Living subjects (i.e., humans and animals) have abundant sources of energy in chemical, thermal, and mechanical forms. The use of these energies presents a viable way to overcome the battery capacity limitation that constrains the long-term operation of wearable/implantable devices. The intersection of novel materials and fabrication techniques offers boundless possibilities for the benefit of human health and well-being via various types of energy harvesters. This review summarizes the existing approaches that have been demonstrated to harvest energy from the bodies of living subjects for self-powered electronics. We present material choices, device layouts, and operation principles of these energy harvesters with a focus on in vivo applications. We discuss a broad range of energy harvesters placed in or on various body parts of human and animal models. We conclude with an outlook of future research in which the integration of various energy harvesters with advanced electronics can provide a new platform for the development of novel technologies for disease diagnostics, treatment, and prevention.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Patel S, Park H, Bonato P, Chan L, Rodgers M. 1.  2012. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9:21–47 [Google Scholar]
  2. Joung YH. 2.  2013. Development of implantable medical devices: from an engineering perspective. Int. Neurourol. J. 17:98–106 [Google Scholar]
  3. Bandodkar A, Wang J. 3.  Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol 32:363–71 [Google Scholar]
  4. Mallela VS, Ilankumaran V, Rao NS. 4.  2004. Trends in cardiac pacemakers batteries. Indian Pacing Electrophysiol. J. 4:201–12 [Google Scholar]
  5. Riemer R, Shapiro A. 5.  2011. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions. J. Neuroeng. Rehabil. 8:22 [Google Scholar]
  6. Hannan M, Mutashar S, Samad S, Hussain A. 6.  2014. Energy harvesting for implantable medical devices: issues and challenges. Biomed. Eng. Online 1379–101 [Google Scholar]
  7. Halámková L, Halámek J, Bocharova V, Szczupak A, Alfonta L, Katz E. 7.  2012. Implanted biofuel cell operating in a living snail. J. Am. Chem. Soc. 134:5040–43 [Google Scholar]
  8. Starner T. 8.  1996. Human-powered wearable computing. IBM Syst. J. 35:618–29 [Google Scholar]
  9. Vuller RJM, van Schaijk R, Doms I, Van Hoof C, Mertens R. 9.  2009. Micropower energy harvesting. Solid State Electron 53:684–93 [Google Scholar]
  10. Sue CY, Tsai NC. 10.  2012. Human powered MEMS-based energy harvest devices. Appl. Energy 93:390–403 [Google Scholar]
  11. Mercier PP, Lysaght AC, Bandyopadhyay S, Chandrakasan AP, Stankovic KM. 11.  2012. Energy extraction from the biologic battery in the inner ear. Nat. Biotechnol. 30:1240–43 [Google Scholar]
  12. Leonov V, Vullers RJM. 12.  2009. Wearable thermoelectric generators for body-powered devices. J. Electron. Mater. 38:1491–98 [Google Scholar]
  13. Ramadass YK, Chandrakasan AP. 13.  2011. A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE J. Solid-State Circuits 46:333–41 [Google Scholar]
  14. Wang ZL. 14.  2013. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7:9533–57 [Google Scholar]
  15. Dagdeviren C, Yang BD, Su Y, Tran PL, Joe P. 15.  et al. 2014. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. PNAS 111:1927–32 [Google Scholar]
  16. Renaud M, Fiorini P, van Schaijk R, van Hoof C. 16.  2012. Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator. Smart Mater. Struct. 21:049501 [Google Scholar]
  17. Lee M, Chen C-Y, Wang S, Cha SN, Park YJ. 17.  et al. 2012. A hybrid piezoelectric structure for wearable nanogenerators. Adv. Mater. 24:1759–64 [Google Scholar]
  18. Dagdeviren C, Hwang S-W, Su Y, Kim S, Cheng H. 18.  et al. 2013. Transient, biocompatible electronics and energy harvesters based on ZnO. Small 9:3398–404 [Google Scholar]
