Aging is a complex, multifaceted process that induces a myriad of physiological changes over an extended period of time. Aging is accompanied by major biochemical and biomechanical changes at macroscopic and microscopic length scales that affect not only tissues and organs but also cells and subcellular organelles. These changes include transcriptional and epigenetic modifications; changes in energy production within mitochondria; and alterations in the overall mechanics of cells, their nuclei, and their surrounding extracellular matrix. In addition, aging influences the ability of cells to sense changes in extracellular-matrix compliance (mechanosensation) and to transduce these changes into biochemical signals (mechanotransduction). Moreover, following a complex positive-feedback loop, aging is accompanied by changes in the composition and structure of the extracellular matrix, resulting in changes in the mechanics of connective tissues in older individuals. Consequently, these progressive dysfunctions facilitate many human pathologies and deficits that are associated with aging, including cardiovascular, musculoskeletal, and neurodegenerative disorders and diseases. Here, we critically review recent work highlighting some of the primary biophysical changes occurring in cells and tissues that accompany the aging process.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Frantz C, Stewart KM, Weaver VM. 1.  2010. The extracellular matrix at a glance. J. Cell Sci. 123:4195–200 [Google Scholar]
  2. Gilkes DM, Semenza GL, Wirtz D. 2.  2014. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat. Rev. Cancer 14:430–39 [Google Scholar]
  3. Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO. 3.  2012. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell. Proteomics 11:M111.014647 [Google Scholar]
  4. Jarvelainen H, Sainio A, Koulu M, Wight TN, Penttinen R. 4.  2009. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol. Rev. 61:198–223 [Google Scholar]
  5. Minimas DA. 5.  2007. Ageing and its influence on wound healing. Wounds UK 3:42–50 [Google Scholar]
  6. Nagase H, Visse R, Murphy G. 6.  2006. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 69:562–73 [Google Scholar]
  7. Nagase H, Woessner JF. 7.  1999. Matrix metalloproteinases. J. Biol. Chem. 274:21491–94 [Google Scholar]
  8. Cruz-Munoz W, Khokha R. 8.  2008. The role of tissue inhibitors of metalloproteinases in tumorigenesis and metastasis. Crit. Rev. Clin. Lab. Sci. 45:291–338 [Google Scholar]
  9. Mott JD, Werb Z. 9.  2004. Regulation of matrix biology by matrix metalloproteinases. Curr. Opin. Cell Biol. 16:558–64 [Google Scholar]
  10. Labat-Robert J. 10.  2004. Cell-matrix interactions in aging: role of receptors and matricryptins. Ageing Res. Rev. 3:233–47 [Google Scholar]
  11. Vijg J, Campisi J. 11.  2008. Puzzles, promises and a cure for ageing. Nature 454:1065–71 [Google Scholar]
  12. van der Rest M, Garrone R. 12.  1991. Collagen family of proteins. FASEB J. 5:2814–23 [Google Scholar]
  13. Rozario T, DeSimone DW. 13.  2010. The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Biol. 341:126–40 [Google Scholar]
  14. De Wever O, Demetter P, Mareel M, Bracke M. 14.  2008. Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer 123:2229–38 [Google Scholar]
  15. Guo Q, Phillip JM, Majumdar S, Wu PH, Chen J. 15.  et al. 2013. Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair. Biomaterials 34:9365–72 [Google Scholar]
  16. Robert L. 16.  1998. Mechanisms of aging of the extracellular matrix: role of the elastin–laminin receptor. Gerontology 44:307–17 [Google Scholar]
  17. Smith ML, Gourdon D, Little WC, Kubow KE, Eguiluz RA. 17.  et al. 2007. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLOS Biol. 5:e268 [Google Scholar]
  18. Labat-Robert J. 18.  2003. Age-dependent remodeling of connective tissue: role of fibronectin and laminin. Pathol. Biol. 51:563–68 [Google Scholar]
  19. Kwak HB. 19.  2013. Aging, exercise, and extracellular matrix in the heart. J. Exercise Rehabil. 9:338–47 [Google Scholar]
  20. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG. 20.  et al. 2011. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–36 [Google Scholar]
