Metabolism is central to neuroimaging because it can reveal pathways by which neuronal and glial cells use nutrients to fuel their growth and function. We focus on advanced magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) methods used in brain metabolic studies. 17O-MRS and 31P-MRS, respectively, provide rates of oxygen use and ATP synthesis inside mitochondria, whereas 19F-MRS enables measurement of cytosolic glucose metabolism. Calibrated functional MRI (fMRI), an advanced form of fMRI that uses contrast generated by deoxyhemoglobin, provides maps of oxygen use that track neuronal firing across brain regions. 13C-MRS is the only noninvasive method of measuring both glutamatergic neurotransmission and cell-specific energetics with signaling and nonsignaling purposes. Novel MRI contrasts, arising from endogenous diamagnetic agents and exogenous paramagnetic agents, permit pH imaging of glioma. Overall, these magnetic resonance methods for imaging brain metabolism demonstrate translational potential to better understand brain disorders and guide diagnosis and treatment.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Shepherd GM. 1.  2004. The Synaptic Organization of the Brain New York: Oxford Univ. Press [Google Scholar]
  2. Pereda AE. 2.  2014. Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15:250–63 [Google Scholar]
  3. Kandel ER, Schwartz JH, Jessell TM. 3.  2000. Principles of Neural Science New York: McGraw-Hill [Google Scholar]
  4. Siesjo BK. 4.  1978. Brain Energy Metabolism New York: Wiley [Google Scholar]
  5. Attwell D, Laughlin SB. 5.  2001. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21:1133–145 [Google Scholar]
  6. Hyder F, Rothman DL, Bennett MR. 6.  2013. Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels. PNAS 110:3549–554 [Google Scholar]
  7. Bauernfeind AL, Barks SK, Duka T, Grossman LI, Hof PR, Sherwood CC. 7.  2014. Aerobic glycolysis in the primate brain: reconsidering the implications for growth and maintenance. Brain Struct. Funct. 219:1149–67 [Google Scholar]
  8. Shulman RG, Rothman DL. 8.  1998. Interpreting functional imaging studies in terms of neurotransmitter cycling. PNAS 95:11993–98 [Google Scholar]
  9. Gatenby RA, Gillies RJ. 9.  2004. Why do cancers have high aerobic glycolysis?. Nat. Rev. Cancer 4:891–99 [Google Scholar]
  10. Mori S, Zhang J. 10.  2006. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–39 [Google Scholar]
  11. Uğurbil K. 11.  2012. The road to functional imaging and ultrahigh fields. NeuroImage 62:726–35 [Google Scholar]
  12. Huettel SA, Song AW, McCarthy G. 12.  2004. Functional Magnetic Resonance Imaging Sunderland, MA: Sinauer [Google Scholar]
  13. Hyder F, Rothman DL. 13.  2012. Quantitative fMRI and oxidative neuroenergetics. NeuroImage 62:985–94 [Google Scholar]
  14. Kaneko G, Sanganahalli BG, Groman SM, Wang H, Coman D. 14.  et al. 2017. Hypofrontality and posterior hyperactivity in early schizophrenia: multi-modal imaging and behavior in a preclinical model. Biol. Psychiatry. 81:503–13 https://doi.org/10.1016/j.biopsych.2016.05.019 [Crossref] [Google Scholar]
  15. de Graaf RA. 15.  2007. In vivo NMR Spectroscopy: Principles and Techniques Chichester, UK/Hoboken, NJ: Wiley, 2nd ed.. [Google Scholar]
  16. Shulman RG, Rothman DL. 16.  2004. Brain Energetics and Neuronal Activity: Applications to fMRI and Medicine New York: Wiley [Google Scholar]
  17. Williams DS, Detre JA, Leigh JS, Koretsky AP. 17.  1992. Magnetic resonance imaging of perfusion using spin inversion of arterial water. PNAS 89:212–16 [Google Scholar]
