1932

Abstract

Digital microfluidics (DMF) is a droplet-based liquid-handling technology that has recently become popular for cell culture and analysis. In DMF, picoliter- to microliter-sized droplets are manipulated on a planar surface using electric fields, thus enabling software-reconfigurable operations on individual droplets, such as move, merge, split, and dispense from reservoirs. Using this technique, multistep cell-based processes can be carried out using simple and compact instrumentation, making DMF an attractive platform for eventual integration into routine biology workflows. In this review, we summarize the state-of-the-art in DMF cell culture, and describe design considerations, types of DMF cell culture, and cell-based applications of DMF.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071114-040808
2015-12-07
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/17/1/annurev-bioeng-071114-040808.html?itemId=/content/journals/10.1146/annurev-bioeng-071114-040808&mimeType=html&fmt=ahah

Literature Cited

  1. Chapman T. 1.  2003. Lab automation and robotics: automation on the move. Nature 421:661–66 [Google Scholar]
  2. Sackmann EK, Fulton AL, Beebe DJ. 2.  2014. The present and future role of microfluidics in biomedical research. Nature 507:181–89 [Google Scholar]
  3. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH. 3.  et al. 2010. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat. Rev. Drug Discov. 9:203–14 [Google Scholar]
  4. Bhatia SN, Ingber DE. 4.  2014. Microfluidic organs-on-chips. Nat. Biotechnol. 32:760–72 [Google Scholar]
  5. Mehling M, Tay S. 5.  2014. Microfluidic cell culture. Curr. Opin. Biotechnol. 25:95–102 [Google Scholar]
  6. Squires TM, Quake SR. 6.  2005. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77:977–1026 [Google Scholar]
  7. Fair RB, Khlystov A, Tailor TD, Ivanov V, Evans RD. 7.  et al. 2007. Chemical and biological applications of digital-microfluidic devices. IEEE Des. Test. Comput. 24:10–24 [Google Scholar]
  8. Choi K, Ng AHC, Fobel R, Wheeler AR. 8.  2012. Digital microfluidics. Annu. Rev. Anal. Chem. 5:413–40 [Google Scholar]
  9. Malic L, Brassard D, Veres T, Tabrizian M. 9.  2010. Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab Chip 10:418–31 [Google Scholar]
  10. Cho SK, Moon H, Kim CJ. 10.  2003. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J. Microelectromech. Syst. 12:70–80 [Google Scholar]
  11. Absolom DR, Zingg W, Neumann AW. 11.  1987. Protein adsorption to polymer particles: role of surface properties. J. Biomed. Mater. Res. 21:161–71 [Google Scholar]
  12. Norde W. 12.  1986. Adsorption of proteins from solution at the solid–liquid interface. Adv. Colloid Interface Sci. 25:267–340 [Google Scholar]
  13. Luk VN, Mo GC, Wheeler AR. 13.  2008. Pluronic additives: a solution to sticky problems in digital microfluidics. Langmuir 24:6382–89 [Google Scholar]
  14. Yoon JY, Garrell RL. 14.  2003. Preventing biomolecular adsorption in electrowetting-based biofluidic chips. Anal. Chem. 75:5097–102 [Google Scholar]
  15. Freire SLS, Tanner B. 15.  2013. Additive-free digital microfluidics. Langmuir 29:9024–30 [Google Scholar]
  16. Srinivasan V, Pamula VK, Fair RB. 16.  2004. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4:310–15 [Google Scholar]
  17. Pollack MG, Pamula VK, Eckhardt AE, Srinivasan V. 17.  2011. Protein crystallization screening and optimization droplet actuators, systems and methods. US Patent No. US8007739 B2
