1932

Abstract

Microfluidic cell-separation technologies have been studied for almost two decades, but the limited throughput has restricted their impact and range of application. Recent advances in microfluidics enable high-throughput cell sorting and separation, and this has led to various novel diagnostic and therapeutic applications that previously had been impossible to implement using microfluidics technologies. In this review, we focus on recent progress made in engineering large-volume microfluidic cell-sorting methods and the new applications enabled by them.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071114-040818
2015-12-07
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/17/1/annurev-bioeng-071114-040818.html?itemId=/content/journals/10.1146/annurev-bioeng-071114-040818&mimeType=html&fmt=ahah

Literature Cited

  1. El-Ali J, Sorger PK, Jensen KF. 1.  2006. Cells on chips. Nature 442:7101403–11 [Google Scholar]
  2. Terry VH, Johnston ICD, Spina CA. 2.  2009. CD44 MicroBeads accelerate HIV-1 infection in T cells. Virology 388:2294–304 [Google Scholar]
  3. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W. 3.  et al. 2009. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27:51006–20 [Google Scholar]
  4. Manz A, Graber N, Widmer HM. 4.  1990. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens. Actuators B: Chem. 1:1–6244–48 [Google Scholar]
  5. Weinberg E, Kaazempur-Mofrad M, Borenstein J. 5.  2008. Concept and computational design for a bioartificial nephron-on-a-chip. Int. J. Artif. Organs 31:6508–14 [Google Scholar]
  6. Hou HW, Bhagat AAS, Lee WC, Huang S, Han J, Lim CT. 6.  2011. Microfluidic devices for blood fractionation. Micromachines 2:3319–43 [Google Scholar]
  7. Martel JM, Toner M. 7.  2014. Inertial focusing in microfluidics. Annu. Rev. Biomed. Eng. 16:371–96 [Google Scholar]
  8. Toner M, Irimia D. 8.  2005. Blood-on-a-chip. Annu. Rev. Biomed. Eng. 7:77–103 [Google Scholar]
  9. Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HT. 9.  et al. 2010. Label-free cell separation and sorting in microfluidic systems. Anal. Bioanal. Chem. 397:83249–67 [Google Scholar]
  10. Bhagat AAS, Bow H, Hou HW, Tan SJ, Han J, Lim CT. 10.  2010. Microfluidics for cell separation. Med. Biol. Eng. Comput. 48:10999–1014 [Google Scholar]
  11. Pamme N. 11.  2007. Continuous flow separations in microfluidic devices. Lab Chip 7:121644–59 [Google Scholar]
  12. Warkiani ME, Lou C-P, Gong H-Q. 12.  2011. Fabrication of multi-layer polymeric micro-sieve having narrow slot pores with conventional ultraviolet-lithography and micro-fabrication techniques. Biomicrofluidics 5:3036504 [Google Scholar]
  13. Chen L, Warkiani ME, Liu H-B, Gong H-Q. 13.  2010. Polymeric micro-filter manufactured by a dissolving mold technique. J. Micromech. Microeng. 20:7075005 [Google Scholar]
  14. Tan SJ, Yobas L, Lee GY, Ong CN, Lim CT. 14.  2009. Microdevice for the isolation and enumeration of cancer cells from blood. Biomed. Microdevices 11:4883–92 [Google Scholar]
  15. Wilding P, Kricka LJ, Cheng J, Hvichia G, Shoffner MA, Fortina P. 15.  1998. Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers. Anal. Biochem. 257:295–100 [Google Scholar]
  16. Chung J, Shao H, Reiner T, Issadore D, Weissleder R, Lee H. 16.  2012. Microfluidic cell sorter (μFCS) for on-chip capture and analysis of single cells. Adv. Healthcare Mater. 1:4432–36 [Google Scholar]
  17. Liu Z, Huang F, Du J, Shu W, Feng H. 17.  et al. 2013. Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure. Biomicrofluidics 7:1011801 [Google Scholar]
  18. Chabert M, Viovy J-L. 18.  2008. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. PNAS 105:93191–96 [Google Scholar]
  19. Mach AJ, Di Carlo D. 19.  2010. Continuous scalable blood filtration device using inertial microfluidics. Biotechnol. Bioeng. 107:2302–11 [Google Scholar]
  20. Warkiani ME, Guan G, Luan KB, Lee WC, Bhagat AAS. 20.  et al. 2014. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14:1128–37 [Google Scholar]