  18. Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H. 18.  et al. 1993. Functional brain mapping by blood oxygenation level–dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys. J. 64:803–12 [Google Scholar]
  19. Kennan RP, Scanley BE, Innis RB, Gore JC. 19.  1998. Physiological basis for BOLD MR signal changes due to neuronal stimulation: separation of blood volume and magnetic susceptibility effects. Magn. Reson. Med. 40:840–46 [Google Scholar]
  20. Attwell D, Iadecola C. 20.  2002. The neural basis of functional brain imaging signals. Trends Neurosci 25:621–25 [Google Scholar]
  21. Nicholls DG. 21.  1989. Release of glutamate, aspartate, and γ-aminobutyric acid from isolated nerve terminals. J. Neurochem. 52:331–41 [Google Scholar]
  22. Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG. 22.  2006. Neuronal–glial glucose oxidation and glutamatergic–GABAergic function. J. Cereb. Blood Flow Metab. 26:865–77 [Google Scholar]
  23. Aiello LC, Wheeler P. 23.  1995. The expensive-tissue hypothesis—the brain and the digestive system in human and primate evolution. Curr. Anthropol. 36:199–221 [Google Scholar]
  24. Sokoloff L. 24.  1991. Relationship between functional activity and energy metabolism in the nervous system: whether, where and why?. Brain Work and Mental Activity NA Lassen, DH Ingvar, ME Raichle, L Friberg 52–64 Copenhagen: Munksgaard [Google Scholar]
  25. Hyder F. 25.  2009. Dynamic imaging of brain function. Methods Mol. Biol. 489:3–22 [Google Scholar]
  26. Iliff JJ, Lee H, Yu M, Feng T, Logan J. 26.  et al. 2013. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J. Clin. Investig. 123:1299–309 [Google Scholar]
  27. Shulman RG, Hyder F, Rothman DL. 27.  2001. Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging. PNAS 98:6417–22 [Google Scholar]
  28. Shulman RG, Hyder F, Rothman DL. 28.  2001. Lactate efflux and the neuroenergetic basis of brain function. NMR Biomed 14:389–96 [Google Scholar]
  29. Kuwabara H, Gjedde A. 29.  1991. Measurements of glucose phosphorylation with FDG and PET are not reduced by dephosphorylation of FDG-6-phosphate. J. Nucl. Med. 32:692–98 [Google Scholar]
  30. Ohta S, Meyer E, Thompson CJ, Gjedde A. 30.  1992. Oxygen consumption of the living human brain measured after a single inhalation of positron emitting oxygen. J. Cereb. Blood Flow Metab. 12:179–92 [Google Scholar]
  31. Creutzfeldt OD. 31.  1975. Neurophysiological correlates of different functional states of the brain. Brain Work: The Coupling of Function, Metabolism and Blood Flow in the Brain. Proceedings of the Alfred Benzon Symposium VIII DH Ingvar, NA Lassen 21–46 New York: Academic [Google Scholar]
  32. Barinaga M. 32.  1997. What makes brain neurons run?. Science 276:196–98 [Google Scholar]
  33. Rothman DL, De Feyter HM, de Graaf RA, Mason GF, Behar KL. 33.  2011. 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans. NMR Biomed 24:943–57 [Google Scholar]
  34. de Graaf RA, Rothman DL, Behar KL. 34.  2011. State of the art direct 13C and indirect 1H-[13C] NMR spectroscopy in vivo. A practical guide. NMR Biomed 24:958–72 [Google Scholar]
  35. Bergles DE, Diamond JS, Jahr CE. 35.  1999. Clearance of glutamate inside the synapse and beyond. Curr. Opin. Neurobiol. 9:293–98 [Google Scholar]
  36. Sibson NR, Mason GF, Shen J, Cline GW, Herskovits AZ. 36.  et al. 2001. In vivo 13C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during [2-13C]glucose infusion. J. Neurochem. 76:975–89 [Google Scholar]
