Glutamine is the most abundant circulating amino acid in blood and muscle and is critical for many fundamental cell functions in cancer cells, including synthesis of metabolites that maintain mitochondrial metabolism; generation of antioxidants to remove reactive oxygen species; synthesis of nonessential amino acids (NEAAs), purines, pyrimidines, and fatty acids for cellular replication; and activation of cell signaling. In light of the pleiotropic role of glutamine in cancer cells, a comprehensive understanding of glutamine metabolism is essential for the development of metabolic therapeutic strategies for targeting cancer cells. In this article, we review oncogene-, tumor suppressor–, and tumor microenvironment–mediated regulation of glutamine metabolism in cancer cells. We describe the mechanism of glutamine's regulation of tumor proliferation, metastasis, and global methylation. Furthermore, we highlight the therapeutic potential of glutamine metabolism and emphasize that clinical application of in vivo assessment of glutamine metabolism is critical for identifying new ways to treat patients through glutamine-based metabolic therapy.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Hanahan D, Weinberg RA. 1.  2011. Hallmarks of cancer: the next generation. Cell 144:646–74 [Google Scholar]
  2. Pavlova NN, Thompson CB. 2.  2016. The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47 [Google Scholar]
  3. Warburg O. 3.  1956. On the origin of cancer cells. Science 123:309–14 [Google Scholar]
  4. Warburg O. 4.  1956. On respiratory impairment in cancer cells. Science 124:269–70 [Google Scholar]
  5. Lunt SY, Vander Heiden MG. 5.  2011. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27:441–64 [Google Scholar]
  6. Sullivan LB, Martinez-Garcia E, Nguyen H, Mullen AR, Dufour E. 6.  et al. 2013. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol. Cell 51:236–48 [Google Scholar]
  7. Zheng L, Cardaci S, Jerby L, Mackenzie ED, Sciacovelli M. 7.  et al. 2015. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat. Commun. 6:4001 [Google Scholar]
  8. Cardaci S, Zheng L, Mackay G, Van Den Broek NJF, Mackenzie ED. 8.  et al. 2015. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. 17:1317–26 [Google Scholar]
  9. Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A. 9.  et al. 2012. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337:96–100 [Google Scholar]
  10. Porporato PE, Payen VL, Pérez-Escuredo J, De Saedeleer CJ, Danhier P. 10.  et al. 2014. A mitochondrial switch promotes tumor metastasis. Cell Rep 8:754–66 [Google Scholar]
  11. Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. 11.  2015. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162:540–51 [Google Scholar]
  12. Fantin VR, Leder P. 12.  2006. Mitochondriotoxic compounds for cancer therapy. Oncogene 25:4787–97 [Google Scholar]
  13. Smolke CD. 13.  2010. The Metabolic Pathway Engineering Handbook: Fundamentals Boca Raton, FL: CRC/Taylor & Francis
  14. Eagle H. 14.  1955. The minimum vitamin requirements of the L and HeLa cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J. Exp. Med. 102:595–600 [Google Scholar]
  15. Fan J, Kamphorst JJ, Mathew R, Chung MK, White E. 15.  et al. 2013. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol. 9:712 [Google Scholar]
  16. Yang L, Moss T, Mangala LS, Marini J, Zhao H. 16.  et al. 2014. Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer. Mol. Syst. Biol. 10:728–728 [Google Scholar]
  17. van Geldermalsen M, Wang Q, Nagarajah R, Marshall AD, Thoeng A. 17.  et al. 2016. ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene 35:3201–8 [Google Scholar]