  18. Ren H, Fair RB, Pollack MG, Shaughnessy EJ. 18.  2002. Dynamics of electro-wetting droplet transport. Sens. Actuators B: Chem. 87:201–6 [Google Scholar]
  19. Brassard D, Malic L, Normandin F, Tabrizian M, Veres T. 19.  2008. Water-oil core-shell droplets for electrowetting-based digital microfluidic devices. Lab Chip 8:1342–49 [Google Scholar]
  20. Fan S-K, Hsu Y-W, Chen C-H. 20.  2011. Encapsulated droplets with metered and removable oil shells by electrowetting and dielectrophoresis. Lab Chip 11:2500–8 [Google Scholar]
  21. Aijian AP, Chatterjee D, Garrell RL. 21.  2012. Fluorinated liquid-enabled protein handling and surfactant-aided crystallization for fully in situ digital microfluidic MALDI-MS analysis. Lab Chip 12:2552–59 [Google Scholar]
  22. Perry G, Coffinier Y, Boukherroub R, Thomy V. 22.  2013. Investigation of the anti-biofouling properties of graphene oxide aqueous solutions by electrowetting characterization. J. Mater. Chem. A 1:12355–60 [Google Scholar]
  23. Perry G, Thomy V, Das MR, Coffinier Y, Boukherroub R. 23.  2012. Inhibiting protein biofouling using graphene oxide in droplet-based microfluidic microsystems. Lab Chip 12:1601–4 [Google Scholar]
  24. Amiji M, Park K. 24.  1992. Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers. Biomaterials 13:682–92 [Google Scholar]
  25. Au SH, Kumar P, Wheeler AR. 25.  2011. A new angle on Pluronic additives: advancing droplets and understanding in digital microfluidics. Langmuir 27:8586–94 [Google Scholar]
  26. Vergauwe N, Witters D, Ceyssens F, Vermeir S, Verbruggen B. 26.  et al. 2011. A versatile electrowetting-based digital microfluidic platform for quantitative homogeneous and heterogeneous bio-assays. J. Micromech. Microeng. 21:054026 [Google Scholar]
  27. Li C-C, Hsu Y-W, Fan S-K, Huang H-Y. 27.  2012. Dynamic embryo culture on a digital microfluidic chip. Nano/Molecular Medicine and Engineering74–77 New York: IEEE (Inst. Electr. Electron. Eng.) [Google Scholar]
  28. Sarvothaman MK, Kim KS, Seale B, Brodersen PM, Walker GC, Wheeler AR. 28.  2015. Dynamic fluoroalkyl polyethylene glycol co-polymers: a new strategy for reducing protein adhesion in lab-on-a-chip devices. Adv. Funct. Mater. 25:506–15 [Google Scholar]
  29. 29. GE Healthc. Life Sci 2014. HyClone™ HyCell™ CHO Media. Piscataway, NJ: GE Healthc. Life Sci., retrieved on September 11, 2014 https://promo.gelifesciences.com/gl/hyclone/product/hyclone-hycell-cho-media.html
  30. Au SH, Chamberlain MD, Mahesh S, Sefton MV, Wheeler AR. 30.  2014. Hepatic organoids for microfluidic drug screening. Lab Chip 14:3290–99 [Google Scholar]
  31. Wang K, Ruan J, Song H, Zhang J, Wo Y. 31.  et al. 2011. Biocompatibility of graphene oxide. Nanoscale Res. Lett. 6:8 [Google Scholar]
  32. Shah GJ, Kim CJ. 32.  2009. Meniscus-assisted high-efficiency magnetic collection and separation for EWOD droplet microfluidics. J. Microelectromech. Syst. 18:363–75 [Google Scholar]
  33. Malchiodi-Albedi F, Morgillo A, Formisano G, Paradisi S, Perilli R. 33.  et al. 2002. Biocompatibility assessment of silicone oil and perfluorocarbon liquids used in retinal reattachment surgery in rat retinal cultures. J. Biomed. Mater. Res. 60:548–55 [Google Scholar]
  34. Luong-Van E, Kang RKC, Birch WR. 34.  2009. A novel technique for positioning multiple cell types by liquid handling. Biointerphases 4:13–18 [Google Scholar]
  35. Pereira DC, Dode MAN, Rumpf R. 35.  2005. Evaluation of different culture systems on the in vitro production of bovine embryos. Theriogenology 63:1131–41 [Google Scholar]