  19. Barton SC, Gallaway J, Atanassov P. 19.  2004. Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 104:4867–86 [Google Scholar]
  20. Heller A. 20.  2004. Miniature biofuel cells. Phys. Chem. Chem. Phys. 6:209–16 [Google Scholar]
  21. Hansen BJ, Liu Y, Yang R, Wang ZL. 21.  2010. Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4:3647–52 [Google Scholar]
  22. Katz E, MacVittie K. 22.  2013. Implanted biofuel cells operating in vivo—methods, applications and perspectives. Energy Environ. Sci. 6:2791–803 [Google Scholar]
  23. Jia W, Wang X, Imani S, Bandodkar AJ, Ramírez J. 23.  et al. 2014. Wearable textile biofuel cells for powering electronics. J. Mater. Chem. A 2:18184–89 [Google Scholar]
  24. Wilson R, Turner APF. 24.  1992. Glucose oxidase: an ideal enzyme. Biosens. Bioelectron. 7:165–85 [Google Scholar]
  25. Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellissier A. 25.  et al. 2010. A glucose biofuel cell implanted in rats. PLOS ONE 5:e10476 [Google Scholar]
  26. Sales FCPF, Iost RM, Martins MVA, Almeida MC, Crespilho FN. 26.  2013. An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes. Lab Chip 13:468–74 [Google Scholar]
  27. Milton RD, Giroud F, Thumser AE, Minteer SD, Slade RCT. 27.  2013. Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement. Phys. Chem. Chem. Phys. 15:19371–79 [Google Scholar]
  28. Narváez Villarrubia CW, Rincón RA, Radhakrishnan VK, Davis V, Atanassov P. 28.  2011. Methylene green electrodeposited on SWNTs-based “bucky” papers for NADH and l-malate oxidation. ACS Appl. Mater. Interfaces 3:2402–9 [Google Scholar]
  29. Zayats M, Katz E, Willner I. 29.  2002. Electrical contacting of flavoenzymes and NAD(P)+-dependent enzymes by reconstitution and affinity interactions on phenylboronic acid monolayers associated with Au-electrodes. J. Am. Chem. Soc. 124:14724–35 [Google Scholar]
  30. Cosnier S, Le Goff A, Holzinger M. 30.  2013. Towards glucose biofuel cells implanted in human body for powering artificial organs: review. Electrochem. Commun. 38:19–23 [Google Scholar]
  31. Szczupak A, Halámek J, Halámková L, Bocharova V, Alfonta L, Katz E. 31.  2012. Living battery-biofuel cells operating in vivo in clams. Energy Environ. Sci. 5:8891–95 [Google Scholar]
  32. MacVittie K, Halámek J, Halámková L, Southcott M, Jemison WD. 32.  et al. 2013. From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ. Sci. 6:81–86 [Google Scholar]
  33. Castorena-Gonzalez JA, Foote C, MacVittie K, Halámek J, Halámková L. 33.  et al. 2013. Biofuel cell operating in vivo in rat. Electroanalysis 25:1579–84 [Google Scholar]
  34. Meredith MT, Minteer SD. 34.  2012. Biofuel cells: enhanced enzymatic bioelectrocatalysis. Annu. Rev. Anal. Chem. 5:157–79 [Google Scholar]
  35. Atanassov P, Apblett C, Banta S, Brozik S, Barton SC. 35.  et al. 2007. Enzymatic biofuel cells. Electrochem. Soc. Interface 16:28–52 [Google Scholar]
  36. Yu EH, Scott K. 36.  2010. Enzymatic biofuel cells—fabrication of enzyme electrodes. Energies 3:23–42 [Google Scholar]
  37. Hu L, Hecht DS, Grüner G. 37.  2010. Carbon nanotube thin films: fabrication, properties, and applications. Chem. Rev. 110:5790–844 [Google Scholar]
  38. Fuchsberger K, Goff AL, Gambazzi L, Toma FM, Goldoni A. 38.  et al. 2011. Multiwalled carbon-nanotube-functionalized microelectrode arrays fabricated by microcontact printing: platform for studying chemical and electrical neuronal signaling. Small 7:524–30 [Google Scholar]
  39. Gooding JJ. 39.  2005. Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim. Acta 50:3049–60 [Google Scholar]
  40. Hughes M, Chen GZ, Shaffer MSP, Fray DJ, Windle AH. 40.  et al. 2002. Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem. Mater. 14:1610–13 [Google Scholar]
  41. Holzinger M, Le Goff A, Cosnier S. 41.  2012. Carbon nanotube/enzyme biofuel cells. Electrochim. Acta 82:179–90 [Google Scholar]