  21. Callaghan TM, Wilhelm KP. 21.  2008. A review of ageing and an examination of clinical methods in the assessment of ageing skin. Part I: cellular and molecular perspectives of skin ageing. Int. J. Cosmet. Sci. 30:313–22 [Google Scholar]
  22. Fisher GJ, Quan T, Purohit T, Shao Y, Cho MK. 22.  et al. 2009. Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin. Am. J. Pathol. 174:101–14 [Google Scholar]
  23. Varani J, Dame MK, Rittie L, Fligiel SE, Kang S. 23.  et al. 2006. Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am. J. Pathol. 168:1861–68 [Google Scholar]
  24. Saito M, Marumo K. 24.  2010. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos. Int. 21:195–214 [Google Scholar]
  25. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ. 25.  et al. 2007. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–10 [Google Scholar]
  26. Sprenger CC, Plymate SR, Reed MJ. 26.  2010. Aging-related alterations in the extracellular matrix modulate the microenvironment and influence tumor progression. Int. J. Cancer 127:2739–48 [Google Scholar]
  27. Guo S, Dipietro LA. 27.  2010. Factors affecting wound healing. J. Dent. Res. 89:219–29 [Google Scholar]
  28. Gosain A, DiPietro LA. 28.  2004. Aging and wound healing. World J. Surg 28:321–26 [Google Scholar]
  29. Ashcroft GS, Mills SJ, Ashworth JJ. 29.  2002. Ageing and wound healing. Biogerontology 3:337–45 [Google Scholar]
  30. Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y. 30.  et al. 2012. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 11:642–49 [Google Scholar]
  31. Pienta KJ, Coffey DS. 31.  1990. Characterization of the subtypes of cell motility in ageing human fibroblasts. Mech. Ageing Dev. 56:99–105 [Google Scholar]
  32. Goodson WH 3rd, Hunt TK. 32.  1979. Wound healing and aging. J. Investig. Dermatol. 73:88–91 [Google Scholar]
  33. Liu L, Marti GP, Wei X, Zhang X, Zhang H. 33.  et al. 2008. Age-dependent impairment of HIF-1α expression in diabetic mice: correction with electroporation-facilitated gene therapy increases wound healing, angiogenesis, and circulating angiogenic cells. J. Cell. Physiol. 217:319–27 [Google Scholar]
  34. Williamson KA, Hamilton A, Reynolds JA, Sipos P, Crocker I. 34.  et al. 2013. Age-related impairment of endothelial progenitor cell migration correlates with structural alterations of heparan sulfate proteoglycans. Aging Cell 12:139–47 [Google Scholar]
  35. Wu M, Fannin J, Rice KM, Wang B, Blough ER. 35.  2011. Effect of aging on cellular mechanotransduction. Ageing Res. Rev. 10:1–15 [Google Scholar]
  36. Ashcroft GS, Greenwell-Wild T, Horan MA, Wahl SM, Ferguson MWJ. 36.  1999. Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am. J. Pathol. 155:1137–46 [Google Scholar]
  37. Berdyyeva TK, Woodworth CD, Sokolov I. 37.  2005. Human epithelial cells increase their rigidity with ageing in vitro: direct measurements. Phys. Med. Biol. 50:81–92 [Google Scholar]
  38. Dulinska-Molak I, Pasikowska M, Pogoda K, Lewandowska M, Eris I, Lekka M. 38.  2014. Age-related changes in the mechanical properties of human fibroblasts and its prospective reversal after anti-wrinkle tripeptide treatment. Int. J. Pept. Res. Ther. 20:77–85 [Google Scholar]
  39. Schulze C, Wetzel F, Kueper T, Malsen A, Muhr G. 39.  et al. 2012. Stiffening of human skin fibroblasts with age. Clin. Plast. Surg. 39:9–20 [Google Scholar]
  40. Lieber SC, Aubry N, Pain J, Diaz G, Kim SJ, Vatner SF. 40.  2004. Aging increases stiffness of cardiac myocytes measured by atomic force microscopy nanoindentation. Am. J. Physiol. Heart Circ. Physiol. 287:H645–51 [Google Scholar]
  41. Pelissier FA, Garbe JC, Ananthanarayanan B, Miyano M, Lin C. 41.  et al. 2014. Age-related dysfunction in mechanotransduction impairs differentiation of human mammary epithelial progenitors. Cell Rep. 7:1926–39 [Google Scholar]
  42. Sokolov I, Iyer S, Woodworth CD. 42.  2006. Recovery of elasticity of aged human epithelial cells in vitro. Nanomedicine 2:31–36 [Google Scholar]
  43. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. 43.  2013. The hallmarks of aging. Cell 153:1194–217 [Google Scholar]
