Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Humm JL, Rosenfeld A, Del Guerra A. 1.  2003. From PET detectors to PET scanners. Eur. J. Nucl. Med. Mol. Imaging 30:111574–97 [Google Scholar]
  2. Bacharach SL. 2.  2010. Positron emission tomography. Cardiac CT, PET and MR V Dilsizian, GM Pohost 3–29 Hoboken, NJ: Blackwell, 2nd ed.. [Google Scholar]
  3. Peng BH, Levin CS. 3.  2010. Recent developments in PET instrumentation. Curr. Pharm. Biotechnol. 11:6555–71 [Google Scholar]
  4. 4. Van Eijk CWE 2008. Radiation detector developments in medical applications: inorganic scintillators in positron emission tomography. Radiat. Prot. Dosimetry 129:1–313–21 [Google Scholar]
  5. Moses WW. 5.  2007. Recent advances and future advances in time-of-flight PET. Nucl. Instrum. Methods Phys. Res. A 580:2919–24 [Google Scholar]
  6. Lewellen T. 6.  1998. Time-of-flight PET. Semin. Nucl. Med. 28:3268–75 [Google Scholar]
  7. Conti M. 7.  2009. State of the art and challenges of time-of-flight PET. Phys. Med. 25:11–11 [Google Scholar]
  8. Conti M. 8.  2011. Improving time resolution in time-of-flight PET. Nucl. Instrum. Methods Phys. Res. A 648:Suppl. 1S194–98 [Google Scholar]
  9. Yanagida T, Kamada K, Fujimoto Y, Yagi H, Yanagitani T. 9.  2013. Comparative study of ceramic and single crystal Ce:GAGG scintillator. Opt. Mater. 35:122480–85 [Google Scholar]
  10. Tai Y-C, Laforest R. 10.  2005. Instrumentation aspects of animal PET. Annu. Rev. Biomed. Eng. 7:255–85 [Google Scholar]
  11. Wang Y, Seidel J, Tsui BMW, Vaquero JJ, Pomper MG. 11.  2006. Performance evaluation of the GE Healthcare eXplore Vista dual-ring small-animal PET scanner. J. Nucl. Med. 47:1891–1900 [Google Scholar]
  12. Green MV, Ostrow HG, Seidel J, Pomper MG. 12.  2010. Experimental evaluation of depth-of-interaction correction in a small-animal positron emission tomography scanner. Mol. Imaging 9:6311–18 [Google Scholar]
  13. Yoshida E, Tashima H, Nishikido F, Murayama H, Yamaya T. 13.  2014. Reduction method for intrinsic random coincidence events from 176Lu in low activity PET imaging. Radiol. Phys. Technol. 7:2235–45 [Google Scholar]
  14. Patton G, Moretti F, Belsky A, Al Saghir K, Chenu S. 14.  et al. 2014. Light yield sensitization by X-ray irradiation of the BaAl4O7:Eu2+ ceramic scintillator obtained by full crystallization of glass. Phys. Chem. Chem. Phys. 16:4524824–29 [Google Scholar]
  15. Yang Y, James SS, Wu Y, Du H, Qi J. 15.  et al. 2011. Tapered LSO arrays for small animal PET. Phys. Med. Biol. 56:1139–53 [Google Scholar]
  16. Pierce LA, Hunter WCJ, Haynor DR, MacDonald LR, Kinahan PE, Miyaoka RS. 16.  2014. Multiplexing strategies for monolithic crystal PET detector modules. Phys. Med. Biol. 59:185347–60 [Google Scholar]
  17. Yoshida E, Tashima H, Inadama N, Nishikido F, Moriya T. 17.  et al. 2013. Intrinsic spatial resolution evaluation of the X'tal cube PET detector based on a 3D crystal block segmented by laser processing. Radiol. Phys. Technol. 6:121–27 [Google Scholar]
  18. Moriya T, Fukumitsu K, Yamashita T, Watanabe M. 18.  2014. Fabrication of finely pitched LYSO arrays using sub-surface laser engraving technique with picosecond and nanosecond pulse lasers. IEEE Trans. Nucl. Sci. 61:21032–38 [Google Scholar]
  19. Lewellen T, Hunter W, Miyaoka R, MacDonald L. 19.  2012. Optical-interface patterning for radiation detector crystals US Patent No. 2012/0235047 A1 [Google Scholar]
  20. Jadvar H, Colletti PM. 20.  2014. Competitive advantage of PET/MRI. Eur. J. Radiol. 83:184–94 [Google Scholar]