  37. Hertz L, Peng L, Dienel GA. 37.  2007. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J. Cereb. Blood Flow Metab. 27:219–49 [Google Scholar]
  38. Mason GF, Rothman DL. 38.  2004. Basic principles of metabolic modeling of NMR 13C isotopic turnover to determine rates of brain metabolism in vivo. Metab. Eng. 6:75–84 [Google Scholar]
  39. Boumezbeur F, Besret L, Valette J, Gregoire M-C, Delzescaus T. 39.  et al. 2005. Glycolysis versus TCA cycle in the primate brain as measured by combining 18F-FDG PET and 13C-NMR. J. Cereb. Blood Flow Metab. 25:1418–23 [Google Scholar]
  40. Chaumeil MM, Valette J, Guillermier M, Brouillet E, Boumezbeur F. 40.  et al. 2009. Multimodal neuroimaging provides a highly consistent picture of energy metabolism, validating 31P MRS for measuring brain ATP synthesis. PNAS 106:3988–93 [Google Scholar]
  41. Rothman DL, Behar KL, Hyder F, Shulman RG. 41.  2003. In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu. Rev. Physiol. 65:401–27 [Google Scholar]
  42. Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL. 42.  2005. The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. PNAS 102:5588–593 [Google Scholar]
  43. Abdallah CG, Jiang L, De Feyter HM, Fasula M, Krystal JH. 43.  et al. 2014. Glutamate metabolism in major depressive disorder. Am. J. Psychiatry 171:1320–27 [Google Scholar]
  44. Gruetter R, Seaquist ER, Uğurbil K. 44.  2001. A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am. J. Physiol. Endocrinol. Metab. 281:E100–12 [Google Scholar]
  45. Rothman DL, Sibson NR, Hyder F, Shen J, Behar KL, Shulman RG. 45.  1999. In vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate–glutamine neurotransmitter cycle and functional neuroenergetics. Philos. Trans. R Soc. Lond. B 354:1165–77 [Google Scholar]
  46. Sibson NR, Dhankar T, Mason GF, Behar KL, Rothman DL, Shulman RG. 46.  1997. In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate–glutamine cycling. PNAS 94:2699–704 [Google Scholar]
  47. Shen J, Sibson NR, Cline G, Behar KL, Rothman DL, Shulman RG. 47.  1998. 15N-NMR spectroscopy studies of ammonia transport and glutamine synthesis in the hyperammonemic rat brain. Dev. Neurosci. 20:434–43 [Google Scholar]
  48. Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG. 48.  1998. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. PNAS 95:316–21 [Google Scholar]
  49. Shulman RG, Hyder F, Rothman DL. 49.  2014. Insights from neuroenergetics into the interpretation of functional neuroimaging: an alternative empirical model for studying the brain's support of behavior. J. Cereb. Blood Flow Metab. 34:1721–35 [Google Scholar]
  50. Zhang K, Sejnowski TJ. 50.  2000. A universal scaling law between gray matter and white matter of cerebral cortex. PNAS 97:5621–26 [Google Scholar]
  51. Hyder F, Rothman DL. 51.  2011. Evidence for the importance of measuring total brain activity in neuroimaging. PNAS 108:5475–76 [Google Scholar]
  52. Hyder F, Herman P, Bailey CJ, Møller A, Globinsky R. 52.  et al. 2016. Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: no evidence of regional differences of aerobic glycolysis. J. Cereb. Blood Flow Metab. 36:903–16 [Google Scholar]
  53. Zhu XH, Qiao H, Du F, Xiong Q, Liu X. 53.  et al. 2012. Quantitative imaging of energy expenditure in human brain. NeuroImage 60:2107–17 [Google Scholar]
  54. Du F, Zhu X-H, Zhang Y, Friedman M, Zhang N. 54.  et al. 2008. Tightly coupled brain activity and cerebral ATP metabolic rate. PNAS 105:6409–14 [Google Scholar]
  55. Forsen S, Hoffman RA. 55.  1963. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J. Chem. Phys. 39:2892–901 [Google Scholar]