  44. Walston J, Hadley EC, Ferrucci L, Guralnik JM, Newman AB. 44.  et al. 2006. Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American Geriatrics Society/National Institute on Aging Research Conference on Frailty in Older Adults. J. Am. Geriatr. Soc. 54991–1001
  45. Wirtz D. 45.  2009. Particle-tracking microrheology of living cells: principles and applications. Annu. Rev. Biophys. 38:301–26 [Google Scholar]
  46. Pravincumar P, Bader DL, Knight MM. 46.  2012. Viscoelastic cell mechanics and actin remodelling are dependent on the rate of applied pressure. PLOS ONE 7e43938
  47. Minin AA, Kulik AV, Gyoeva FK, Li Y, Goshima G, Gelfand VI. 47.  2006. Regulation of mitochondria distribution by RhoA and formins. J. Cell Sci. 119:659–70 [Google Scholar]
  48. Lee JSH, Chang MI, Tseng Y, Wirtz D. 48.  2005. Cdc42 mediates nucleus movement and MTOC polarization in Swiss 3T3 fibroblasts under mechanical shear stress. Mol. Biol. Cell 16:871–80 [Google Scholar]
  49. Anesti V, Scorrano L. 49.  2006. The relationship between mitochondrial shape and function and the cytoskeleton. Biochim. Biophys. Acta 1757:692–99 [Google Scholar]
  50. Kole TP, Tseng Y, Jiang I, Katz JL, Wirtz D. 50.  2005. Intracellular mechanics of migrating fibroblasts. Mol. Biol. Cell 16:328–38 [Google Scholar]
  51. Wirtz D, Konstantopoulos K, Searson PC. 51.  2011. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11:512–22 [Google Scholar]
  52. Kirmizis DL, Logothetidis S. 52.  2010. Atomic force microscopy probing in the measurement of cell mechanics. Int. J. Nanomed. 5:137–45 [Google Scholar]
  53. Nawaz S, Sanchez P, Bodensiek K, Li S, Simons M, Schaap IA. 53.  2012. Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations. PLOS ONE 7:e45297 [Google Scholar]
  54. Sokolov I. 54.  2007. Atomic force microscopy in cancer cell research. Cancer Nanotechnology HS Nalwa, T Webster 1–17 New York: Am. Sci. Publ. [Google Scholar]
  55. Wu PH, Hale CM, Chen WC, Lee JS, Tseng Y, Wirtz D. 55.  2012. High-throughput ballistic injection nanorheology to measure cell mechanics. Nat. Protoc. 7:155–70 [Google Scholar]
  56. Zhang H, Liu KK. 56.  2008. Optical tweezers for single cells. J. R. Soc. Interface 5:671–90 [Google Scholar]
  57. Roth KB, Eggleton CD, Neeves KB, Marr DW. 57.  2013. Measuring cell mechanics by optical alignment compression cytometry. Lab Chip 13:1571–77 [Google Scholar]
  58. Celedon A, Hale CM, Wirtz D. 58.  2011. Magnetic manipulation of nanorods in the nucleus of living cells. Biophys. J. 101:1880–86 [Google Scholar]
  59. Puig-De-Morales M, Grabulosa M, Alcaraz J, Mullol J, Maksym GN. 59.  et al. 2001. Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation. J. Appl. Physiol. 91:1152–59 [Google Scholar]
  60. Lim CT, Zhou EH, Quek ST. 60.  2006. Mechanical models for living cells—a review. J. Biomech. 39:195–216 [Google Scholar]
  61. Ajmani RS, Rifkind JM. 61.  1998. Hemorheological changes during human aging. Gerontology 44:111–20 [Google Scholar]
  62. Starodubtseva MN. 62.  2011. Mechanical properties of cells and ageing. Ageing Res. Rev. 10:16–25 [Google Scholar]
  63. Tseng Y, Kole TP, Lee JS, Fedorov E, Almo SC. 63.  et al. 2005. How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response. Biochem. Biophys. Res. Commun. 334:183–92 [Google Scholar]
  64. Jiang H, Sun SX. 64.  2013. Cellular pressure and volume regulation and implications for cell mechanics. Biophys. J. 105:609–19 [Google Scholar]
  65. Stroka KM, Jiang H, Chen SH, Tong Z, Wirtz D. 65.  et al. 2014. Water permeation drives tumor cell migration in confined microenvironments. Cell 157:611–23 [Google Scholar]
  66. Deng L, Fairbank NJ, Cole DJ, Fredberg JJ, Maksym GN. 66.  2005. Airway smooth muscle tone modulates mechanically induced cytoskeletal stiffening and remodeling. J. Appl. Physiol. 99:634–41 [Google Scholar]
  67. Icard-Arcizet D, Cardoso O, Richert A, Henon S. 67.  2008. Cell stiffening in response to external stress is correlated to actin recruitment. Biophys. J. 94:2906–13 [Google Scholar]