  42. Leonov V. 42.  2011. Human machine and thermoelectric energy scavenging for wearable devices. ISRN Renew. Energy. 2011785380
  43. Chung DY, Hogan T, Brazis P, Rocci-Lane M, Kannewurf C. 43.  et al. 2000. CsBi4Te6: a high-performance thermoelectric material for low-temperature applications. Science 287:1024–27 [Google Scholar]
  44. Poudel B, Hao Q, Ma Y, Lan Y, Minnich A. 44.  et al. 2008. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–38 [Google Scholar]
  45. Liu W, Lukas KC, McEnaney K, Lee S, Zhang Q. 45.  et al. 2013. Studies on the Bi2Te3–Bi2Se3–Bi2S3 system for mid-temperature thermoelectric energy conversion. Energy Environ. Sci. 6:552–60 [Google Scholar]
  46. Sun Y, Cheng H, Gao S, Liu Q, Sun Z. 46.  et al. 2012. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. J. Am. Chem. Soc. 134:20294–97 [Google Scholar]
  47. Zhao LD, Lo SH, Zhang Y, Sun H, Tan G. 47.  et al. 2014. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508:373–77 [Google Scholar]
  48. Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K. 48.  et al. 2008. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321:554–57 [Google Scholar]
  49. Delaire O, Ma J, Marty K, May AF, McGuire MA. 49.  et al. 2011. Giant anharmonic phonon scattering in PbTe. Nat. Mater. 10:614–19 [Google Scholar]
  50. Su J, Vullers RJM, Goedbloed M, van Andela Y, Leonovb V, Wang Z. 50.  2010. Thermoelectric energy harvester fabricated by Stepper. Microelectron. Eng. 87:1242–44 [Google Scholar]
  51. Liu J, Zhang LM, He L, Tang XF. 51.  2008. Synthesis and thermoelectric properties of polyaniline. J. Wuhan Univ. Technol. Mater. Sci. Ed. 18:53–55 [Google Scholar]
  52. Lee K, Cho S, Park SH, Heeger AJ, Lee CW, Lee SH. 52.  2006. Metallic transport in polyaniline. Nature 441:65–68 [Google Scholar]
  53. Kemp NT, Kaiser AB, Liu CJ, Chapman B, Mercier O. 53.  et al. 1999. Thermoelectric power and conductivity of different types of polypyrrole. J. Polym. Sci. B 37:953–60 [Google Scholar]
  54. Eftekhari A, Kazemzad M, Keyanpour-Rad M. 54.  2006. Significant effect of dopant size on nanoscale fractal structure of polypyrrole film. Polym. J. 38:781–85 [Google Scholar]
  55. Nardes AM, Kemerink M, Janssen RAJ, Bastiaansen JAM, Kiggen NMM. 55.  et al. 2007. Microscopic understanding of the anisotropic conductivity of PEDOT: PSS thin films. Adv. Mater. 19:1196–200 [Google Scholar]
  56. Park T, Park C, Kim B, Shin H, Kim E. 56.  2013. Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips. Energy Environ. Sci. 6:788–92 [Google Scholar]
  57. Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M. 57.  et al. 2011. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 10:429–33 [Google Scholar]
  58. Sun Y, Sheng P, Di C, Jiao F, Xu W. 58.  et al. 2012. Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv. Mater 24:932–37 [Google Scholar]
  59. Kim SJ, We JH, Cho BJ. 59.  2014. A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 7:1959–65 [Google Scholar]
  60. Dun C, Hewitt CA, Huang H, Xu J, Zhou C. 60.  et al. 2015. Flexible n-type thermoelectric films based on Cu-doped Bi2Se3 nanoplate and polyvinylidene fluoride composite with decoupled Seebeck coefficient and electrical conductivity. Nano Energy 18:306–14 [Google Scholar]
  61. Wang ZL, Chen J, Lin L. 61.  2015. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8:2250–82 [Google Scholar]
  62. Fan X, Chen J, Yang J, Bai P, Li Z, Wang ZL. 62.  2015. Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 9:4236–43 [Google Scholar]
  63. Lin Z, Cheng G, Li X, Yang PK, Wen X, Wang ZL. 63.  2015. A multi-layered interdigitative-electrodes-based triboelectric nanogenerator for harvesting hydropower. Nano Energy 15:256–65 [Google Scholar]
  64. Jing Q, Xie Y, Zhu G, Han RPS, Wang ZL. 64.  2015. Self-powered thin-film motion vector sensor. Nat. Commun. 6:1–8 [Google Scholar]
  65. Fan F, Lin L, Zhu G, Wu W, Zhang R, Wang ZL. 65.  2012. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12:3109–14 [Google Scholar]