  21. Roncali E, Cherry SR. 21.  2011. Application of silicon photomultipliers to positron emission tomography. Ann. Biomed. Eng. 39:41358–77 [Google Scholar]
  22. Seifert S, van der Lei G, van Dam HT, Schaart DR. 22.  2013. First characterization of a digital SiPM based time-of-flight PET detector with 1 mm spatial resolution. Phys. Med. Biol. 58:93061–74 [Google Scholar]
  23. Peng H, Levin CS. 23.  2010. Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors. Phys. Med. Biol. 55:92761–88 [Google Scholar]
  24. Machac J. 24.  2005. Cardiac positron emission tomography imaging. Semin. Nucl. Med. 35:117–36 [Google Scholar]
  25. Purohit BS, Ailianou A, Dulguerov N, Becker CD, Ratib O, Becker M. 25.  2014. FDG-PET/CT pitfalls in oncological head and neck imaging. Insights Imaging 5:5585–602 [Google Scholar]
  26. Nickles R, Roberts A, Nye J, Converse A, Barnhart T. 26.  et al. 2004. Assaying and PET imaging of ytrrium-90: 1≫34ppm>0. IEEE Nuclear Science Symposium Conference Record 63412–14 Arlington, VA: IEEE [Google Scholar]
  27. Robertson BD, Altmann D, Barry C, Bishai B, Cole S. 27.  et al. 2012. Detection and treatment of subclinical tuberculosis. Tuberculosis (Edinb.) 92:6447–52 [Google Scholar]
  28. Ishii K. 28.  2013. PET approaches for diagnosis of dementia. Am. J. Neuroradiol. 35:112030–38 [Google Scholar]
  29. Li H, Wang C, Baghaei H, Zhang Y, Ramirez R. 29.  et al. 2010. A new statistics-based online baseline restorer for a high count-rate fully digital system. IEEE Trans. Nucl. Sci. 57:2550–55 [Google Scholar]
  30. Wiener RI, Surti S, Karp JS. 30.  2013. DOI determination by rise time discrimination in single-ended readout for TOF PET imaging. IEEE Trans. Nucl. Sci. 60:31478–86 [Google Scholar]
  31. Roncali E, Phipps JE, Marcu L, Cherry SR. 31.  2012. Pulse shape discrimination and classification methods for continuous depth of interaction encoding PET detectors. Phys. Med. Biol. 57:206571–85 [Google Scholar]
  32. Grant AM, Levin CS. 32.  2014. A new dual threshold time-over-threshold circuit for fast timing in PET. Phys. Med. Biol. 59:133421–30 [Google Scholar]
  33. Daube-Witherspoon ME, Surti S, Perkins AE, Karp JS. 33.  2014. Determination of accuracy and precision of lesion uptake measurements in human subjects with time-of-flight PET. J. Nucl. Med. 55:4602–7 [Google Scholar]
  34. Seidel J, Vaquero JJ, Siegel S, Gandler WRR, Member S, Green MVTI. 34.  1999. Depth identification accuracy of a three layer phoswich PET detector module. IEEE Trans. Nucl. Sci. 46:3485–90 [Google Scholar]
  35. Ren S, Yang Y, Cherry SR. 35.  2014. Effects of reflector and crystal surface on the performance of a depth-encoding PET detector with dual-ended readout. Med. Phys. 41:7072503 [Google Scholar]
  36. Tashima H, Ito H, Yamaya T. 36.  2013. A proposed helmet-PET with a jaw detector enabling high-sensitivity brain imaging. 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference1–3 Arlington, VA: IEEE [Google Scholar]
  37. Clinthorne NH, Brzezinski K, Chesi E, Cochran E, Grkovski M. 37.  et al. 2013. Silicon as an unconventional detector in positron emission tomography. Nucl. Instrum. Methods Phys. Res. A 699:21216–20 [Google Scholar]
  38. Tai Y-C, Wu H, Pal D, O'Sullivan JA. 38.  2008. Virtual-pinhole PET. J. Nucl. Med. 49:3471–79 [Google Scholar]
  39. Zhou J, Qi J. 39.  2011. Adaptive imaging for lesion detection using a zoom-in PET system. IEEE Trans. Med. Imaging 30:1119–30 [Google Scholar]
  40. Miyake KK, Matsumoto K, Inoue M, Nakamoto Y, Kanao S. 40.  et al. 2014. Performance evaluation of a new dedicated breast PET scanner using NEMA NU4-2008 standards. J. Nucl. Med. 55:71198–203 [Google Scholar]