  68. Popescu WM. 68.  2012. Heart failure and cardiomyopathies. Stoelting's Anesthesia and Co-existing Disease RL Hines, KE Marschall 120–43 Philadelphia: Elsevier [Google Scholar]
  69. Chambliss AB, Khatau SB, Erdenberger N, Robinson DK, Hodzic D. 69.  et al. 2013. The LINC-anchored actin cap connects the extracellular milieu to the nucleus for ultrafast mechanotransduction. Sci. Rep. 3:1087 [Google Scholar]
  70. Khatau SB, Hale CM, Stewart-Hutchinson PJ, Patel MS, Stewart CL. 70.  et al. 2009. A perinuclear actin cap regulates nuclear shape. PNAS 106:19017–22 [Google Scholar]
  71. Kim DH, Khatau SB, Feng Y, Walcott S, Sun SX. 71.  et al. 2012. Actin cap associated focal adhesions and their distinct role in cellular mechanosensing. Sci. Rep. 2:555 [Google Scholar]
  72. Gay O, Gilquin B, Nakamura F, Jenkins ZA, McCartney R. 72.  et al. 2011. RefilinB (FAM101B) targets filamin A to organize perinuclear actin networks and regulates nuclear shape. PNAS 108:11464–69 [Google Scholar]
  73. Sokolov I, Woodworth CD. 73.  2005. Loss of elasticity of ageing epithelial cells, and its possible reversal. Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show 163–66 Austin, TX: Nano Sci. Technol. Inst.
  74. Ward KA, Baker C, Roebuck L, Wickline K, Schwartz RW. 74.  1991. Red blood cell deformability: effect of age and smoking. Age 14:73–77 [Google Scholar]
  75. Zahn JT, Louban I, Jungbauer S, Bissinger M, Kaufmann D. 75.  et al. 2011. Age-dependent changes in microscale stiffness and mechanoresponses of cells. Small 7:1480–87 [Google Scholar]
  76. Muller-Sieburg CE, Sieburg BH, Bernitz JM, Cattarossi G. 76.  2012. Stem cell heterogeneity-implications for aging and regenerative medicine. Blood 119:3900–7 [Google Scholar]
  77. Glauche I, Thielecke L, Roeder I. 77.  2011. Cellular aging leads to functional heterogeneity of hematopoietic stem cells: a modeling perspective. Aging Cell 10:457–65 [Google Scholar]
  78. Altschuler SJ, Wu LF. 78.  2010. Cellular heterogeneity: Do differences make a difference?. Cell 141:559–63 [Google Scholar]
  79. Zieman SJ, Melenovsky V, Kass DA. 79.  2005. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler. Thromb. Vasc. Biol. 25:932–43 [Google Scholar]
  80. Harvey PA, Leinwand LA. 80.  2011. The cell biology of disease: cellular mechanisms of cardiomyopathy. J. Cell Biol. 194:355–65 [Google Scholar]
  81. Suresh S. 81.  2007. Biomechanics and biophysics of cancer cells. Acta Biomater. 3:413–38 [Google Scholar]
  82. Esue O, Tseng Y, Wirtz D. 82.  2009. Alpha-actinin and filamin cooperatively enhance the stiffness of actin filament networks. PLOS ONE 4:e4411 [Google Scholar]
  83. Tseng Y, Fedorov E, McCaffery JM, Almo SC, Wirtz D. 83.  2001. Micromechanics and ultrastructure of actin filament networks crosslinked by human fascin: a comparison with α-actinin. J. Mol. Biol. 310:351–66 [Google Scholar]
  84. Mendez MG, Restle D, Janmey PA. 84.  2014. Vimentin enhances cell elastic behavior and protects against compressive stress. Biophys. J. 107:314–23 [Google Scholar]
  85. Capell BC, Collins FS, Nabel EG. 85.  2007. Mechanisms of cardiovascular disease in accelerated aging syndromes. Circ. Res. 101:13–26 [Google Scholar]
  86. Zwerger M, Ho CY, Lammerding J. 86.  2011. Nuclear mechanics in disease. Annu. Rev. Biomed. Eng 13:397–428 [Google Scholar]
  87. Lee JS, Hale CM, Panorchan P, Khatau SB, George JP. 87.  et al. 2007. Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys. J. 93:2542–52 [Google Scholar]
  88. Afilalo J, Sebag IA, Chalifour LE, Rivas D, Akter R. 88.  et al. 2007. Age-related changes in lamin A/C expression in cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 293:H1451–56 [Google Scholar]
  89. Duque G, Rivas D. 89.  2006. Age-related changes in lamin A/C expression in the osteoarticular system: laminopathies as a potential new aging mechanism. Mech. Ageing Dev. 127:378–83 [Google Scholar]
  90. Schirmer EC, Florens L, Guan TL, Yates JR, Gerace L. 90.  2003. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 301:1380–82 [Google Scholar]
  91. Isermann P, Lammerding J. 91.  2013. Nuclear mechanics and mechanotransduction in health and disease. Curr. Biol. 23:R1113–21 [Google Scholar]