  21. Bhardwaj P, Bagdi P, Sen A. 21.  2011. Microfluidic device based on a micro-hydrocyclone for particle–liquid separation. Lab Chip 11:234012–21 [Google Scholar]
  22. Hoshino K, Huang YY, Lane N, Huebschman M, Uhr JW. 22.  et al. 2011. Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 11:203449–57 [Google Scholar]
  23. Petersson F, Nilsson A, Holm C, Jonsson H, Laurell T. 23.  2004. Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels. Analyst 129:10938–43 [Google Scholar]
  24. Hou HW, Bhagat AA, Chong AG, Mao P, Tan KS. 24.  et al. 2010. Deformability based cell margination—a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10:192605–13 [Google Scholar]
  25. Karabacak NM, Spuhler PS, Fachin F, Lim EJ, Pai V. 25.  et al. 2014. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat. Protoc. 9:3694–710 [Google Scholar]
  26. Mohamed H, Murray M, Turner JN, Caggana M. 26.  2009. Isolation of tumor cells using size and deformation. J. Chromatogr. A 1216:478289–95 [Google Scholar]
  27. Lee D, Sukumar P, Mahyuddin A, Choolani M, Xu G. 27.  2010. Separation of model mixtures of ε-globin positive fetal nucleated red blood cells and anucleate erythrocytes using a microfluidic device. J. Chromatogr. A 1217111862–66
  28. Murthy SK, Sethu P, Vunjak-Novakovic G, Toner M, Radisic M. 28.  2006. Size-based microfluidic enrichment of neonatal rat cardiac cell populations. Biomed. Microdevices 8:3231–37 [Google Scholar]
  29. Warkiani ME, Lou CP, Liu HB, Gong HQ. 29.  2012. A high-flux isopore micro-fabricated membrane for effective concentration and recovering of waterborne pathogens. Biomed. Microdevices 14:4669–77 [Google Scholar]
  30. Warkiani ME, Chen L, Lou C-P, Liu H-B, Zhang R, Gong H-Q. 30.  2011. Capturing and recovering of Cryptosporidium parvum oocysts with polymeric micro-fabricated filter. J. Membr. Sci. 369:1560–68 [Google Scholar]
  31. Aran K, Morales M, Sasso LA, Lo J, Zheng M. 31.  et al. 2011. Microfiltration device for continuous, label-free bacteria separation from whole blood for sepsis treatment. 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2011) J Landers 497–500 San Diego, CA: Chemical and Biological Microsystems Society [Google Scholar]
  32. Li X, Chen W, Liu G, Lu W, Fu J. 32.  2014. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes. Lab Chip 14:142565–75 [Google Scholar]
  33. Chen W, Huang NT, Oh B, Lam RH, Fan R. 33.  et al. 2013. Surface-micromachined microfiltration membranes for efficient isolation and functional immunophenotyping of subpopulations of immune cells. Adv. Healthc. Mater. 2:7965–75 [Google Scholar]
  34. Warkiani ME, Bhagat AAS, Khoo BL, Han J, Lim CT. 34.  et al. 2013. Isoporous micro/nanoengineered membranes. ACS Nano 7:31882–904 [Google Scholar]
  35. Huang LR, Cox EC, Austin RH, Sturm JC. 35.  2004. Continuous particle separation through deterministic lateral displacement. Science 304:5673987–90 [Google Scholar]
  36. Inglis DW, Davis JA, Austin RH, Sturm JC. 36.  2006. Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6:5655–58 [Google Scholar]
  37. Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR. 37.  et al. 2006. Deterministic hydrodynamics: taking blood apart. PNAS 103:4014779–84 [Google Scholar]
  38. Inglis DW, Herman N, Vesey G. 38.  2010. Highly accurate deterministic lateral displacement device and its application to purification of fungal spores. Biomicrofluidics 4:2024109 [Google Scholar]
  39. Huang R, Barber TA, Schmidt MA, Tompkins RG, Toner M. 39.  et al. 2008. A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women. Prenat. Diagn. 28:10892–99 [Google Scholar]
  40. Inglis DW, Lord M, Nordon RE. 40.  2011. Scaling deterministic lateral displacement arrays for high throughput and dilution-free enrichment of leukocytes. J. Micromech. Microeng. 21:5054024 [Google Scholar]
  41. Li N, Kamei DT, Ho CM. 41.  2007. On-chip continuous blood cell subtype separation by deterministic lateral displacement. Nano/Micro Engineered and Molecular Systems932–36 New York: IEEE (Inst. Electr. Electron. Eng.)