  66. Zhong X, Yang Y, Wang X, Wang ZL. 66.  2015. Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source. Nano Energy 13:771–80 [Google Scholar]
  67. Lin Z, Xie Y, Yang Y, Wang S, Zhu G, Wang ZL. 67.  2013. Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials. ACS Nano 7:4554–60 [Google Scholar]
  68. Yang J, Chen J, Su Y, Jing Q, Li Z. 68.  et al. 2015. Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 27:1316–26 [Google Scholar]
  69. Lin L, Xie Y, Niu S, Wang S, Yang PK, Wang ZL. 69.  2015. Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼55%. ACS Nano 9:922–30 [Google Scholar]
  70. Yang W, Chen J, Wen X, Jing Q, Yang J. 70.  et al. 2014. Triboelectrification based motion sensor for human–machine interfacing. ACS Appl. Mater. Interfaces 6:7479–84 [Google Scholar]
  71. Wang ZL, Wu W. 71.  2012. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 51:2–24 [Google Scholar]
  72. Koo JH, Seo J, Lee T. 72.  2012. Nanomaterials on flexible substrates to explore innovative functions: from energy harvesting to bio-integrated electronics. Thin Solid Films 524:1–19 [Google Scholar]
  73. Persano L, Catellani A, Dagdeviren C, Ma Y, Guo X. 73.  et al. 2016. Shear piezoelectricity in poly(vinylidenefluoride-co-trifluoroethylene): full piezotensor coefficients by molecular modeling, biaxial transverse response, and use in suspended energy-harvesting nanostructures. Adv. Mater. 28:7633–39 [Google Scholar]
  74. Zhang H, Zhang X-S, Cheng X, Liu Y, Han M. 74.  et al. 2015. A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: in vitro and in vivo studies. Nano Energy 12:296–304 [Google Scholar]
  75. Cheng X, Xue X, Ma Y, Han M, Zhang W. 75.  et al. 2016. Implantable and self-powered blood pressure monitoring based on a piezoelectric thin film: simulated, in vitro and in vivo studies. Nano Energy 22:453–60 [Google Scholar]
  76. Dagdeviren C, Joe P, Tuzman OL, Park K-I, Lee KJ. 76.  et al. 2016. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extreme Mech. Lett. 9:269–91 [Google Scholar]
  77. Dagdeviren C. 77.  2015. Ferroelectric/piezoelectric flexible mechanical energy harvesters and stretchable epidermal sensors for medical applications PhD thesis, Dep. Mater. Sci. Eng., Univ Ill., Urbana-Champaign
  78. Alkoy EM, Dagdeviren C, Papila M. 78.  2008. Pb(Zr,Ti)O3 nanofibers produced by electrospinning process. Mater. Res. Soc. Symp. Proc. 1129:V7–8 [Google Scholar]
  79. Chun J, Kang N-R, Kim J-Y, Noh M-S, Kang C-Y. 79.  et al. 2015. Highly anisotropic power generation in piezoelectric hemispheres composed stretchable composite film for self-powered motion sensor. Nano Energy 11:1–10 [Google Scholar]
  80. Chen X, Xu S, Yao N, Shi Y. 80.  2010. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10:2133–37 [Google Scholar]
  81. Park K-I, Son JH, Hwang GT, Jeong CK, Ryu J. 81.  et al. 2014. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26:2514–20 [Google Scholar]
  82. Park K-I, Lee M, Liu Y, Moon S, Hwang G-T. 82.  et al. 2012. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv. Mater. 24:2999–3004 [Google Scholar]
  83. Choi MY, Choi D, Jin MJ, Kim I, Kim SH. 83.  et al. 2009. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater. 21:2185–89 [Google Scholar]
  84. Wang ZL, Zhu G, Yang Y, Wang SH, Pan CF. 84.  2012. Progress in nanogenerators for self-powered mobile/portable electronics. Mater. Today 15:532–43 [Google Scholar]
  85. Zhu G, Yang R, Wang S, Wang ZL. 85.  2010. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett 10:3151–55 [Google Scholar]
  86. Hwang GT, Park H, Lee J-H, Oh S, Park K-I. 86.  et al. 2014. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 26:4880–87 [Google Scholar]
  87. Cheng L, Yuan M, Gu L, Wang Z, Qin Y. 87.  et al. 2015. Wireless, power-free and implantable nanosystem for resistance-based biodetection. Nano Energy 15:598–606 [Google Scholar]