  56. Bottomley PA, Hardy CJ. 56.  1992. Proton Overhauser enhancements in human cardiac phosphorus NMR spectroscopy at 1.5 T. Magn. Reson. Med. 24:384–90 [Google Scholar]
  57. Lin AL, Fox PT, Hardies J, Duong TQ, Gao JH. 57.  2010. Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex. PNAS 107:8446–51 [Google Scholar]
  58. Zhu XH, Zhang N, Zhang Y, Uğurbil K, Chen W. 58.  2009. New insights into central roles of cerebral oxygen metabolism in the resting and stimulus-evoked brain. J. Cereb. Blood Flow Metab. 29:10–18 [Google Scholar]
  59. Coman D, Sanganahalli BG, Cheng D, McCarthy T, Rothman DL, Hyder R. 59.  2014. Mapping phosphorylation rate of fluoro-deoxy-glucose in rat brain by 19F chemical shift imaging. Magn. Reson. Imaging 32:305–13 [Google Scholar]
  60. Zhu XH, Du F, Zhang N, Zhang Y, Lei H. 60.  et al. 2009. Advanced in vivo heteronuclear MRS approaches for studying brain bioenergetics driven by mitochondria. Methods Mol. Biol. 489:317–57 [Google Scholar]
  61. Atkinson IC, Thulborn KR. 61.  2010. Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T. NeuroImage 51:723–33 [Google Scholar]
  62. Zhang N, Zhu XH, Lei H, Uğurbil K, Chen W. 62.  2004. Simplified methods for calculating cerebral metabolic rate of oxygen based on 17O magnetic resonance spectroscopic imaging measurement during a short 17O2 inhalation. J. Cereb. Blood Flow Metab. 24:840–48 [Google Scholar]
  63. Nakada T, Kwee IL, Griffey BV, Griffey RH. 63.  1988. 19F 2-FDG NMR imaging of the brain in rat. Magn. Reson. Imaging 6:633–35 [Google Scholar]
  64. Patel AB, de Graaf RA, Mason GF, Kanamatsu T, Rothman DL. 64.  et al. 2004. Glutamatergic neurotransmission and neuronal glucose oxidation are coupled during intense neuronal activation. J. Cereb. Blood Flow Metab. 24:972–85 [Google Scholar]
  65. Hyder F, Fulbright RK, Shulman RG, Rothman DL. 65.  2013. Glutamatergic function in the resting awake human brain is supported by uniformly high oxidative energy. J. Cereb. Blood Flow Metab. 26:865–77 [Google Scholar]
  66. Shulman RG, Hyder F, Rothman DL. 66.  2009. Baseline brain energy supports the state of consciousness. PNAS 106:11096–101 [Google Scholar]
  67. Thompson GJ, Riedl V, Grimmer T, Drzezga A, Herman P, Hyder F. 67.  2016. The whole-brain “global” signal from resting state fMRI as a potential biomarker of quantitative state changes in glucose metabolism. Brain Connect 6:435–47 [Google Scholar]
  68. Kennan RP, Zhong J, Gore JC. 68.  1994. Intravascular susceptibility contrast mechanisms in tissues. Magn. Reson. Med. 31:9–21 [Google Scholar]
  69. Kida I, Kennan RP, Rothman DL, Behar KL, Hyder F. 69.  2000. High-resolution CMRO2 mapping in rat cortex: a multiparametric approach to calibration of BOLD image contrast at 7 Tesla. J. Cereb. Blood Flow Metab. 20:847–60 [Google Scholar]
  70. Kida I, Hyder F, Kennan RP, Behar KL. 70.  1999. Toward absolute quantitation of BOLD functional MRI. Adv. Exp. Med. Biol 471681–89 [Google Scholar]
  71. Hyder F, Kennan RP, Kida I, Mason GF, Behar KL, Rothman DL. 71.  2000. Dependence of oxygen delivery on blood flow in rat brain: a 7 tesla nuclear magnetic resonance study. J. Cereb. Blood Flow Metab. 20:485–98 [Google Scholar]
  72. Hyder F, Kida I, Behar KL, Kennan RP, Maciejewski PK, Rothman DL. 72.  2001. Quantitative functional imaging of the brain: towards mapping neuronal activity by BOLD fMRI. NMR Biomed 14:413–31 [Google Scholar]
  73. Shu CY, Herman P, Coman D, Sanganahalli BG, Wang H. 73.  et al. 2016. Brain region and activity-dependent properties of M for calibrated fMRI. NeuroImage 125:848–56 [Google Scholar]