  18. Hamberger A, Nyström B, Larsson S, Silfvenius H, Nordborg C. 18.  1991. Amino acids in the neuronal microenvironment of focal human epileptic lesions. Epilepsy Res 9:32–43 [Google Scholar]
  19. Bode BP, Souba WW. 19.  1999. Glutamine transport and human hepatocellular transformation. J. Parenter. Enter. Nutr. 23:5 Suppl.S33–37 [Google Scholar]
  20. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M. 20.  et al. 2007. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. PNAS 104:19345–50 [Google Scholar]
  21. Sellers K, Fox MP, Bousamra M, Slone SP, Higashi RM. 21.  et al. 2015. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Investig. 125:687–98 [Google Scholar]
  22. Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES. 22.  et al. 2011. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. PNAS 108:8674–79 [Google Scholar]
  23. Kowalski TJ, Watford M. 23.  2016. By rat subcutaneous adipose tissue in vivo production of glutamine and utilization of glutamate production of glutamine and utilization of glutamate by rat subcutaneous adipose tissue in vivo. Am. J. Physiol. Endocrinol. Metab. 266:E151–54 [Google Scholar]
  24. Mittendorfer B, Volpi E, Wolfe RR. 24.  2001. Whole body and skeletal muscle glutamine metabolism in healthy subjects. Am. J. Physiol. Endocrinol. Metab. 280:E323–33 [Google Scholar]
  25. Klimberg VS, Souba WW, Salloum RM, Plumley DA, Cohen FS. 25.  et al. 1990. Glutamine-enriched diets support muscle glutamine metabolism without stimulating tumor growth. J. Surg. Res. 48:319–23 [Google Scholar]
  26. Maggs DG, Jacob R, Rife F, Lange R, Leone P. 26.  et al. 1995. Interstitial fluid concentrations of glycerol, glucose, and amino acids in human quadricep muscle and adipose tissue. Evidence for significant lipolysis in skeletal muscle. J. Clin. Investig. 96:370–77 [Google Scholar]
  27. Patterson BW, Horowitz JF, Wu G, Watford M, Coppack SW, Klein S. 27.  2002. Regional muscle and adipose tissue amino acid metabolism in lean and obese women. Am. J. Physiol. Endocrinol. Metab. 282:E931–36 [Google Scholar]
  28. Ehsanipour EA, Sheng X, Behan JW, Wang X, Butturini A. 28.  et al. 2013. Adipocytes cause leukemia cell resistance to l-asparaginase via release of glutamine. Cancer Res 73:2998–3006 [Google Scholar]
  29. Daikhin Y, Yudkoff M. 29.  2000. Glutamate and glutamine in the brain compartmentation of brain glutamate metabolism in neurons and glia. J. Nutr. 130:1026–31 [Google Scholar]
  30. Stumvoll M, Perriello G, Meyer C, Gerich J. 30.  1999. Role of glutamine in human carbohydrate metabolism in kidney and other tissues. Kidney Int 55:778–92 [Google Scholar]
  31. Palmieri EM, Spera I, Menga A, Infantino V, Iacobazzi V, Castegna A. 31.  2014. Glutamine synthetase desensitizes differentiated adipocytes to proinflammatory stimuli by raising intracellular glutamine levels. FEBS Lett 588:4807–14 [Google Scholar]
  32. Garber AJ. 32.  1978. The regulation of skeletal muscle alanine and glutamine formation and release in experimental chronic uremia in the rat subsensitivity of adenylate cyclase and amino acid release to epinephrine and serotonin. J. Clin. Investig. 62:633–41 [Google Scholar]
  33. Häussinger D, Sies H. 33.  1984. Glutamine Metabolism in Mammalian Tissues Berlin/Heidelberg: Springer
  34. Felig P, Wahrent J, Raft L. 34.  1973. Evidence of inter-organ amino-acid transport by blood cells in humans. PNAS 70:1775–79 [Google Scholar]
  35. Häussinger D, Graf D, Weiergräber OH. 35.  2001. Glutamine and cell signaling in liver. J. Nutr. 131:9 Suppl.S2509–24 [Google Scholar]