  42. Bowman TJ, Drazer G, Frechette J. 42.  2013. Inertia and scaling in deterministic lateral displacement. Biomicrofluidics 7:664111 [Google Scholar]
  43. Inglis DW. 43.  2009. Efficient microfluidic particle separation arrays. Appl. Phys. Lett. 94:1013510 [Google Scholar]
  44. Loutherback K, Chou KS, Newman J, Puchalla J, Austin RH. 44.  et al. 2010. Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid. Nanofluid. 9:61143–49 [Google Scholar]
  45. Loutherback K, D'Silva J, Liu L, Wu A, Austin RH, Sturm JC. 45.  2012. Deterministic separation of cancer cells from blood at 10 mL/min. AIP Adv. 2:4042107 [Google Scholar]
  46. Zhou J, Papautsky I. 46.  2013. Fundamentals of inertial focusing in microchannels. Lab Chip 13:61121–32 [Google Scholar]
  47. Yamada M, Nakashima M, Seki M. 47.  2004. Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal. Chem. 76:185465–71 [Google Scholar]
  48. Takagi J, Yamada M, Yasuda M, Seki M. 48.  2005. Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5:7778–84 [Google Scholar]
  49. Yamada M, Seki M. 49.  2005. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5:111233–39 [Google Scholar]
  50. Tsutsui H, Ho C-M. 50.  2009. Cell separation by non-inertial force fields in microfluidic systems. Mech. Res. Commun. 36:192–103 [Google Scholar]
  51. Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY, Jouvet L. 51.  2010. Hydrodynamic blood plasma separation in microfluidic channels. Microfluid. Nanofluid. 8:1105–14 [Google Scholar]
  52. Di Carlo D. 52.  2009. Inertial microfluidics. Lab Chip 9:213038–46 [Google Scholar]
  53. Di Carlo D. Irimia D, Tompkins RG, Toner M.53.  2007. Continuous inertial focusing, ordering, and separation of particles in microchannels. PNAS 104:4818892–97 [Google Scholar]
  54. Ookawara S, Irimia D, Tompkins RG, Toner M. 54.  2007. Quasi-direct numerical simulation of lift force-induced particle separation in a curved microchannel by use of a macroscopic particle model. Chem. Eng. Sci. 62:92454–65 [Google Scholar]
  55. Amini H, Lee W, Di Carlo D. 55.  2014. Inertial microfluidic physics. Lab Chip 14:152739–61 [Google Scholar]
  56. Kuntaegowdanahalli SS, Bhagat AA, Kumar G, Papautsky I. 56.  2009. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9:202973–80 [Google Scholar]
  57. Chatterjee A, Kuntaegowdanahalli SS, Papautsky I. 57.  2011. Inertial microfluidics for continuous separation of cells and particles. Proc. SPIE 7929:792907 [Google Scholar]
  58. Lee W, Bhagat A, Lim C. 58.  2014. High-throughput synchronization of mammalian cell cultures by spiral microfluidics. Animal Cell Biotechnology: Methods and Protocols R Pörtner 3–13 New York: Humana, 3rd ed.. [Google Scholar]
  59. Wu L, Guan G, Hou HW, Bhagat AAS, Han J. 59.  2012. Separation of leukocytes from blood using spiral channel with trapezoid cross-section. Anal. Chem. 84:219324–31 [Google Scholar]
  60. Guan G, Wu L, Bhagat AA, Li Z, Chen PC, Chao S. 60.  et al. 2013. Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation. Sci. Rep. 3:1475 [Google Scholar]
  61. Bhagat AAS, Hou HW, Li LD, Lim CT, Han J. 61.  2011. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 11:111870–78 [Google Scholar]
  62. Wu Z, Willing B, Bjerketorp J, Jansson JK, Hjort K. 62.  2009. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip 9:91193–99 [Google Scholar]
  63. Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA. 63.  et al. 2013. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 3:1259 [Google Scholar]
  64. Warkiani ME, Khoo BL, Tan DS-W, Bhagat AAS, Lim W-T. 64.  et al. 2014. An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells. Analyst 139:133245–55 [Google Scholar]
  65. Khoo BL, Warkiani ME, Tan DS, Bhagat AA, Irwin D. 65.  et al. 2014. Clinical validation of an ultra high-throughput spiral microfluidics for the detection and enrichment of viable circulating tumor cells. PLOS ONE 9:7e99409 [Google Scholar]
  66. Hur SC, Henderson-MacLennan NK, McCabe ERB, Di Carlo D. 66.  2011. Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 11:5912–20 [Google Scholar]
  67. Zheng S, Lin HK, Lu B, Williams A, Datar R. 67.  et al. 2011. 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood. Biomed. Microdevices 13:1203–13 [Google Scholar]
  68. Xuan X, Zhu J, Church C. 68.  2010. Particle focusing in microfluidic devices. Microfluid. Nanofluid. 9:11–16 [Google Scholar]
  69. Seo J, Lean MH, Kole A. 69.  2007. Membraneless microseparation by asymmetry in curvilinear laminar flows. J. Chromatogr. A 1162:2126–31 [Google Scholar]