  74. Davis TL, Kwong KK, Weisskoff RM, Rosen BR. 74.  1998. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. PNAS 95:1834–39 [Google Scholar]
  75. Grubb RL, Raichle ME, Eichling JO, Ter-Pogossian MM. 75.  1974. The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5:630–39 [Google Scholar]
  76. Keilholz SD, Silva AC, Raman M, Merkle H, Koretsky AP. 76.  2006. BOLD and CBV-weighted functional magnetic resonance imaging of the rat somatosensory system. Magn. Reson. Med. 55:316–24 [Google Scholar]
  77. Kida I, Rothman DL, Hyder F. 77.  2007. Dynamics of changes in blood flow, volume, and oxygenation: implications for dynamic functional magnetic resonance imaging calibration. J. Cereb. Blood Flow Metab. 27:690–96 [Google Scholar]
  78. Qiu D, Zaharchuk G, Christen T, Ni WW, Moseley ME. 78.  2012. Contrast-enhanced functional blood volume imaging (CE-fBVI): enhanced sensitivity for brain activation in humans using the ultrasmall superparamagnetic iron oxide agent ferumoxytol. NeuroImage 62:1726–31 [Google Scholar]
  79. Christen T, Pannetier NA, Ni WW, Qiu D, Moseley ME. 79.  et al. 2014. MR vascular fingerprinting: a new approach to compute cerebral blood volume, mean vessel radius, and oxygenation maps in the human brain. NeuroImage 89:262–70 [Google Scholar]
  80. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. 80.  1995. MR contrast due to intravascular magnetic susceptibility perturbations. Magn. Reson. Med. 34:555–66 [Google Scholar]
  81. Shu CY, Sanganahalli BG, Coman D, Herman P, Rothman DL, Hyder F. 81.  2016. Quantitative β mapping for calibrated fMRI. NeuroImage 126:219–28 [Google Scholar]
  82. Hoge RD. 82.  2012. Calibrated fMRI. NeuroImage 62:930–37 [Google Scholar]
  83. Pike GB. 83.  2012. Quantitative functional MRI: concepts, issues and future challenges. NeuroImage 62:1234–40 [Google Scholar]
  84. Buxton RB. 84.  2012. Dynamic models of BOLD contrast. NeuroImage 62:953–61 [Google Scholar]
  85. Smith AJ, Blumenfeld H, Behar KL, Rothman DL, Shulman RG, Hyder F. 85.  2002. Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. PNAS 99:10765–70 [Google Scholar]
  86. Kida I, Smith AJ, Blumenfeld H, Behar KL, Hyder F. 86.  2006. Lamotrigine suppresses neurophysiological responses to somatosensory stimulation in the rodent. NeuroImage 29:216–24 [Google Scholar]
  87. Maandag NJ, Coman D, Sanganahalli BG, Herman P, Smith AJ. 87.  et al. 2007. Energetics of neuronal signaling and fMRI activity. PNAS 104:20546–51 [Google Scholar]
  88. Sanganahalli BG, Herman P, Blumenfeld H, Hyder F. 88.  2009. Oxidative neuroenergetics in event-related paradigms. J. Neurosci. 29:1707–18 [Google Scholar]
  89. Herman P, Sanganahalli BG, Hyder F. 89.  2009. Multimodal measurements of blood plasma and red blood cell volumes during functional brain activation. J. Cereb. Blood Flow Metab. 29:19–24 [Google Scholar]
  90. Herman P, Sanganahalli BG, Blumenfeld H, Rothman DL, Hyder F. 90.  2013. Quantitative basis for neuroimaging of cortical laminae with calibrated functional MRI. PNAS 110:15115–20 [Google Scholar]
  91. Sanganahalli BG, Herman P, Rothman DL, Blumenfeld H, Hyder F. 91.  2016. Metabolic demands of neural-hemodynamic associated and disassociated areas in brain. J. Cereb. Blood Flow Metab. 36:1695–707 [Google Scholar]
  92. Ekstrom A. 92.  2010. How and when the fMRI BOLD signal relates to underlying neural activity: the danger in dissociation. Brain Res. Rev. 62:233–44 [Google Scholar]