  41. Moy L, Noz ME, Maguire GQ, Ponzo F, Deans AE. 41.  et al. 2007. Prone mammoPET acquisition improves the ability to fuse MRI and PET breast scans. Clin. Nucl. Med. 32:3194–98 [Google Scholar]
  42. Qi J. 42.  2004. Optimization of a PET scanner design for prostate lesion detection. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2:1357–60 [Google Scholar]
  43. Borasi G, Fioroni F, Del Guerra A, Lucignani G. 43.  2010. PET systems: the value of added length. Eur. J. Nucl. Med. Mol. Imaging 37:91629–32 [Google Scholar]
  44. Jones T. 44.  1990. Overview of PET-perspective in instrumentation analysis Presented at IEEE Nucl. Sci. Symp. Conf., Arlington, VA [Google Scholar]
  45. Crosetto DB. 45.  2007. Gantry for geometrically configurable and non-configurable positron emission tomography detector arrays US Patent No. 7262415 B2 [Google Scholar]
  46. Cho ZH, Kim YS, Hilal SK, Kim YH. 46.  1989. New spherical PET design with Fresnel aperture orientation. Int. J. Imaging Syst. Technol. 1:2196–206 [Google Scholar]
  47. Poon JK, Dahlbom ML, Moses WW, Balakrishnan K, Wang W. 47.  et al. 2012. Optimal whole-body PET scanner configurations for different volumes of LSO scintillator: a simulation study. Phys. Med. Biol. 57:134077–94 [Google Scholar]
  48. Ollinger JM, Fessler JA. 48.  1997. Positron-emission tomography. IEEE Signal Process. Mag. 14:143–55 [Google Scholar]
  49. Cherry SR, Sorenson JA, Phelps ME. 49.  2012. Physics in Nuclear Medicine Philadelphia: Saunders, 4th ed.. [Google Scholar]
  50. Kinahan PE, Hasegawa BH, Beyer T. 50.  2003. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin. Nucl. Med. 33:3166–79 [Google Scholar]
  51. Abella M, Alessio AM, Mankoff DA, MacDonald LR, Vaquero JJ. 51.  et al. 2012. Accuracy of CT-based attenuation correction in PET/CT bone imaging. Phys. Med. Biol. 57:92477–90 [Google Scholar]
  52. Kinahan PE, MacDonald L, Ng L, Alessio A, Segars P. 52.  et al. 2006. Compensating for patient respiration in PET/CT imaging with the registered and summed phases (RASP) procedure. 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro1104–7 Arlington, VA: IEEE [Google Scholar]
  53. Alvarez RE, Macovski A. 53.  1976. Energy-selective reconstructions in X-ray computerized tomography. Phys. Med. Biol. 21:5733–44 [Google Scholar]
  54. Xia T, Alessio AM, Kinahan PE. 54.  2014. Dual energy CT for attenuation correction with PET/CT. Med. Phys. 41:112501 [Google Scholar]
  55. Noh J, Fessler JA, Kinahan PE. 55.  2009. Statistical sinogram restoration in dual-energy CT for PET attenuation correction. IEEE Trans. Med. Imaging 28:111688–702 [Google Scholar]
  56. Silva AC, Morse BG, Hara AK, Paden RG, Hongo N, Pavlicek W. 56.  2011. Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics 31:41031–50 [Google Scholar]
  57. Fornaro J, Leschka S, Hibbeln D, Butler A, Anderson N. 57.  et al. 2011. Dual- and multi-energy CT: approach to functional imaging. Insights Imaging 2:2149–59 [Google Scholar]
  58. Byrd D, Linden H, Kinahan P. 58.  2013. Efforts addressing SUV accuracy for PET quantitation and standardization. SNMMI PET Cent. Excell. Newsl. 10:41–3 [Google Scholar]
  59. Kinahan PE, Fletcher JW. 59.  2010. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin. Ultrasound CT MRI 31:6496–505 [Google Scholar]
  60. Chow PL, Rannou FR, Chatziioannou AF. 60.  2005. Attenuation correction for small animal PET tomographs. Phys. Med. Biol. 50:81837–50 [Google Scholar]
  61. Badea CT, Guo X, Clark D, Johnston SM, Marshall C, Piantadosi C. 61.  2012. Lung imaging in rodents using dual energy micro-CT. Proc. SPIE 8317:83171 [Google Scholar]