  92. Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE. 92.  2007. Physical plasticity of the nucleus in stem cell differentiation. PNAS 104:15619–24 [Google Scholar]
  93. Ostlund C, Folker ES, Choi JC, Gomes ER, Gundersen GG, Worman HJ. 93.  2009. Dynamics and molecular interactions of linker of nucleoskeleton and cytoskeleton (LINC) complex proteins. J. Cell Sci. 122:4099–108 [Google Scholar]
  94. Zwerger M, Jaalouk DE, Lombardi ML, Isermann P, Mauermann M. 94.  et al. 2013. Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Hum. Mol. Genet. 22:2335–49 [Google Scholar]
  95. Gundersen GG, Worman HJ. 95.  2013. Nuclear positioning. Cell 152:1376–89 [Google Scholar]
  96. Chambliss AB, Khatau SB, Erdenberger N, Robinson DK, Hodzic D. 96.  et al. 2013. The LINC-anchored actin cap connects the extracellular milieu to the nucleus for ultrafast mechanotransduction. Sci. Rep. 3:1087 [Google Scholar]
  97. Lombardi ML, Jaalouk DE, Shanahan CM, Burke B, Roux KJ, Lammerding J. 97.  2011. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J. Biol. Chem. 286:26743–53 [Google Scholar]
  98. Scaffidi P, Misteli T. 98.  2006. Lamin A-dependent nuclear defects in human aging. Science 312:1059–63 [Google Scholar]
  99. Bhattacharya D, Talwar S, Mazumder A, Shivashankar GV. 99.  2009. Spatio-temporal plasticity in chromatin organization in mouse cell differentiation and during Drosophila embryogenesis. Biophys. J. 96:3832–39 [Google Scholar]
  100. Stewart C, Burke B. 100.  1987. Teratocarcinoma stem-cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin-B. Cell 51:383–92 [Google Scholar]
  101. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J. 101.  et al. 2003. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423:293–98 [Google Scholar]
  102. Taimen P, Pfleghaar K, Shimi T, Moller D, Ben-Harush K. 102.  et al. 2009. A progeria mutation reveals functions for lamin A in nuclear assembly, architecture, and chromosome organization. PNAS 106:20788–93 [Google Scholar]
  103. Haithcock E, Dayani Y, Neufeld E, Zahand AJ, Feinstein N. 103.  et al. 2005. Age-related changes of nuclear architecture in Caenorhabditis elegans. PNAS 102:16690–95 [Google Scholar]
  104. McClintock D, Ratner D, Lokuge M, Owens DM, Gordon LB. 104.  et al. 2007. The mutant form of lamin a that causes Hutchinson–Gilford progeria is a biomarker of cellular aging in human skin. PLOS ONE 2:e1269 [Google Scholar]
  105. Olive M, Harten I, Mitchell R, Beers JK, Djabali K. 105.  et al. 2010. Cardiovascular pathology in Hutchinson–Gilford progeria: correlation with the vascular pathology of aging. Arterioscl. Thromb. Vasc. Biol. 30:2301–9 [Google Scholar]
  106. Dahl KN, Ribeiro AJS, Lammerding J. 106.  2008. Nuclear shape, mechanics, and mechanotransduction. Circ. Res. 102:1307–18 [Google Scholar]
  107. Broers JLV, Bronnenberg NMHJ, Kuijpers HJH, Schutte B, Hutchison CJ, Ramaekers FCS. 107.  2002. Partial cleavage of A-type lamins concurs with their total disintegration from the nuclear lamina during apoptosis. Eur. J. Cell Biol. 81:677–91 [Google Scholar]
  108. Lammerding J, Fong LG, Ji JY, Reue K, Stewart CL. 108.  et al. 2006. Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281:25768–80 [Google Scholar]
  109. Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T. 109.  et al. 2004. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Investig. 113:370–78 [Google Scholar]
  110. Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N. 110.  et al. 1999. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147:913–19 [Google Scholar]
  111. Ragnauth CD, Warren DT, Liu YW, McNair R, Tajsic T. 111.  et al. 2010. Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging. Circulation 121:2200–10 [Google Scholar]
  112. Dawson MA, Kouzarides T. 112.  2012. Cancer epigenetics: from mechanism to therapy. Cell 150:12–27 [Google Scholar]
  113. Handy DE, Castro R, Loscalzo J. 113.  2011. Epigenetic modifications basic mechanisms and role in cardiovascular disease. Circulation 123:2145–56 [Google Scholar]
  114. Esteller M. 114.  2008. Molecular origins of cancer: epigenetics in cancer. N. Engl. J. Med. 358:1148–59 [Google Scholar]