  93. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. 93.  2001. Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–57 [Google Scholar]
  94. Borowsky IW, Collins RC. 94.  1989. Metabolic anatomy of brain: a comparison of regional capillary density, glucose metabolism, and enzyme activities. J. Comp. Neurol. 288:401–13 [Google Scholar]
  95. Mitzdorf U. 95.  1985. Current source–density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol. Rev. 65:37–100 [Google Scholar]
  96. Stark CE, Squire LR. 96.  2001. When zero is not zero: the problem of ambiguous baseline conditions in fMRI. PNAS 98:12760–66 [Google Scholar]
  97. Morcom AM, Fletcher PC. 97.  2007. Does the brain have a baseline? Why we should be resisting a rest. NeuroImage 37:1073–82 [Google Scholar]
  98. Hyder F, Rothman DL, Shulman RG. 98.  2002. Total neuroenergetics support localized brain activity: implications for the interpretation of fMRI. PNAS 99:10771–76 [Google Scholar]
  99. Shulman RG, Rothman DL, Hyder F. 99.  1999. Stimulated changes in localized cerebral energy consumption under anesthesia. PNAS 96:3245–50 [Google Scholar]
  100. Shulman RG, Rothman DL, Hyder F. 100.  2007. A BOLD search for baseline. NeuroImage 36:277–81 [Google Scholar]
  101. Northoff G, Duncan NW, Hayes DJ. 101.  2010. The brain and its resting state activity—experimental and methodological implications. Prog. Neurobiol. 92:593–600 [Google Scholar]
  102. Portas CM, Krakow K, Allen P, Josephs O, Armony JL, Frith CD. 102.  2000. Auditory processing across the sleep–wake cycle: simultaneous EEG and fMRI monitoring in humans. Neuron 28:991–99 [Google Scholar]
  103. Uludağ K, Dubowitz DJ, Yoder EJ, Restom K, Liu TT, Buxton RB. 103.  2004. Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI. NeuroImage 23:148–55 [Google Scholar]
  104. Chen LM, Friedman RM, Roe AW. 104.  2005. Optical imaging of SI topography in anesthetized and awake squirrel monkeys. J. Neurosci. 25:7648–59 [Google Scholar]
  105. Masamoto K, Kim T, Fukuda M, Wang P, Kim SG. 105.  2007. Relationship between neural, vascular, and BOLD signals in isoflurane-anesthetized rat somatosensory cortex. Cereb. Cortex 17:942–50 [Google Scholar]
  106. Pasley BN, Inglis BA, Freeman RD. 106.  2007. Analysis of oxygen metabolism implies a neural origin for the negative BOLD response in human visual cortex. NeuroImage 36:269–76 [Google Scholar]
  107. Issa EB, Wang X. 107.  2008. Sensory responses during sleep in primate primary and secondary auditory cortex. J. Neurosci. 28:14467–80 [Google Scholar]
  108. Issa EB, Wang X. 108.  2009. Altered neural responses to sounds in primate primary auditory cortex during slow-wave sleep. J. Neurosci. 31:2965–73 [Google Scholar]
  109. Li A, Gong L, Xu F. 109.  2011. Brain-state-independent neural representation of peripheral stimulation in rat olfactory bulb. PNAS 108:5087–92 [Google Scholar]
  110. Crochet S, Petersen CC. 110.  2006. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat. Neurosci. 9:608–10 [Google Scholar]
  111. Kroeger D, Amzica F. 111.  2007. Hypersensitivity of the anesthesia-induced comatose brain. J. Neurosci. 27:10597–607 [Google Scholar]
  112. Murayama M, Larkum ME. 112.  2009. Enhanced dendritic activity in awake rats. PNAS 106:20482–86 [Google Scholar]
  113. Civillico EF, Contreras D. 113.  2012. Spatiotemporal properties of sensory responses in vivo are strongly dependent on network context. Front. Syst. Neurosci. 6:25 [Google Scholar]