  36. Zhou J, Lu L, Byrapogu K, Wootton DM, Lelkes PI, Fair R. 36.  2007. Electrowetting-based multi-microfluidics array printing of high resolution tissue construct with embedded cells and growth factors. Virtual Phys. Prototyp. 2:217–23 [Google Scholar]
  37. Fan SK, Huang PW, Wang TT, Peng YH. 37.  2008. Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting. Lab Chip 8:1325–31 [Google Scholar]
  38. Jones TB, Fowler JD, Chang YS, Kim C-J. 38.  2003. Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation. Langmuir 19:7646–51 [Google Scholar]
  39. Barbulovic-Nad I, Yang H, Park PS, Wheeler AR. 39.  2008. Digital microfluidics for cell-based assays. Lab Chip 8:519–26 [Google Scholar]
  40. Fair RB. 40.  2007. Digital microfluidics: Is a true lab-on-a-chip possible?. Microfluid. Nanofluid. 3:245–81 [Google Scholar]
  41. Sadeghi S, Ding H, Shah GJ, Chen S, Keng PY. 41.  et al. 2012. On chip droplet characterization: a practical, high-sensitivity measurement of droplet impedance in digital microfluidics. Anal. Chem. 84:1915–23 [Google Scholar]
  42. Au SH, Shih SCC, Wheeler AR. 42.  2011. Integrated microbioreactor for culture and analysis of bacteria, algae and yeast. Biomed. Microdevices 13:41–50 [Google Scholar]
  43. Fiddes LK, Luk VN, Au SH, Ng AHC, Luk V. 43.  et al. 2012. Hydrogel discs for digital microfluidics. Biomicrofluidics 6:014112 [Google Scholar]
  44. Witters D, Vergauwe N, Vermeir S, Ceyssens F, Liekens S. 44.  et al. 2011. Biofunctionalization of electrowetting-on-dielectric digital microfluidic chips for miniaturized cell-based applications. Lab Chip 11:2790–94 [Google Scholar]
  45. Au SH, Fobel R, Desai SP, Voldman J, Wheeler AR. 45.  2013. Cellular bias on the microscale: probing the effects of digital microfluidic actuation on mammalian cell health, fitness and phenotype. Integr. Biol. 5:1014–25 [Google Scholar]
  46. Park S, Wijethunga PAL, Moon H, Han B. 46.  2011. On-chip characterization of cryoprotective agent mixtures using an EWOD-based digital microfluidic device. Lab Chip 11:2212–21 [Google Scholar]
  47. Son SU, Garrell RL. 47.  2009. Transport of live yeast and zebrafish embryo on a droplet (“digital”) microfluidic platform. Lab Chip 9:2398–401 [Google Scholar]
  48. Shih SCC, Gach PC, Sustarich J, Simmons BA, Adams PD. 48.  et al. 2015. A droplet-to-digital (D2D) microfluidic device for single cell assays. Lab Chip 15:225–36 [Google Scholar]
  49. Barbulovic-Nad I, Au SH, Wheeler AR. 49.  2010. A microfluidic platform for complete mammalian cell culture. Lab Chip 10:1536–42 [Google Scholar]
  50. Miller E, Ng AC, Uddayasankar U, Wheeler A. 50.  2011. A digital microfluidic approach to heterogeneous immunoassays. Anal. Bioanal. Chem. 399:337–45 [Google Scholar]
  51. Eydelnant IA, Uddayasankar U, Li B, Liao MW, Wheeler AR. 51.  2012. Virtual microwells for digital microfluidic reagent dispensing and cell culture. Lab Chip 12:750–57 [Google Scholar]
  52. Malic L, Veres T, Tabrizian M. 52.  2009. Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization. Biosens. Bioelectron. 24:2218–24 [Google Scholar]
  53. Qiu Q, Sayer M, Kawaja M, Shen X, Davies JE. 53.  1998. Attachment, morphology, and protein expression of rat marrow stromal cells cultured on charged substrate surfaces. J. Biomed. Mater. Res. 42:117–27 [Google Scholar]
  54. Ng AHC, Chamberlain MD, Situ H, Lee V, Wheeler AR. 54.  2015. Digital microfluidic immunocytochemistry in single cells. Nat. Commun. 6:7513 [Google Scholar]