  115. Law JA, Jacobsen SE. 115.  2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11:204–20 [Google Scholar]
  116. Karpf AR, Matsui S. 116.  2005. Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res. 65:8635–39 [Google Scholar]
  117. Allfrey VG, Faulkner R, Mirsky AE. 117.  1964. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. PNAS 51:786–94 [Google Scholar]
  118. Goldberg AD, Allis CD, Bernstein E. 118.  2007. Epigenetics: a landscape takes shape. Cell 128:635–38 [Google Scholar]
  119. Dahl KN, Engler AJ, Pajerowski JD, Discher DE. 119.  2005. Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures. Biophys. J. 89:2855–64 [Google Scholar]
  120. Rowat AC, Lammerding J, Herrmann H, Aebi U. 120.  2008. Towards an integrated understanding of the structure and mechanics of the cell nucleus. BioEssays 30:226–36 [Google Scholar]
  121. Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Mistell T. 121.  2006. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10:105–16 [Google Scholar]
  122. Bibikova M, Laurent LC, Ren B, Loring JF, Fan JB. 122.  2008. Unraveling epigenetic regulation in embryonic stem cells. Cell Stem Cell 2:123–34 [Google Scholar]
  123. Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE. 123.  et al. 2004. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. PNAS 101:8963–68 [Google Scholar]
  124. Fraga MF, Esteller M. 124.  2007. Epigenetics and aging: the targets and the marks. Trends Genet. 23:413–18 [Google Scholar]
  125. Han S, Brunet A. 125.  2012. Histone methylation makes its mark on longevity. Trends Cell Biol. 22:42–49 [Google Scholar]
  126. Jin CY, Li J, Green CD, Yu XM, Tang X. 126.  et al. 2011. Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab. 14:161–72 [Google Scholar]
  127. Romanov GA, Vanyushin BF. 127.  1981. Methylation of reiterated sequences in mammalian DNAs: effects of the tissue-type, age, malignancy and hormonal induction. Biochim. Biophys. Acta 653:204–18 [Google Scholar]
  128. Sarg B, Koutzamani E, Helliger W, Rundquist I, Lindner HH. 128.  2002. Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J. Biol. Chem. 277:39195–201 [Google Scholar]
  129. Narita M, Nunez S, Heard E, Narita M, Lin AW. 129.  et al. 2003. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–16 [Google Scholar]
  130. Oberdoerffer P, Sinclair DA. 130.  2007. The role of nuclear architecture in genomic instability and ageing. Nat. Rev. Mol. Cell Biol. 8:692–702 [Google Scholar]
  131. Sahin E, DePinho RA. 131.  2012. Axis of ageing: telomeres, p53 and mitochondria. Nat. Rev. Mol. Cell Biol. 13:397–404 [Google Scholar]
  132. Conley KE, Marcinek DJ, Villarin J. 132.  2007. Mitochondrial dysfunction and age. Curr. Opin. Clin. Nutr. Metab. Care 10:688–92 [Google Scholar]
  133. Trifunovic A, Larsson NG. 133.  2008. Mitochondrial dysfunction as a cause of ageing. J. Intern. Med. 263:167–78 [Google Scholar]
  134. Seo AY, Joseph AM, Dutta D, Hwang JC, Aris JP, Leeuwenburgh C. 134.  2010. New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J. Cell Sci. 123:2533–42 [Google Scholar]
  135. Harman D. 135.  1965. The free radical theory of aging: effect of age on serum copper levels. J. Gerontol. 20:151–53 [Google Scholar]
  136. Chomyn A, Attardi G. 136.  2003. MtDNA mutations in aging and apoptosis. Biochem. Biophys. Res. Commun. 304:519–29 [Google Scholar]
  137. Seo AY, Xu J, Servais S, Hofer T, Marzetti E. 137.  et al. 2008. Mitochondrial iron accumulation with age and functional consequences. Aging Cell 7:706–16 [Google Scholar]
  138. Cui H, Kong Y, Zhang H. 138.  2012. Oxidative stress, mitochondrial dysfunction, and aging. J. Signal. Transduct. 2012:646354 [Google Scholar]
  139. Santel A, Fuller MT. 139.  2000. Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114:Pt. 5867–74 [Google Scholar]
  140. Karbowski M, Arnoult D, Chen H, Chan DC, Smith CL, Youle RJ. 140.  2004. Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J. Cell Biol. 164:493–99 [Google Scholar]