  70. Vieira L, Barbosa Z, Damasceno JJR, Barrozo MAS. 70.  2005. Performance analysis and design of filtering hydrocyclones. Braz. J. Chem. Eng. 22:1143–52 [Google Scholar]
  71. Hwang K-J, Hsueh W-S, Nagase Y. 71.  2008. Mechanism of particle separation in small hydrocyclone. Dry. Technol. 26:81002–10 [Google Scholar]
  72. Pinto RC, Medronho RA, Castilho LR. 72.  2008. Separation of CHO cells using hydrocyclones. Cytotechnology 56:157–67 [Google Scholar]
  73. Habibian M, Pazouki M, Ghanaie H, Abbaspour-Sani K. 73.  2008. Application of hydrocyclone for removal of yeasts from alcohol fermentations broth. Chem. Eng. J. 138:130–34 [Google Scholar]
  74. Bagdi P, Sen A, Bhardwaj P. 74.  2012. Analysis and simulation of a micro hydrocyclone device for particle liquid separation. J. Fluids Eng. 134:2021105 [Google Scholar]
  75. Hwang K-J, Hwang Y-W, Yoshida H. 75.  2013. Design of novel hydrocyclone for improving fine particle separation using computational fluid dynamics. Chem. Eng. Sci. 85:62–68 [Google Scholar]
  76. Morijiri T, Hikida T, Yamada M, Seki M. 76.  2011. Microfluidic counterflow centrifugal elutriation for cell separation using density-gradient media. 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2010) S Verpoorte 722–24 San Diego, CA: Chemical and Biological Microsystems Society [Google Scholar]
  77. Lindahl PE. 77.  1948. Principle of a counter-streaming centrifuge for the separation of particles of different sizes. Nature 161:648–49 [Google Scholar]
  78. Grabske RJ, Lake S, Gledhill BL, Meistrich ML. 78.  1975. Centrifugal elutriation: separation of spermatogenic cells on the basis of sedimentation velocity. J. Cell. Physiol. 86:1177–89 [Google Scholar]
  79. Grosse J, Meier K, Bauer TJ, Eilles C, Grimm D. 79.  2012. Cell separation by countercurrent centrifugal elutriation: recent developments. Prep. Biochem. Biotechnol. 42:3217–33 [Google Scholar]
  80. Banfalvi G. 80.  2008. Cell cycle synchronization of animal cells and nuclei by centrifugal elutriation. Nat. Protoc. 3:4663–73 [Google Scholar]
  81. Morijiri T, Yamada M, Hikida T, Seki M. 81.  et al. 2013. Microfluidic counterflow centrifugal elutriation system for sedimentation-based cell separation. Microfluid. Nanofluid. 14:61049–57 [Google Scholar]
  82. Jandt U, Platas Barradas O, Pörtner R, Zeng AP. 82.  2014. Mammalian cell culture synchronization under physiological conditions and population dynamic simulation. Appl. Microbiol. Biotechnol. 98:104311–19 [Google Scholar]
  83. Gorantla S, Che M, Gendelman HE. 83.  2014. Centrifugal elutriation for studies of neuroimmunity. Current Laboratory Methods in Neuroscience Research H Xiong, HE Gendelman 165–75 New York: Springer [Google Scholar]
  84. Burger R, Kirby D, Glynn M, Nwankire C, O'Sullivan M. 84.  et al. 2012. Centrifugal microfluidics for cell analysis. Curr. Opin. Chem. Biol. 16:3409–14 [Google Scholar]
  85. Ducrée J, Haeberle S, Lutz S, Pausch S, von Stetten F, Zengerle R. 85.  2007. The centrifugal microfluidic bio-disk platform. J. Micromech. Microeng. 17:7S103 [Google Scholar]
  86. Haeberle S, Brenner T, Zengerle R, Ducrée J. 86.  2006. Centrifugal extraction of plasma from whole blood on a rotating disk. Lab Chip 6:6776–81 [Google Scholar]
  87. Zhang J, Guo Q, Liu M, Yang J. 87.  2008. A lab-on-CD prototype for high-speed blood separation. J. Micromech. Microeng. 18:12125025 [Google Scholar]
  88. Li T, Zhang L, Leung KM, Yang J. 88.  2010. Out-of-plane microvalves for whole blood separation on lab-on-a-CD. J. Micromech. Microeng. 20:10105024 [Google Scholar]
  89. Shiono H, Ito Y. 89.  2003. Novel method for continuous cell separation by density gradient centrifugation: evaluation of a miniature separation column. Prep. Biochem. Biotechnol. 33:287–100 [Google Scholar]
  90. Shiono H, Okada T, Ito Y. 90.  2005. Application of a novel continuous-flow cell separation method for separation of cultured human mast cells. J. Liquid Chromatogr. Relat. Technol. 28:12–132071–83 [Google Scholar]
  91. Shiono H, Chen HM, Okada T, Ito Y. 91.  2007. Colony-forming cell assay for human hematopoietic progenitor cells harvested by a novel continuous-flow cell separation method. J. Chromatogr. A 11511–2153–57
  92. Martinez-Duarte R, Gorkin RA 3rd, Abi-Samra K, Madou MJ. 92.  2010. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Lab Chip 10:81030–43 [Google Scholar]
  93. Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N. 93.  2006. Lab on a CD. Annu. Rev. Biomed. Eng. 8:601–28 [Google Scholar]