  114. Sellers KK, Bennett DV, Hutt A, Williams JH, Frohlich F. 114.  2015. Awake versus. anesthetized: layer-specific sensory processing in visual cortex and functional connectivity between cortical areas. J. Neurophysiol. 113:3798–815 [Google Scholar]
  115. Hyder F, Herman P, Sanganahalli BG, Coman D, Blumenfeld H, Rothman DL. 115.  2011. Role of ongoing, intrinsic activity of neuronal populations for quantitative neuroimaging of functional magnetic resonance imaging–based networks. Brain Connect 1:185–93 [Google Scholar]
  116. Warburg O. 116.  1956. On the origin of cancer cells. Science 123:309–14 [Google Scholar]
  117. Lunt SY, Vander Heiden MG. 117.  2011. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27:441–64 [Google Scholar]
  118. Gillies RJ, Liu Z, Bhujwalla Z. 118.  1994. 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate. Am. J. Physiol. Cell Physiol. 267:C195–203 [Google Scholar]
  119. Bhujwalla ZM, Artemov D, Ballesteros P, Cerdan S, Gillies RJ, Solaiyappan M. 119.  2002. Combined vascular and extracellular pH imaging of solid tumors. NMR Biomed 15:114–19 [Google Scholar]
  120. Raghunand N, Altbach MI, van Sluis R, Baggett B, Taylor CW. 120.  et al. 1999. Plasmalemmal pH gradients in drug-sensitive and drug-resistant MCF-7 human breast carcinoma xenografts measured by 31P magnetic resonance spectroscopy. Biochem. Pharmacol. 57:309–12 [Google Scholar]
  121. Gillies RJ. 121.  2001. The tumour microenvironment: causes and consequences of hypoxia and acidity. Introduction. Novartis Found Symp 240:1–6 [Google Scholar]
  122. Ward KM, Balaban RS. 122.  2000. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn. Reson. Med. 44:799–802 [Google Scholar]
  123. van Zijl PC, Yadav NN. 123.  2011. Chemical exchange saturation transfer (CEST): What is in a name and what isn't?. Magn. Reson. Med. 65:927–48 [Google Scholar]
  124. Woessner DE, Zhang S, Merritt ME, Sherry AD. 124.  2005. Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI. Magn. Reson. Med. 53:790–99 [Google Scholar]
  125. Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PC. 125.  2003. Amide proton transfer (APT) contrast for imaging of brain tumors. Magn. Reson. Med. 50:1120–26 [Google Scholar]
  126. Sagiyama K, Mashimo T, Togao O, Vemireddy V, Hatanpaa KJ. 126.  et al. 2014. In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. PNAS 111:4542–547 [Google Scholar]
  127. McVicar N, Li AX, Gonçalves DF, Bellyou M, Meakin SO. 127.  et al. 2014. Quantitative tissue pH measurement during cerebral ischemia using amine and amide concentration–independent detection (AACID) with MRI. J. Cereb. Blood Flow Metab. 34:690–98 [Google Scholar]
  128. McVicar N, Li AX, Meakin SO, Bartha R. 128.  2015. Imaging chemical exchange saturation transfer (CEST) effects following tumor-selective acidification using lonidamine. NMR Biomed 28:566–75 [Google Scholar]
  129. Sherry AD, Woods M. 129.  2008. Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Annu. Rev. Biomed. Eng 10391–411 [Google Scholar]
  130. Sheth VR, Li Y, Chen LQ, Howison CM, Flask CA, Pagel MD. 130.  2012. Measuring in vivo tumor pHe with CEST-FISP MRI. Magn. Reson. Med. 67:760–68 [Google Scholar]
  131. Coman D, Trubel HK, Rycyna RE, Hyder F. 131.  2009. Brain temperature and pH measured by 1H chemical shift imaging of a thulium agent. NMR Biomed 22:229–39 [Google Scholar]
  132. Coman D, Trubel HK, Hyder F. 132.  2010. Brain temperature by biosensor imaging of redundant deviation in shifts (BIRDS): comparison between TmDOTP5− and TmDOTMA. NMR Biomed 23:277–85 [Google Scholar]
  133. Coman D, de Graaf RA, Rothman DL, Hyder F. 133.  2013. In vivo 3D molecular imaging with BIRDS at high spatiotemporal resolution. NMR Biomed 26:1589–95 [Google Scholar]