  141. Koopman WJ, Visch HJ, Smeitink JA, Willems PH. 141.  2006. Simultaneous quantitative measurement and automated analysis of mitochondrial morphology, mass, potential, and motility in living human skin fibroblasts. Cytometry A 69:1–12 [Google Scholar]
  142. Benard G, Bellance N, James D, Parrone P, Fernandez H. 142.  et al. 2007. Mitochondrial bioenergetics and structural network organization. J. Cell Sci. 120:838–48 [Google Scholar]
  143. Benard G, Rossignol R. 143.  2008. Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid. Redox Signal. 10:1313–42 [Google Scholar]
  144. Mitra K, Wunder C, Roysam B, Lin G, Lippincott-Schwartz J. 144.  2009. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. PNAS 106:11960–65 [Google Scholar]
  145. Finkel T, Hwang PM. 145.  2009. The Krebs cycle meets the cell cycle: mitochondria and the G1-S transition. PNAS 106:11825–26 [Google Scholar]
  146. Collins TJ, Berridge MJ, Lipp P, Bootman MD. 146.  2002. Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J. 21:1616–27 [Google Scholar]
  147. Calvo SE, Mootha VK. 147.  2010. The mitochondrial proteome and human disease. Annu. Rev. Genomics Hum. Genet. 11:25–44 [Google Scholar]
  148. Massudi H, Grant R, Braidy N, Guest J, Farnsworth B, Guillemin GJ. 148.  2012. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLOS ONE 7e42357
  149. Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J. 149.  et al. 2005. Decline in skeletal muscle mitochondrial function with aging in humans. PNAS 102:5618–23 [Google Scholar]
  150. Terman AK, Kurtz T, Navratil M, Arriaga EA, Brunk UT. 150.  2010. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial–lysosomal axis theory of aging. Antioxid. Redox Signal. 12:503–35 [Google Scholar]
  151. Doonan R, McElwee JJ, Matthijssens F, Walker GA, Houthoofd K. 151.  et al. 2008. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev. 22:3236–41 [Google Scholar]
  152. Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N. 152.  et al. 2003. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics 16:29–37 [Google Scholar]
  153. Pérez VI, Van Remmen H, Bokov A, Epstein CJ, Vijg J, Richardson A. 153.  2009. The overexpression of major antioxidant enzymes does not extend the lifespan of mice. Aging Cell 8:73–75 [Google Scholar]
  154. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT. 154.  et al. 2004. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–23 [Google Scholar]
  155. Muliyil S, Narasimha M. 155.  2014. Mitochondrial ROS regulates cytoskeletal and mitochondrial remodeling to tune cell and tissue dynamics in a model for wound healing. Dev. Cell 28:239–52 [Google Scholar]
  156. Chen H, Chan DC. 156.  2009. Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum. Mol. Genet. 18:R169–76 [Google Scholar]
  157. Scheibye-Knudsen M, Scheibye-Alsing K, Canugovi C, Croteau DL, Bohr VA. 157.  2013. A novel diagnostic tool reveals mitochondrial pathology in human diseases and aging. Aging 5:192–208 [Google Scholar]
  158. Landis GN, Tower J. 158.  2005. Superoxide dismutase evolution and life span regulation. Mech. Ageing Dev. 126:365–79 [Google Scholar]
  159. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE. 159.  et al. 2005. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308:1909–11 [Google Scholar]
  160. Burtner CR, Kennedy BK. 160.  2010. Progeria syndromes and ageing: what is the connection?. Nat. Rev. Mol. Cell Biol. 11:567–78 [Google Scholar]
  161. Campisi J. 161.  2005. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–22 [Google Scholar]
  162. Campisi J. 162.  2001. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 11:S27–31 [Google Scholar]
  163. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP. 163.  et al. 2008. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLOS Biol. 6:2853–68 [Google Scholar]
  164. Coppe JP, Patil CK, Rodier F, Krtolica A, Beausejour CM. 164.  et al. 2010. A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLOS ONE 5:e9188 [Google Scholar]
  165. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG. 165.  et al. 2011. Clearance of p16(Ink4a)-positive senescent cells delays ageing-associated disorders. Nature 479:232–36 [Google Scholar]