  88. Dammers R, Stifft F, Tordoir JH, Hameleers JM, Hoeks AP, Kitslaar PJ. 88.  2003. Shear stress depends on vascular territory: comparison between common carotid and brachial artery. J. Appl. Physiol. 94:485–89 [Google Scholar]
  89. Bussy C, Boutouyrie P, Lacolley P, Challande P, Laurent S. 89.  2000. Intrinsic stiffness of the carotid arterial wall material in essential hypertensives. Hypertension 35:1049–54 [Google Scholar]
  90. Yang R, Qin Y, Li C, Zhu G, Wang ZL. 90.  2009. Converting biomechanical energy into electricity by a muscle-movement driven nanogenerator. Nano Lett 9:1201–5 [Google Scholar]
  91. Li Z, Zhu G, Yang R, Wang AC, Wang ZL. 91.  2010. Muscle-driven in vivo nanogenerator. Adv. Mater. 22:2534–37 [Google Scholar]
  92. Mano N, Mao F, Heller A. 92.  2003. Characteristics of a miniature compartment-less glucose/O2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc. 125:6588–94 [Google Scholar]
  93. Rapoport BI, Kedzierski JT, Sarpeshkar R. 93.  2012. A glucose fuel cell for implantable brain–machine interfaces. PLOS ONE 7:e38436 [Google Scholar]
  94. Zebda A, Cosnier S, Alcaraz J-P, Holzinger M, Le Goff A. 94.  et al. 2013. Single glucose biofuel cells implanted in rats power electronic devices. Sci. Rep. 3:1516 [Google Scholar]
  95. Kim MK, Kim MS, Lee S, Kim C, Kim YJ. 95.  2014. Wearable thermoelectric generator for harvesting human body heat energy. Smart Mater. Struct. 23:105002 [Google Scholar]
  96. Zhu G, Pan C, Guo W, Chen CY, Zhou Y. 96.  et al. 2012. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett 12:4960–65 [Google Scholar]
  97. Hou TC, Yang Y, Zhang H, Chen J, Chen LJ, Wang ZL. 97.  2013. Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2:856–62 [Google Scholar]
  98. Wang S, Lin L, Xie Y, Jing Q, Niu S, Wang ZL. 98.  2013. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett 13:2226–33 [Google Scholar]
  99. Wang ZL. 99.  2008. Towards self-powered nanosystems: from nanogenerators to nanopiezotronics. Adv. Funct. Mater. 18:3553–67 [Google Scholar]
  100. Song J, Wang X, Liu J, Liu H, Li Y, Wang ZL. 100.  2008. Piezoelectric potential output from ZnO nanowire functionalized with p-type oligomer. Nano Lett 8:203–7 [Google Scholar]
  101. Su Y, Dagdeviren C, Li R. 101.  2015. Measured output voltages of piezoelectric devices depend on the resistance of voltmeter. Adv. Funct. Mater. 25:5320–25 [Google Scholar]
  102. Su Y, Li S, Li R, Dagdeviren C. 102.  2015. Splitting of neutral mechanical plane of conformal, multilayer piezoelectric mechanical energy harvester. Appl. Phys. Lett. 107:041905 [Google Scholar]
  103. Zheng Q, Shi B, Fan F, Wang X, Yan L. 103.  et al. 2014. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 26:5851–56 [Google Scholar]
  104. Yang YL, Chuang MC, Lou SL, Wang J. 104.  2010. Thick-film textile-based amperometric sensors and biosensors. Analyst 135:1230–34 [Google Scholar]
  105. Chuang MC, Windmiller JR, Santhosh P, Ramirez GV, Galik M. 105.  et al. 2010. Textile-based electrochemical sensing: effect of fabric substrate and detection of nitroaromatic explosives. Electroanalysis 22:2511–18 [Google Scholar]
  106. Leonov V, Leuven I, Torfs T, Fiorini P, Hoof CV. 106.  2007. Thermoelectric converters of human warmth for self-powered wireless sensor nodes. IEEE Sens. J. 7:650–57 [Google Scholar]
  107. Pu X, Li L, Song H, Du C, Zhao Z. 107.  et al. 2015. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27:2472–78 [Google Scholar]
  108. Yang W, Chen J, Zhu G, Yang J, Bai P. 108.  et al. 2013. Harvesting energy from the natural vibration of human walking. ACS Nano 7:11317–24 [Google Scholar]
  109. Zhou T, Zhang C, Han CB, Fan FR, Tang W. 109.  et al. 2014. Woven structured triboelectric nanogenerator for wearable devices. ACS Appl. Mater. Interfaces 6:14695–701 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error