  134. Coman D, Kiefer GE, Rothman DL, Sherry AD, Hyder F. 134.  2011. A lanthanide complex with dual biosensing properties: CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts) with europium DOTA-tetraglycinate. NMR Biomed 24:1216–25 [Google Scholar]
  135. Huang Y, Coman D, Kiefer GE, Samuel S, Hyder F. 135.  2013. Multivalent imaging with a cocktail of PARACEST agents: utility of BIRDS for CEST imaging. Proc. Int. Soc. Mag. Reson. Med. 21:4218 [Google Scholar]
  136. Huang Y, Coman D, Ali MM, Hyder F. 136.  2015. Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate for dual biosensing of pH with chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS). Contrast Media Mol. Imaging 10:51–58 [Google Scholar]
  137. Abragam A. 137.  1961. Principles of Nuclear Magnetism Oxford, UK: Oxford Univ. Press [Google Scholar]
  138. Coman D, Huang Y, Rao JU, De Feyter HM, Rothman DL. 138.  et al. 2016. Imaging the intratumoral–peritumoral extracellular pH gradient of gliomas. NMR Biomed 29:309–19 [Google Scholar]
  139. Huang Y, Coman D, Herman P, Rao J, Maritim S, Hyder F. 139.  2016. Towards longitudinal mapping of extracellular pH in gliomas. NMR Biomed 29:1364–72 [Google Scholar]
  140. Trubel HK, Maciejewski PK, Farber JH, Hyder F. 140.  2003. Brain temperature measured by 1H-NMR in conjunction with a lanthanide complex. J. Appl. Physiol. 94:1641–49 [Google Scholar]
  141. Maritim S, Huang Y, Coman D, Hyder F. 141.  2014. Characterization of a lanthanide complex encapsulated with MRI contrast agents into liposomes for biosensor imaging of redundant deviation in shifts (BIRDS). J. Biol. Inorg. Chem. 19:1385–98 [Google Scholar]
  142. Huang Y, Coman D, Hyder F, Ali MM. 142.  2015. Dendrimer-based responsive MRI contrast agents (G1–G4) for biosensor imaging of redundant deviation in shifts (BIRDS). Bioconjug. Chem. 26:2315–23 [Google Scholar]
  143. Strohbehn G, Coman D, Han L, Ragheb RR, Fahmy TM. 143.  et al. 2015. Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance. J. Neurooncol. 121:441–49 [Google Scholar]
  144. Coman D, Sanganahalli BG, Jiang L, Hyder F, Behar KL. 144.  2015. Distribution of temperature changes and neurovascular coupling in rat brain following 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) exposure. NMR Biomed 28:1257–66 [Google Scholar]
  145. Boumezbeur F, Mason GF, de Graaf RA, Behar KL, Cline GW. 145.  et al. 2010. Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. J. Cereb. Blood Flow Metab. 30:211–21 [Google Scholar]
  146. Lin AL, Coman D, Jiang L, Rothman DL, Hyder F. 146.  2014. Caloric restriction impedes age-related decline of mitochondrial function and neuronal activity. J. Cereb. Blood Flow Metab. 34:1440–43 [Google Scholar]
  147. Sanganahalli BG, Herman P, Behar KL, Blumenfeld H, Rothman DL, Hyder F. 147.  2013. Functional MRI and neural responses in a rat model of Alzheimer's disease. NeuroImage 79:404–11 [Google Scholar]
  148. Hashim AI, Zhang X, Wojtkowiak JW, Martinez GV, Gillies RJ. 148.  2011. Imaging pH and metastasis. NMR Biomed 24:582–91 [Google Scholar]
  149. Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH. 149.  et al. 2013. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res 73:1524–35 [Google Scholar]
  150. Pugh KR, Frost SJ, Rothman DL, Hoeft F, Del Tufo SN. 150.  et al. 2014. Glutamate and choline levels predict individual differences in reading ability in emergent readers. J Neurosci 43:4082–89 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error