  36. Matsuno T, Goto L. 36.  1992. Glutaminase and glutamine synthetase activities in human cirrhotic liver and hepatocellular carcinoma. Cancer Res 52:1192–94 [Google Scholar]
  37. Son J, Lyssiotis CA, Ying H, Wang X, Hua S. 37.  et al. 2013. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496:101–5 [Google Scholar]
  38. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang X-Y. 38.  et al. 2008. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. PNAS 105:18782–87 [Google Scholar]
  39. Gao P, Tchernyshyov I, Chang T-C, Lee Y-S, Kita K. 39.  et al. 2009. c-Myc suppression of mir-23 enhances mitochondrial glutaminase and glutamine metabolism. Nature 458:762–65 [Google Scholar]
  40. Mannava S, Grachtchouk V, Wheeler LJ, Im M, Zhuang D. 40.  et al. 2008. Direct role of nucleotide metabolism in C-MYC-dependent proliferation of melanoma cells. Cell Cycle 7:2392–400 [Google Scholar]
  41. Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS. 41.  et al. 2014. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol. Syst. Biol. 7:523–23 [Google Scholar]
  42. Csibi A, Fendt S-M, Li C, Poulogiannis G, Choo AY. 42.  et al. 2013. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153:840–54 [Google Scholar]
  43. Bryan HK, Olayanju A, Goldring CE, Park BK. 43.  2013. The NRF2 cell defence pathway: KEAP1-dependent and -independent mechanisms of regulation. Biochem. Pharmacol. 85:705–17 [Google Scholar]
  44. Wu KC, Cui JY, Klaassen CD. 44.  2011. Beneficial role of NRF2 in regulating NADPH generation and consumption. Toxicol. Sci. 123:590–600 [Google Scholar]
  45. Lane DP. 45.  1992. p53, guardian of the genome. Nature 358:15–16 [Google Scholar]
  46. Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T. 46.  et al. 2010. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. PNAS 107:7461–66 [Google Scholar]
  47. Reynolds MR, Lane AN, Robertson B, Kemp S, Liu Y. 47.  et al. 2014. Control of glutamine metabolism by the tumor suppressor Rb. Oncogene 33:556–66 [Google Scholar]
  48. Faubert B, Vincent EE, Griss T, Samborska B, Izreig S. 48.  et al. 2014. Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α.. PNAS 111:2554–59 [Google Scholar]
  49. Hung C-L, Wang L-Y, Yu Y-L, Chen H-W, Srivastava S. 49.  et al. 2014. A long noncoding RNA connects c-Myc to tumor metabolism. PNAS 111:18697–702 [Google Scholar]
  50. Redis RS, Vela LE, Lu W, Ferreira de Oliveira J, Ivan C. 50.  et al. 2016. Allele-specific reprogramming of cancer metabolism by the long non-coding RNA CCAT2. Mol. Cell 61:520–34 [Google Scholar]
  51. Jeon YJ, Khelifa S, Ratnikov B, Scott DA, Feng Y. 51.  et al. 2015. Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress–inducing chemotherapies. Cancer Cell 27:354–69 [Google Scholar]
  52. Langley RR, Fidler IJ. 52.  2011. The seed and soil hypothesis revisited—the role of tumor-stroma interactions in metastasis to different organs. Int. J. Cancer. 128:2527–35 [Google Scholar]
  53. Venmar KT, Kimmel DW, Cliffel DE, Fingleton B. 53.  2015. IL4 receptor α mediates enhanced glucose and glutamine metabolism to support breast cancer growth. Biochim. Biophys. Acta 1853:1219–28 [Google Scholar]
  54. Wellen KE, Lu C, Mancuso A, Lemons JMS, Ryczko M. 54.  et al. 2010. The hexosamine biosynthetic pathway couples growth factor–induced glutamine uptake to glucose metabolism. Genes Dev 24:2784–99 [Google Scholar]
  55. Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vázquez G. 55.  et al. 2015. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42:41–54 [Google Scholar]
  56. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R. 56.  et al. 2011. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35:871–82 [Google Scholar]
