface friction of cancer cells. PNAS 110:7580–85 [Google Scholar]
  119. Chen J, Zheng Y, Tan QY, Shojaei-Baghini E, Zhang YL. 119.  et al. 2011. Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells. Lab Chip 11:3174–81 [Google Scholar]
  120. Adamo A, Arione A, Sharei A, Jensen KF. 120.  2013. Flow-through comb electroporation device for delivery of macromolecules. Anal. Chem. 85:1637–41 [Google Scholar]
  121. Zheng Y, Shojaei-Baghini E, Azad A, Wang C, Sun Y. 121.  2012. High-throughput biophysical measurement of human red blood cells. Lab Chip 12:2560–67 [Google Scholar]
  122. Abkarian M, Faivre M, Stone HA. 122.  2006. High-speed microfluidic differential manometer for cellular-scale hydrodynamics. PNAS 103:538–42 [Google Scholar]
  123. Bow H, Pivkin IV, Diez-Silva M, Goldfless SJ, Dao M. 123.  et al. 2011. A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip 11:1065–73 [Google Scholar]
  124. Rosenbluth MJ, Lam WA, Fletcher DA. 124.  2008. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip 8:1062–70 [Google Scholar]
  125. Rowat AC, Jaalouk DE, Zwerger M, Ung WL, Eydelnant IA. 125.  et al. 2013. Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions. J. Biol. Chem. 288:8610–18 [Google Scholar]
  126. Otto O, Rosendahl P, Mietke A, Golfier S, Herold C. 126.  et al. 2015. Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat. Methods 12:199–202 [Google Scholar]
  127. Lin BK, McFaul SM, Jin C, Black PC, Ma HS. 127.  2013. Highly selective biomechanical separation of cancer cells from leukocytes using microfluidic ratchets and hydrodynamic concentrator. Biomicrofluidics 7:034114 [Google Scholar]
  128. Wang G, Mao W, Byler R, Patel K, Henegar C. 128.  et al. 2013. Stiffness dependent separation of cells in a microfluidic device. PLOS ONE 8:e75901 [Google Scholar]
  129. Amini H, Lee W, Di Carlo D. 129.  2014. Inertial microfluidic physics. Lab Chip 14:2739–61 [Google Scholar]
  130. Hur SC, Henderson-MacLennan NK, McCabe ERB, Di Carlo D. 130.  2011. Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 11:912–20 [Google Scholar]
  131. Shevkoplyas SS, Yoshida T, Munn LL, Bitensky MW. 131.  2005. Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Anal. Chem. 77:933–37 [Google Scholar]
  132. Hou HW, Bhagat AA, Chong AG, Mao P, Tan KS. 132.  et al. 2010. Deformability based cell margination—a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10:2605–13 [Google Scholar]
  133. Di Carlo D, Irimia D, Tompkins RG, Toner M. 133.  2007. Continuous inertial focusing, ordering, and separation of particles in microchannels. PNAS 104:18892–97 [Google Scholar]
  134. Cha S, Shin T, Lee SS, Shim W, Lee G. 134.  et al. 2012. Cell stretching measurement utilizing viscoelastic particle focusing. Anal. Chem. 84:10471–77 [Google Scholar]
  135. Dudani JS, Gossett DR, Tse HT, Di Carlo D. 135.  2013. Pinched-flow hydrodynamic stretching of single-cells. Lab Chip 13:3728–34 [Google Scholar]
  136. Zheng Y, Chen J, Cui T, Shehata N, Wang C, Sun Y. 136.  2014. Characterization of red blood cell deformability change during blood storage. Lab Chip 14:577–83 [Google Scholar]
  137. Henon Y, Sheard GJ, Fouras A. 137.  2014. Erythrocyte deformation in a microfluidic cross-slot channel. RSC Adv. 4:36079–88 [Google Scholar]
  138. Tse HTK, Meng PF, Gossett DR, Irturk A, Kastner R, Di Carlo D. 138.  2011. Strategies for implementing hardware-assisted high-throughput cellular image analysis. J. Lab Autom. 16:422–30 [Google Scholar]
  139. Lee D, Meng P, Jacobsen M, Tse H, Di Carlo D, Kastner R. 139.  2013. A hardware accelerated approach for imaging flow cytometry. Proc. 23rd International Conference on Field Programmable Logic and Applications, Sept. 2–4, Porto, Port. Piscataway, NJ: IEEE doi: 10.1109/FPL.2013.6645507 [Google Scholar]
  140. Hartono D, Liu Y, Tan PL, Then XY, Yung LY, Lim KM. 140.  2011. On-chip measurements of cell compressibility via acoustic radiation. Lab Chip 11:4072–80 [Google Scholar]
  141. Ding X, Peng Z, Lin SC, Geri M, Li S. 141.  et al. 2014. Cell separation using tilted-angle standing surface acoustic waves. PNAS 111:12992–97 [Google Scholar]
  142. Wang Z, Liu L, Wang Y, Xi N, Dong Z. 142.  et al. 2012. A fully automated system for measuring cellular mechanical properties. J. Lab. Autom. 17:443–48 [Google Scholar]
  143. Favre M, Polesel-Maris J, Overstolz T, Niedermann P, Dasen S. 143.  et al. 2011. Parallel AFM imaging and force spectroscopy using two-dimensional probe arrays for applications in cell biology. J. Mol. Recognit. 24:446–52 [Google Scholar]
  144. Hunter FT. 144.  1940. A photoelectric method for the quantitative determination of erythrocyte fragility. J. Clin. Investig. 19:691–94 [Google Scholar]
  145. Ionescu-Zanetti C, Wang LP, Di Carlo D, Hung P, Di Blas A. 145.  et al. 2005. Alkaline hemolysis fragility is dependent on cell shape: results from a morphology tracker. Cytometry A 65:116–23 [Google Scholar]
  146. Bao N, Kodippili GC, Giger KM, Fowler VM, Low PS, Lu C. 146.  2011. Single-cell electrical lysis of erythrocytes detects deficiencies in the cytoskeletal protein network. Lab Chip 11:3053–56 [Google Scholar]
  147. Zhan Y, Loufakis DN, Bao N, Lu C. 147.  2012. Characterizing osmotic lysis kinetics under microfluidic hydrodynamic focusing for erythrocyte fragility studies. Lab Chip 12:5063–68 [Google Scholar]
  148. Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S. 148.  et al. 2005. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88:3689–98 [Google Scholar]
  149. Sraj I, Eggleton CD, Jimenez R, Hoover E, Squier J. 149.  et al. 2010. Cell deformation cytometry using diode-bar optical stretchers. J. Biomed. Opt. 15:047010 [Google Scholar]
  150. Sawetzki T, Eggleton CD, Desai SA, Marr DWM. 150.  2013. Viscoelasticity as a biomarker for high-throughput flow cytometry. Biophys. J. 105:2281–88 [Google Scholar]
  151. Hallow DM, Seeger RA, Kamaev PP, Prado GR, LaPlaca MC, Prausnitz MR. 151.  2008. Shear-induced intracellular loading of cells with molecules by controlled microfluidics. Biotechnol. Bioeng. 99:846–54 [Google Scholar]
  152. Sharei A, Zoldan J, Adamo A, Sim WY, Cho N. 152.  et al. 2013. A vector-free microfluidic platform for intracellular delivery. PNAS 110:2082–87 [Google Scholar]
  153. Heisenberg CP, Bellaiche Y. 153.  2013. Forces in tissue morphogenesis and patterning. Cell 153:948–62 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071114-040545
Loading
/content/journals/10.1146/annurev-bioeng-071114-040545
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error