  166. Blagosklonny MV. 166.  2012. Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging. Aging 4:159–65 [Google Scholar]
  167. Nishio K, Inoue A. 167.  2005. Senescence-associated alterations of cytoskeleton: extraordinary production of vimentin that anchors cytoplasmic p53 in senescent human fibroblasts. Histochem. Cell Biol. 123:263–73 [Google Scholar]
  168. Righolt CH, van ‘t Hoff MLR, Vermolen BJ, Young IT, Raz V. 168.  2011. Robust nuclear lamina-based cell classification of aging and senescent cells. Aging 3:1192–201 [Google Scholar]
  169. McGrail DJ, McAndrews KM, Dawson MR. 169.  2013. Biomechanical analysis predicts decreased human mesenchymal stem cell function before molecular differences. Exp. Cell Res. 319:684–96 [Google Scholar]
  170. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C. 170.  et al. 2001. Frailty in older adults: evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 56:M146–56 [Google Scholar]
  171. Pagidipati NJ, Gaziano TA. 171.  2013. Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation 127:749–56 [Google Scholar]
  172. Shih H, Lee B, Lee RJ, Boyle AJ. 172.  2010. The aging heart and post-infarction left ventricular remodeling. J. Am. Coll. Cardiol. 57:9–17 [Google Scholar]
  173. Russell RR, Li J, Coven DL, Pypaert M, Zechner C. 173.  et al. 2004. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J. Clin. Investig. 114:495–503 [Google Scholar]
  174. Crow MT, Mani K, Nam YJ, Kitsis RN. 174.  2004. The mitochondrial death pathway and cardiac myocyte apoptosis. Circ. Res. 95:957–70 [Google Scholar]
  175. Harvey PA, Leinwand LA. 175.  2011. Cellular mechanisms of cardiomyopathy. J. Cell Biol. 194:355–65 [Google Scholar]
  176. Niccoli T, Partridge L. 176.  2012. Ageing as a risk factor for disease. Curr. Biol. 22:R741–52 [Google Scholar]
  177. Burgess ML, McCrea JC, Hedrick HL. 177.  2001. Age-associated changes in cardiac matrix and integrins. Mech. Ageing Dev. 122:1739–56 [Google Scholar]
  178. Thomas DP, Cotter TA, Li X, McCormick RJ, Gosselin LE. 178.  2001. Exercise training attenuates aging-associated increases in collagen and collagen crosslinking of the left but not the right ventricle in the rat. Eur. J. Appl. Physiol. 85:164–69 [Google Scholar]
  179. Alford PW, Nesmith AP, Seywerd JN, Grosberg A, Parker KK. 179.  2011. Vascular smooth muscle contractility depends on cell shape. Integr. Biol. Camb. 3:1063–70 [Google Scholar]
  180. Bray MA, Sheehy SP, Parker KK. 180.  2008. Sarcomere alignment is regulated by myocyte shape. Cell Motil. Cytoskelet. 65:641–51 [Google Scholar]
  181. Zajac AL, Discher DE. 181.  2008. Cell differentiation through tissue elasticity-coupled, myosin-driven remodeling. Curr. Opin. Cell Biol. 20:609–15 [Google Scholar]
  182. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA. 182.  et al. 2009. Finding the missing heritability of complex diseases. Nature 461:747–53 [Google Scholar]
  183. Slatkin M. 183.  2009. Epigenetic inheritance and the missing heritability problem. Genetics 182:845–50 [Google Scholar]
  184. Skovronsky DM, Lee VM, Trojanowski JQ. 184.  2006. Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. Annu. Rev. Pathol. 1:151–70 [Google Scholar]
  185. Ross CA, Poirier MA. 185.  2004. Protein aggregation and neurodegenerative disease. Nat. Med. 10:S10–17 [Google Scholar]
  186. Hung CW, Chen YC, Hsieh WL, Chiou SH, Kao CL. 186.  2010. Ageing and neurodegenerative diseases. Ageing Res. Rev. 9:Suppl. 1S36–46 [Google Scholar]
  187. Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P. 187.  et al. 2014. Inflammation in neurodegenerative diseases—an update. Immunology 142:151–66 [Google Scholar]
  188. McGeer PL, McGeer EG. 188.  2004. Inflammation and the degenerative diseases of aging. Ann. N.Y. Acad. Sci. 1035:104–16 [Google Scholar]
  189. Cappellano G, Carecchio M, Fleetwood T, Magistrelli L, Cantello R. 189.  et al. 2013. Immunity and inflammation in neurodegenerative diseases. Am. J. Neurodegen. Dis. 2:89–107 [Google Scholar]
  190. Perry VH, Nicoll JA, Holmes C. 190.  2010. Microglia in neurodegenerative disease. Nat. Rev. Neurol. 6:193–201 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error