  94. Gorkin R, Park J, Siegrist J, Amasia M, Lee BS. 94.  et al. 2010. Centrifugal microfluidics for biomedical applications. Lab Chip 10:141758–73 [Google Scholar]
  95. Amasia M, Siegrist J, Madou M. 95.  2011. Large-volume centrifugal microfluidic device for whole blood sample preparation. 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2010 (MicroTAS 2010) S Verpoorte 815–17 San Diego, CA: Chemical and Biological Microsystems Society [Google Scholar]
  96. Picot J, Guerin CL, Le Van Kim C, Boulanger CM. 96.  2012. Flow cytometry: retrospective, fundamentals and recent instrumentation. Cytotechnology 64:2109–30 [Google Scholar]
  97. Kiermer V. 97.  2005. FACS-on-a-chip. Nat. Methods 2:291 [Google Scholar]
  98. Johansson L, Nikolajeff F, Johansson S, Thorslund S. 98.  2009. On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer. Anal. Chem. 81:135188–96 [Google Scholar]
  99. Lenshof A, Laurell T. 99.  2010. Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 39:31203–17 [Google Scholar]
  100. Gao Y, Li W, Pappas D. 100.  2013. Recent advances in microfluidic cell separations. Analyst 138:174714–21 [Google Scholar]
  101. Collins TA. 101.  2011. Packed red blood cell transfusions in critically ill patients. Crit. Care Nurse 31:125–34 [Google Scholar]
  102. Kang JH, Krause S, Tobin H, Mammoto A, Kanapathipillai M, Ingber DE. 102.  2012. A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip 12:122175–81 [Google Scholar]
  103. Yung CW, Fiering J, Mueller AJ, Ingber DE. 103.  2009. Micromagnetic–microfluidic blood cleansing device. Lab Chip 9:91171–77 [Google Scholar]
  104. Gorges T, Tinhofer I, Drosch M, Röse L, Zollner TM. 104.  et al. 2012. Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer 12:11–13 [Google Scholar]
  105. Liu Z, Fusi A, Klopocki E, Schmittel A, Tinhofer I. 105.  et al. 2011. Negative enrichment by immunomagnetic nanobeads for unbiased characterization of circulating tumor cells from peripheral blood of cancer patients. J. Transl. Med. 9:170 [Google Scholar]
  106. Naume B, Borgen E, Nesland JM, Beiske K, Gilen E. 106.  et al. 1998. Increased sensitivity for detection of micrometastases in bone-marrow/peripheral-blood stem-cell products from breast-cancer patients by negative immunomagnetic separation. Int. J. Cancer 78:5556–60 [Google Scholar]
  107. Chen C-L, Chen KC, Pan YC, Lee TP, Hsiung LC. 107.  et al. 2011. Separation and detection of rare cells in a microfluidic disk via negative selection. Lab Chip 11:3474–83 [Google Scholar]
  108. Dainiak MB, Galaev IY, Kumar A, Plieva FM, Mattiasson B. 108.  2007. Chromatography of living cells using supermacroporous hydrogels, cryogels. Adv. Biochem. Eng. Biotechnol. 106:101–27 [Google Scholar]
  109. Plieva FM, Galaev IY, Noppe W, Mattiasson B. 109.  2008. Cryogel applications in microbiology. Trends Microbiol. 16:11543–51 [Google Scholar]
  110. Kumar A, Bhardwaj A. 110.  2008. Methods in cell separation for biomedical application: cryogels as a new tool. Biomed. Mater. 3:3034008 [Google Scholar]
  111. Wang Z, Zhe J. 111.  2011. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. Lab Chip 11:71280–85 [Google Scholar]
  112. Shi J, Huang H, Stratton Z, Huang Y, Huang TJ. 112.  2009. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9:233354–59 [Google Scholar]
  113. Wiklund M, Hertz HM. 113.  2006. Ultrasonic enhancement of bead-based bioaffinity assays. Lab Chip 6:101279–92 [Google Scholar]
  114. Laurell T, Petersson F, Nilsson A. 114.  2007. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 36:3492–506 [Google Scholar]
  115. Lenshof A, Laurell T. 115.  2011. Emerging clinical applications of microchip-based acoustophoresis. J. Assoc. Lab. Autom. 16:6443–49 [Google Scholar]
  116. Petersson F, Åberg L, Swärd-Nilsson A-M, Laurell T. 116.  2007. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal. Chem. 79:145117–23 [Google Scholar]
  117. Persson J, Augustsson P, Laurell T, Ohlin M. 117.  2008. Acoustic microfluidic chip technology to facilitate automation of phage display selection. FEBS J. 275:225657–66 [Google Scholar]
  118. Lenshof A, Ahmad-Tajudin A, Järås K, Swärd-Nilsson A-M, Åberg L. 118.  et al. 2009. Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. Anal. Chem. 81:156030–37 [Google Scholar]
  119. Dykes J, Lenshof A, Åstrand-Grundström I-B, Laurell T, Scheding S. 119.  2011. Efficient removal of platelets from peripheral blood progenitor cell products using a novel micro-chip based acoustophoretic platform. PLOS ONE 6:8e23074 [Google Scholar]