  62. Levin CS, Dahlbom M, Hoffman EJ. 62.  1995. A Monte Carlo correction for the effect of Compton scattering in 3-D PET brain imaging. IEEE Trans. Nucl. Sci. 42:41181–85 [Google Scholar]
  63. Holdsworth CH, Levin CS, Janecek M, Dahlbom M, Hoffman EJ. 63.  2002. Performance analysis of an improved 3-D PET Monte Carlo simulation and scatter correction. IEEE Trans. Nucl. Sci. 49:183–89 [Google Scholar]
  64. Barney JS, Rogers JG, Harrop R, Hoverath H. 64.  1991. Object shape dependent scatter simulations for PET. IEEE Trans. Nucl. Sci. 38:2719–25 [Google Scholar]
  65. Ollinger JM. 65.  1996. Model-based scatter correction for fully 3D PET. Phys. Med. Biol. 41:1153–76 [Google Scholar]
  66. Wollenweber SD. 66.  2002. Parameterization of a model-based 3-D PET scatter correction. IEEE Trans. Nucl. Sci. 49:3722–27 [Google Scholar]
  67. Watson CC. 67.  2007. Extension of single scatter simulation to scatter correction of time-of-flight PET. IEEE Trans. Nucl. Sci. 54:51679–86 [Google Scholar]
  68. Bao Q, Newport D, Chen M, Stout DB, Chatziioannou AF. 68.  2009. Performance evaluation of the Inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards. J. Nucl. Med. 50:3401–8 [Google Scholar]
  69. Mawlawi O, Podoloff DA, Kohlmyer S, Williams JJ, Stearns CW. 69.  et al. 2004. Performance characteristics of a newly developed PET/CT scanner using NEMA standards in 2D and 3D modes. J. Nucl. Med. 45:101734–42 [Google Scholar]
  70. Delso G, Fürst S, Jakoby B, Ladebeck R, Ganter C. 70.  et al. 2011. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J. Nucl. Med. 52:121914–22 [Google Scholar]
  71. Brasse D, Kinahan PE, Lartizien C, Comtat C, Casey M, Michel C. 71.  2005. Correction methods for random coincidences in fully 3D whole-body PET: impact on data and image quality. J. Nucl. Med. 46:5859–67 [Google Scholar]
  72. Kinahan PE, Defrise M, Clackdoyle R. 72.  2004. Analytic image reconstruction methods. Emission Tomography: The Fundamentals of PET and SPECT MN Wernick, JN Aarsvold 421–42 Amsterdam: Elsevier [Google Scholar]
  73. Qi J, Leahy RM. 73.  2006. Iterative reconstruction techniques in emission computed tomography. Phys. Med. Biol. 51:15R541–78 [Google Scholar]
  74. Dempster AP, Laird NM, Rubin DB. 74.  1977. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Series B Stat. Methodol. 39:11–38 [Google Scholar]
  75. Shepp LA, Vardi Y. 75.  1982. Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1:2113–22 [Google Scholar]
  76. Hudson HM, Larkin RS. 76.  1994. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13:4601–9 [Google Scholar]
  77. De Man B, Basu S. 77.  2004. Distance-driven projection and backprojection in three dimensions. Phys. Med. Biol. 49:112463–75 [Google Scholar]
  78. Muzi M, O'Sullivan F, Mankoff D, Doot RK, Pierce L. 78.  et al. 2012. Quantitative assessment of dynamic PET imaging data in cancer imaging. Magn. Reson. Imaging 30:91203–15 [Google Scholar]
  79. Bacharach SL, Carson RE. 79.  2013. In hot blood: quantifying the arterial input function. JACC Cardiovasc. Imaging 6:5569–73 [Google Scholar]
  80. Liu C, Pierce L, Alessio AM, Kinahan PE. 80.  2009. The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging. Phys. Med. Biol. 54:247345–62 [Google Scholar]
  81. El Fakhri G, Kardan A, Sitek A, Dorbala S, Abi-Hatem N. 81.  et al. 2009. Reproducibility and accuracy of quantitative myocardial blood flow assessment with 82Rb PET: comparison with 13N-ammonia PET. J. Nucl. Med. 50:71062–71 [Google Scholar]
  82. Mateos-Pérez JM, García-Villalba C, Pascau J, Desco M, Vaquero JJ. 82.  2013. jClustering, an open framework for the development of 4D clustering algorithms. PLOS ONE 8:8e70797 [Google Scholar]