  55. Shih SCC, Barbulovic-Nad I, Yang X, Fobel R, Wheeler AR. 55.  2013. Digital microfluidics with impedance sensing for integrated cell culture and analysis. Biosens. Bioelectron. 42:314–20 [Google Scholar]
  56. Shih SCC, Fobel R, Kumar P, Wheeler AR. 56.  2011. A feedback control system for high-fidelity digital microfluidics. Lab Chip 11:535–40 [Google Scholar]
  57. Eydelnant IA, Lim BB, Wheeler AR. 57.  2014. Microgels on-demand. Nat. Commun. 5:3355 [Google Scholar]
  58. Aijian AP, Garrell RL. 58.  2015. Digital microfluidics for automated hanging drop cell spheroid culture. J. Lab. Autom. 20:283–95 [Google Scholar]
  59. George SM, Moon H. 59.  2015. Digital microfluidic three-dimensional cell culture and chemical screening platform using alginate hydrogels. Biomicrofluidics 9:024116 [Google Scholar]
  60. Cho SK, Zhao Y, Kim CJ. 60.  2007. Concentration and binary separation of micro particles for droplet-based digital microfluidics. Lab Chip 7:490–98 [Google Scholar]
  61. Zhao Y, Yi UC, Cho SK. 61.  2007. Microparticle concentration and separation by traveling-wave dielectrophoresis (twDEP) for digital microfluidics. J. Microelectromech. Syst. 16:1472–81 [Google Scholar]
  62. Nejad HR, Chowdhury OZ, Buat MD, Hoorfar M. 62.  2013. Characterization of the geometry of negative dielectrophoresis traps for particle immobilization in digital microfluidic platforms. Lab Chip 13:1823–30 [Google Scholar]
  63. Shah GJ, Ohta AT, Chiou EP, Wu MC, Kim CJ. 63.  2009. EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. Lab Chip 9:1732–39 [Google Scholar]
  64. Valley JK, Ningpei S, Jamshidi A, Hsu HY, Wu MC. 64.  2011. A unified platform for optoelectrowetting and optoelectronic tweezers. Lab Chip 11:1292–97 [Google Scholar]
  65. Shah GJ, Veale JL, Korin Y, Reed EF, Gritsch HA, Kim CJ. 65.  2010. Specific binding and magnetic concentration of CD8+ T-lymphocytes on electrowetting-on-dielectric platform. Biomicrofluidics 4:44106 [Google Scholar]
  66. Bogojevic D, Chamberlain MD, Barbulovic-Nad I, Wheeler AR. 66.  2012. A digital microfluidic method for multiplexed cell-based apoptosis assays. Lab Chip 12:627–34 [Google Scholar]
  67. Schertzer MJ, Ben-Mrad R, Sullivan PE. 67.  2011. Mechanical filtration of particles in electrowetting on dielectric devices. J. Microelectromech. Syst. 20:1010–15 [Google Scholar]
  68. Kumar PT, Toffalini F, Witters D, Vermeir S, Rolland F. 68.  et al. 2014. Digital microfluidic chip technology for water permeability measurements on single isolated plant protoplasts. Sens. Actuators B: Chem. 199:479–87 [Google Scholar]
  69. Shih SCC, Mufti NS, Chamberlain MD, Kim J, Wheeler AR. 69.  2014. A droplet-based screen for wavelength-dependent lipid production in algae. Energy Environ. Sci. 7:2366–75 [Google Scholar]
  70. Srigunapalan S, Eydelnant IA, Simmons CA, Wheeler AR. 70.  2012. A digital microfluidic platform for primary cell culture and analysis. Lab Chip 12:369–75 [Google Scholar]
  71. Fobel R, Kirby AE, Ng AHC, Farnood RR, Wheeler AR. 71.  2014. Paper microfluidics goes digital. Adv. Mater. 26:2838–43 [Google Scholar]
  72. Ko H, Lee J, Kim Y, Lee B, Jung C-H. 72.  et al. 2014. Active digital microfluidic paper chips with inkjet-printed patterned electrodes. Adv. Mater. 26:2335–40 [Google Scholar]
  73. Fobel R, Fobel C, Wheeler AR. 73.  2013. DropBot: an open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Appl. Phys. Lett. 102:193513 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071114-040808
Loading
/content/journals/10.1146/annurev-bioeng-071114-040808
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error