  120. Thévoz P, Adams JD, Shea H, Bruus H, Soh HT. 120.  2010. Acoustophoretic synchronization of mammalian cells in microchannels. Anal. Chem. 82:73094–98 [Google Scholar]
  121. Augustsson P, Magnusson C, Nordin M, Lilja H, Laurell T. 121.  2012. Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. Anal. Chem. 84:187954–62 [Google Scholar]
  122. Yang AH, Soh HT. 122.  2012. Acoustophoretic sorting of viable mammalian cells in a microfluidic device. Anal. Chem. 84:2410756–62 [Google Scholar]
  123. Shi J, Mao X, Ahmed D, Colletti A, Huang TJ. 123.  2008. Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip 8:2221–23 [Google Scholar]
  124. Grenvall C, Augustsson P, Folkenberg JR, Laurell T. 124.  2009. Harmonic microchip acoustophoresis: a route to online raw milk sample precondition in protein and lipid content quality control. Anal. Chem. 81:156195–200 [Google Scholar]
  125. Trampler F, Sonderhoff SA, Pui PW, Kilburn DG, Piret JM. 125.  1994. Acoustic cell filter for high density perfusion culture of hybridoma cells. Nat. Biotechnol. 12:3281–84 [Google Scholar]
  126. Hammarstrom B, Laurell T, Nilsson J. 126.  2012. Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems. Lab Chip 12:214296–304 [Google Scholar]
  127. Dung Luong T, Trung Nguyen N. 127.  2010. Surface acoustic wave driven microfluidics—a review. Micro Nanosyst. 2:3217–25 [Google Scholar]
  128. Long DS, Smith ML, Pries AR, Ley K, Damiano ER. 128.  2004. Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution. PNAS 101:2710060–65 [Google Scholar]
  129. Geng Z, Zhang L, Ju Y, Wang W, Li Z. 129.  2011. A plasma separation device based on centrifugal effect and Zweifach-Fung effect. 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2011) J Landers 224–26 San Diego, CA: Chemical and Biological Microsystems Society [Google Scholar]
  130. Jäggi R, Sandoz R, Effenhauser C. 130.  2007. Microfluidic depletion of red blood cells from whole blood in high-aspect-ratio microchannels. Microfluid. Nanofluid. 3:147–53 [Google Scholar]
  131. Yang S, Undar A, Zahn JD. 131.  2006. A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6:7871–80 [Google Scholar]
  132. Faivre M, Abkarian M, Bickraj K, Stone HA. 132.  2006. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma. Biorheology 43:2147–59 [Google Scholar]
  133. Sollier E, Rostaing H, Pouteau P, Fouillet Y, Achard J-L. 133.  2009. Passive microfluidic devices for plasma extraction from whole human blood. Sens. Actuators B: Chem. 141:2617–24 [Google Scholar]
  134. Shevkoplyas SS, Yoshida T, Munn LL, Bitensky MW. 134.  2005. Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Anal. Chem. 77:3933–37 [Google Scholar]
  135. Wei Hou H, Gan HY, Bhagat AA, Li LD, Lim CT, Han J. 135.  2012. A microfluidics approach towards high-throughput pathogen removal from blood using margination. Biomicrofluidics 6:2024115 [Google Scholar]
  136. Hur SC, Mach AJ, Di Carlo D. 136.  2011. High-throughput size-based rare cell enrichment using microscale vortices. Biomicrofluidics 5:2022206 [Google Scholar]
  137. Moon HS, Kwon K, Kim SI, Han H, Sohn J. 137.  et al. 2011. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip 11:61118–25 [Google Scholar]
  138. Sollier E, Go DE, Che J, Gossett DR, O'Byrne S. 138.  et al. 2014. Size-selective collection of circulating tumor cells using vortex technology. Lab Chip 14:163–77 [Google Scholar]
  139. Wang X, Zhou J, Papautsky I. 139.  2013. Vortex-aided inertial microfluidic device for continuous particle separation with high size-selectivity, efficiency, and purity. Biomicrofluidics 7:4044119 [Google Scholar]
  140. Song S, Choi S. 140.  2014. Inertial modulation of hydrophoretic cell sorting and focusing. Appl. Phys. Lett. 104:7074106 [Google Scholar]
  141. Adams JD, Thévoz P, Bruus H, Soh HT. 141.  2009. Integrated acoustic and magnetic separation in microfluidic channels. Appl. Phys. Lett. 95:25254103 [Google Scholar]
  142. Liu Z, Zhang W, Huang F, Feng H, Shu W. 142.  et al. 2013. High throughput capture of circulating tumor cells using an integrated microfluidic system. Biosens. Bioelectron. 47:113–19 [Google Scholar]
  143. Seo H, Kim H, Kim Y. 143.  2011. Hydrodynamics and magnetophoresis based hybrid blood cell sorter for high throughput separation. 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2010) S Verpoorte 223–25 San Diego, CA: Chemical and Biological Microsystems Society [Google Scholar]