  83. Rahmim A, Tang J, Mohy-ud-Din H. 83.  2014. Direct 4D parametric imaging in dynamic myocardial perfusion PET. Front. Biomed. Technol. 1:14–13 [Google Scholar]
  84. Kamasak ME, Christian BT, Bouman CA, Morris ED. 84.  2014. Quality and precision of parametric images created from PET sinogram data by direct reconstruction: proof of concept. IEEE Trans. Med. Imaging 33:3695–707 [Google Scholar]
  85. Jiao J, Bousse A, Thielemans K, Markiewicz P, Burgos N. 85.  et al. 2014. Joint parametric reconstruction and motion correction framework for dynamic PET data. Med. Image Comput. Comput. Assist. Interv. 17:Pt 1114–21 [Google Scholar]
  86. Sgouros G, Kolbert K. 86.  2004. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J. Nucl. Med. 45:81366–72 [Google Scholar]
  87. Carlier T, Eugène T, Bodet-Milin C, Garin E, Ansquer C. 87.  et al. 2013. Assessment of acquisition protocols for routine imaging of Y-90 using PET/CT. EJNMMI Res. 3:111 [Google Scholar]
  88. Arrichiello C, Aloj L, D'Ambrosio L, Albino V, D'Angelo R. 88.  et al. 2012. PET based dosimetry in patients undergoing 90Y-SIR-spheres treatment for liver metastases: correlation with response. J. Nucl. Med. 53:Suppl. 1571 [Google Scholar]
  89. Jentzen W, Freudenberg L, Eising EG, Sonnenschein W, Knust J, Bockisch A. 89.  2008. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J. Nucl. Med. 49:61017–23 [Google Scholar]
  90. Seo Y, Gustafson WC, Dannoon SF, Nekritz EA, Lee C-L. 90.  et al. 2012. Tumor dosimetry using [124I]m-iodobenzylguanidine microPET/CT for [131I]m-iodobenzylguanidine treatment of neuroblastoma in a murine xenograft model. Mol. Imaging Biol. 14:6735–42 [Google Scholar]
  91. Lammers GK, Esser JP, Pasker PCM, Sanson-van Praag ME, de Klerk JMH. 91.  2014. Can I-124 PET/CT predict pathological uptake of therapeutic dosages of radioiodine (I-131) in differentiated thyroid carcinoma?. Adv. Mol. Imaging 4:327–34 [Google Scholar]
  92. Lin FI, Rao JE, Mittra ES, Nallapareddy K, Chengapa A. 92.  et al. 2012. Prospective comparison of combined 18F-FDG and 18F-NAF PET/CT versus 18F-FDG PET/CT imaging for detection of malignancy. Eur. J. Nucl. Med. Mol. Imaging 39:2262–70 [Google Scholar]
  93. Kadrmas DJ, Rust TC, Hoffman JM. 93.  2013. Single-scan dual-tracer FLT+FDG PET tumor characterization. Phys. Med. Biol. 58:3429–49 [Google Scholar]
  94. El Fakhri G, Trott CM, Sitek A, Bonab A, Alpert NM. 94.  2013. Dual-tracer PET using generalized factor analysis of dynamic sequences. Mol. Imaging Biol. 15:6666–74 [Google Scholar]
  95. Andreyev A, Celler A. 95.  2011. Dual-isotope PET using positron-γ emitters. Phys. Med. Biol. 56:144539–56 [Google Scholar]
  96. Lage E, Parot V, Moore SC, Sitek A, Udías JM. 96.  et al. 2015. Recovery and normalization of triple coincidences in PET. Med. Phys. 42:1398–1410 [Google Scholar]
  97. Miyaoka RS, Hunter WCJ, Andreyev A, Pierce L, Lewellen TK. 97.  et al. 2011. Dual-radioisotope PET data acquisition and analysis. IEEE Nuclear Science Symposium and Medical Imaging Conference3780–83 Arlington, VA: IEEE [Google Scholar]
  98. Stacy MR, Paeng JC, Sinusas AJ. 98.  2015. The role of molecular imaging in the evaluation of myocardial and peripheral angiogenesis. Ann. Nucl. Med. 29:3217–23 [Google Scholar]
  99. Jager PL, Slart RH, Corstens F, Oyen WJ, Hoekstra O, Teule J. 99.  2003. PET-CT: a matter of opinion?. Eur. J. Nucl. Med. Mol. Imaging 30:3470–71; author reply: 471 [Google Scholar]