  144. Ozkumur E, Shah AM, Ciciliano JC, Emmink BL, Miyamoto DT. 144.  et al. 2013. Inertial focusing for tumor antigen–dependent and –independent sorting of rare circulating tumor cells. Sci. Transl. Med. 5:179179ra47 [Google Scholar]
  145. Dharmasiri U, Witek MA, Adams AA, Soper SA. 145.  2010. Microsystems for the capture of low-abundance cells. Annu. Rev. Anal. Chem. 3:409–31 [Google Scholar]
  146. Sleijfer S, Gratama JW, Sieuwerts AM, Kraan J, Martens JW, Foekens JA. 146.  2007. Circulating tumour cell detection on its way to routine diagnostic implementation?. Eur. J. Cancer 43:182645–50 [Google Scholar]
  147. Yu M, Bardia A, Aceto N, Bersani F, Madden MW. 147.  et al. 2014. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345:6193216–20 [Google Scholar]
  148. Saucedo-Zeni N, Mewes S, Niestroj R, Gasiorowski L, Murawa D. 148.  et al. 2012. A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wire. Int. J. Oncol. 41:41241–50 [Google Scholar]
  149. Eifler RL, Lind J, Falkenhagen D, Weber V, Fischer MB, Zeillinger R. 149.  2011. Enrichment of circulating tumor cells from a large blood volume using leukapheresis and elutriation: proof of concept. Cytometry B: Clin. Cytometry 80:2100–11 [Google Scholar]
  150. Fischer JC, Niederacher D, Topp SA, Honisch E, Schumacher S. 150.  et al. 2013. Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer patients. PNAS 110:4116580–85 [Google Scholar]
  151. Barradas A, Terstappen LW. 151.  2013. Towards the biological understanding of CTC: capture technologies, definitions and potential to create metastasis. Cancers 5:41619–42 [Google Scholar]
  152. Williamson KR, Taswell F. 152.  1991. Intraoperative blood salvage: a review. Transfusion 31:7662–75 [Google Scholar]
  153. Heiss MM, Mempel W, Delanoff C, Jauch KW, Gabka C. 153.  et al. 1994. Blood transfusion-modulated tumor recurrence: first results of a randomized study of autologous versus allogeneic blood transfusion in colorectal cancer surgery. J. Clin. Oncol. 12:91859–67 [Google Scholar]
  154. Moore FA, Moore EE, Sauaia A. 154.  1997. Blood transfusion: an independent risk factor for postinjury multiple organ failure. Arch. Surg. 132:6620–25 [Google Scholar]
  155. Johnson JL, Moore EE, Kashuk JL, Banerjee A, Cothren CC. 155.  et al. 2010. Effect of blood products transfusion on the development of postinjury multiple organ failure. Arch. Surg. 145:10973–77 [Google Scholar]
  156. Waters JH, Yazer M, Chen YF, Kloke J. 156.  2012. Blood salvage and cancer surgery: a meta-analysis of available studies. Transfusion 52:102167–73 [Google Scholar]
  157. Futamura N, Nakanishi H, Hirose H, Nakamura S, Tatematsu M. 157.  2005. The effect of storage on the survival of cancer cells in blood and efficient elimination of contaminating cancer cells by a leukocyte depletion filter. Am. Surg. 71:7585–90 [Google Scholar]
  158. Gwak MS, Lee KW, Kim SY, Lee J, Joh JW. 158.  et al. 2005. Can a leukocyte depletion filter (LDF) reduce the risk of reintroduction of hepatocellular carcinoma cells?. Liver Transplant. 11:3331–35 [Google Scholar]
  159. Rimmele T, Kellum J. 159.  2011. Clinical review: blood purification for sepsis. Crit. Care 15:1205 [Google Scholar]
  160. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. 160.  2001. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29:71303–10 [Google Scholar]
  161. Rimmelé T, Kaynar AM, McLaughlin JN, Bishop JV, Fedorchak MV. 161.  et al. 2013. Leukocyte capture and modulation of cell-mediated immunity during human sepsis: an ex vivo study. Crit. Care 17:2R59 [Google Scholar]
  162. Devroe E. 162.  2014. Capture and Concentration of Microbial Pathogens. Boston, MA: Wyss Inst. Biol. Inspired Eng. Harv Univ., retrieved June 2, 2014. http://wyss.harvard.edu/viewpage/462/ [Google Scholar]
  163. Rimmele T, Kaynar AM, McLaughlin JN, Bishop JV, Fedorchak MV. 163.  et al. 2013. Leukocyte capture and modulation of cell-mediated immunity during human sepsis: an ex vivo study. Crit. Care 17:2R59 [Google Scholar]
  164. Ding F, Song JH, Jung JY, Lou L, Wang M. 164.  et al. 2011. A biomimetic membrane device that modulates the excessive inflammatory response to sepsis. PLOS ONE 6:4e18584 [Google Scholar]
  165. Hou HW, Gan HY, Bhagat AAS, Li LD, Lim CT, Han J. 165.  2012. A microfluidics approach towards high-throughput pathogen removal from blood using margination. Biomicrofluidics 6:2024115 [Google Scholar]
  166. Pries AR, Secomb TW, Gaehtgens P. 166.  1996. Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 32:4654–67 [Google Scholar]
  167. Hou HW, Vera MP, Levy BD, Baron RM, Han J. 167.  2014. Novel microfluidic “cell-based” blood dialysis platform for murine model of sepsis. 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2013) R Zengerie 1845–47 San Diego, CA: Chemical and Biological Microsystems Society [Google Scholar]
  168. Ronco C, Davenport A, Gura V. 168.  2011. The future of the artificial kidney: moving towards wearable and miniaturized devices. Nefrologia 31:19–16 [Google Scholar]
  169. Humes HD, Buffington D, Westover AJ, Roy S, Fissell WH. 169.  2014. The bioartificial kidney: current status and future promise. Pediatr. Nephrol. 29:3343–51 [Google Scholar]
  170. Toner RW, Pizzi L, Leas B, Ballas SK, Quigley A, Goldfarb NI. 170.  2011. Costs to hospitals of acquiring and processing blood in the US. Appl. Health Econ. Health Policy 9:129–37 [Google Scholar]
  171. Carson JL, Grossman BJ, Kleinman S, Tinmouth AT, Marques MB. 171.  et al. 2012. Red blood cell transfusion: a clinical practice guideline from the AABB. Ann. Intern. Med. 157:149–58 [Google Scholar]
  172. Kor DJ, Van Buskirk CM, Gajic O. 172.  2009. Red blood cell storage lesion. Bosnian J. Basic Med. Sci. 9:Suppl. 1S21–27 [Google Scholar]
  173. Pavenski K, Saidenberg E, Lavoie M, Tokessy M, Branch DR. 173.  2012. Red blood cell storage lesions and related transfusion issues: a Canadian blood services research and development symposium. Transfus. Med. Rev. 26:168–84 [Google Scholar]
  174. Luten M, Roerdinkholder-Stoelwinder B, Schaap NP, de Grip WJ, Bos HJ, Bosman GJ. 174.  2008. Survival of red blood cells after transfusion: a comparison between red cells concentrates of different storage periods. Transfusion 48:71478–85 [Google Scholar]
  175. Dumont LJ, AuBuchon JP. 175.  2008. Evaluation of proposed FDA criteria for the evaluation of radiolabeled red cell recovery trials. Transfusion 48:61053–60 [Biomedical Excellence for Safer Transfusion (BEST) Collaborative] [Google Scholar]
  176. Merkl L. 176.  2014. UH Biomedical Engineer Works to Make Blood Transfusions Safer: NIH-funded Technology for Separating Well-preserved Red Blood Cells from Potentially Harmful Materials Houston, TX: Univ. Houst., retrieved June 2, 2014 http://www.uh.edu/news-events/stories/2014/April/042314Shevkoplyas.php
  177. Huang S, Hou HW, Kanias T, Sertorio JT, Chen H. 177.  et al. 2015. Towards microfluidic-based depletion of stiff and fragile human red cells that accumulate during blood storage. Lab Chip 15:448–58 [Google Scholar]
  178. Huang S, Amaladoss A, Liu M, Chen H, Zhang R. 178.  et al. 2014. In vivo splenic clearance corresponds with in vitro deformability of red blood cells from Plasmodium yoelii infected mice. Infect. Immunity 82:62532–41 [Google Scholar]
  179. Farges E, Grebe R, Baumann M. 179.  2002. Viscoelastic and biochemical properties of erythrocytes during storage with SAG-M at + 4°C. Clin. Hemorheol. Microcirc. 27:11–11 [Google Scholar]
  180. Kim-Shapiro DB, Lee J, Gladwin MT. 180.  2011. Storage lesion: role of red blood cell breakdown. Transfusion 51:4844–51 [Google Scholar]
  181. Deplaine G, Safeukui I, Jeddi F, Lacoste F, Brousse V. 181.  et al. 2011. The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro. Blood 117:8e88–95 [Google Scholar]
  182. Fox MH. 182.  2004. Methods for synchronizing mammalian cells. Methods in Molecular Biology 241 Cell Cycle Checkpoint Control Protocols HB Lieberman 11–16 Totowa, NJ: Humana [Google Scholar]
  183. Coquelle A, Mouhamad S, Pequignot MO, Braun T, Carvalho G. 183.  et al. 2006. Enrichment of non-synchronized cells in the G1, S and G2 phases of the cell cycle for the study of apoptosis. Biochem. Pharmacol. 72:111396–404 [Google Scholar]
  184. Kim U, Shu CW, Dane KY, Daugherty PS, Wang JY, Soh HT. 184.  2007. Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis. PNAS 104:5220708–12 [Google Scholar]
  185. Choi S, Song S, Choi C, Park JK. 185.  2009. Microfluidic self-sorting of mammalian cells to achieve cell cycle synchrony by hydrophoresis. Anal. Chem. 81:51964–68 [Google Scholar]
  186. Lee WC, Bhagat AA, Huang S, Van Vliet KJ, Han J, Lim CT. 186.  2011. High-throughput cell cycle synchronization using inertial forces in spiral microchannels. Lab Chip 11:71359–67 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071114-040818
Loading
/content/journals/10.1146/annurev-bioeng-071114-040818
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error