  100. Magota K, Kubo N, Kuge Y, Nishijima K, Zhao S, Tamaki N. 100.  2011. Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging. Eur. J. Nucl. Med. Mol. Imaging 38:4742–52 [Google Scholar]
  101. Cherry SR. 101.  2009. Multimodality imaging: beyond PET/CT and SPECT/CT. Semin. Nucl. Med. 39:5348–53 [Google Scholar]
  102. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M. 102.  et al. 2000. A combined PET/CT scanner for clinical oncology. J. Nucl. Med. 41:81369–79 [Google Scholar]
  103. Weber WA, Grosu AL, Czernin J. 103.  2008. Technology insight: advances in molecular imaging and an appraisal of PET/CT scanning. Nat. Clin. Pract. Oncol. 5:3160–70 [Google Scholar]
  104. Cohade C, Osman M, Pannu HK, Wahl RL. 104.  2003. Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT. J. Nucl. Med. 44:2170–76 [Google Scholar]
  105. Di Carli MF, Dorbala S. 105.  2007. Cardiac PET-CT. J. Thorac. Imaging 22:1101–6 [Google Scholar]
  106. De Jong M, Essers J, van Weerden WM. 106.  2014. Imaging preclinical tumour models: improving translational power. Nat. Rev. Cancer 14:7481–93 [Google Scholar]
  107. Kinahan PE, Alessio AM, Fessler JA. 107.  2006. Dual energy CT attenuation correction methods for quantitative assessment of response to cancer therapy with PET/CT imaging. Technol. Cancer Res. Treat. 5:4319–27 [Google Scholar]
  108. Liu C, Pierce LA 2nd, Alessio AM, Kinahan PE. 108.  2009. The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging. Phys. Med. Biol. 54:247345–62 [Google Scholar]
  109. Nehmeh SA, Erdi YE. 109.  2008. Respiratory motion in positron emission tomography/computed tomography: a review. Semin. Nucl. Med. 38:3167–76 [Google Scholar]
  110. Chun SY, Reese TG, Ouyang J, Guerin B, Catana C. 110.  et al. 2012. MRI-based nonrigid motion correction in simultaneous PET/MRI. J. Nucl. Med. 53:81284–91 [Google Scholar]
  111. Shao Y, Cherry SR, Farahani K, Meadors K, Siegel S. 111.  et al. 1997. Simultaneous PET and MR imaging. Phys. Med. Biol. 42:101965–70 [Google Scholar]
  112. Catana C, van der Kouwe A, Benner T, Michel CJ, Hamm M. 112.  et al. 2010. Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype. J. Nucl. Med. 51:91431–38 [Google Scholar]
  113. Al-Nabhani KZ, Syed R, Michopoulou S, Alkalbani J, Afaq A. 113.  et al. 2014. Qualitative and quantitative comparison of PET/CT and PET/MR imaging in clinical practice. J. Nucl. Med. 55:188–94 [Google Scholar]
  114. Kershah S, Partovi S, Traughber BJ, Muzic RFJ, Schluchter MD. 114.  et al. 2013. Comparison of standardized uptake values in normal structures between PET/CT and PET/MRI in an oncology patient population. Mol. Imaging Biol. 15:6776–85 [Google Scholar]
  115. Liang Z-P, Lauterbur PC. 115.  1999. Principles of Magnetic Resonance Imaging: A Signal Processing Perspective New York: Wiley–IEEE Press [Google Scholar]
  116. Martinez-Moller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd'hotel C. 116.  et al. 2009. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J. Nucl. Med. 50:4520–26 [Google Scholar]
  117. Bezrukov I, Mantlik F, Schmidt H, Scholkopf B, Pichler BJ. 117.  2013. MR-based PET attenuation correction for PET/MR imaging. Semin. Nucl. Med. 43:145–59 [Google Scholar]
  118. Quick HH. 118.  2014. Integrated PET/MR. J. Magn. Reson. Imaging 39:2243–58 [Google Scholar]
  119. Ziegler S, Braun H, Ritt P, Hocke C, Kuwert T, Quick HH. 119.  2013. Systematic evaluation of phantom fluids for simultaneous PET/MR hybrid imaging. J. Nucl. Med. 54:81464–71 [Google Scholar]
  120. Catana C, Guimaraes AR, Rosen BR. 120.  2013. PET and MR imaging: the odd couple or a match made in heaven?. J. Nucl. Med. 54:5815–24 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error