  57. Semenza GL. 57.  2013. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Investig. 123:3664–71 [Google Scholar]
  58. Sun RC, Denko NC. 58.  2014. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab 19:285–92 [Google Scholar]
  59. Pérez-Escuredo J, Dadhich RK, Dhup S, Cacace A, Van Hée VF. 59.  et al. 2015. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells. Cell Cycle 15:72–83 [Google Scholar]
  60. Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T. 60.  et al. 2014. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13:890–901 [Google Scholar]
  61. Tanaka K, Sasayama T, Irino Y, Takata K, Nagashima H. 61.  et al. 2015. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J. Clin. Investig. 125:1591–602 [Google Scholar]
  62. Williams JC, Kizaki H, Weber G, Morris HP. 62.  1978. Increased CTP synthetase activity in cancer cells. Nature 271:71–73 [Google Scholar]
  63. Lunt SY, Muralidhar V, Hosios AM, Israelsen WJ, Gui DY. 63.  et al. 2015. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol. Cell 57:95–107 [Google Scholar]
  64. Son J, Lyssiotis CA, Ying H, Wang X, Hua S. 64.  et al. 2013. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496:101–5 [Google Scholar]
  65. Sullivan LB, Gui DY, Hosios AM, Bush LN, Freinkman E, Vander Heiden MG. 65.  2015. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162:552–63 [Google Scholar]
  66. Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. 66.  2015. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162:540–51 [Google Scholar]
  67. Locasale JW. 67.  2013. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13:572–83 [Google Scholar]
  68. Ahn CS, Metallo CM. 68.  2015. Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab 3:1 [Google Scholar]
  69. Tessem M-B, Swanson MG, Keshari KR, Albers MJ, Joun D. 69.  et al. 2008. Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues. Magn. Reson. Med. 60:510–16 [Google Scholar]
  70. Coloff JL, Murphy JP, Braun CR, Harris IS, Shelton LM. 70.  et al. 2016. Differential glutamate metabolism in proliferating and quiescent mammary epithelial cells. Cell Metab 23:867–80 [Google Scholar]
  71. Li BS, Gu LJ, Luo CY, Li WS, Jiang LM. 71.  et al. 2006. The downregulation of asparagine synthetase expression can increase the sensitivity of cells resistant to l-asparaginase. Leukemia 20:2199–201 [Google Scholar]
  72. Samudio I, Konopleva M. 72.  2013. Asparaginase unveils glutamine-addicted AML. Blood 122:3398–400 [Google Scholar]
  73. Zhang J, Fan J, Venneti S, Cross JR, Takagi T. 73.  et al. 2014. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol. Cell 56:205–18 [Google Scholar]
  74. Jones ME. 74.  1985. Conversion of glutamate to ornithine and proline: pyrroline-5-carboxylate, a possible modulator of arginine requirements. J. Nutr. 115:509–15 [Google Scholar]
  75. Iwashita Y, Sakiyama T, Musch MW, Ropeleski MJ, Tsubouchi H, Chang EB. 75.  2011. Polyamines mediate glutamine-dependent induction of the intestinal epithelial heat shock response. Am. J. Physiol. Gastrointest. Liver Physiol. 301:G181–87 [Google Scholar]
  76. Wojcik M, Seidle HF, Bieganowski P, Brenner C. 76.  2006. NAD+ synthetase. How a two-domain, three-substrate enzyme avoids waste. J. Biol. Chem. 281:33395–402 [Google Scholar]
  77. Pizer ES, Wood FD, Heine HS, Romantsev FE, Pasternack GR, Kuhajda FP. 77.  1996. Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Res 56:1189–93 [Google Scholar]
  78. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J. 78.  et al. 2011. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380–84 [Google Scholar]
  79. Dang L, White DW, Gross S, Bennett BD, Bittinger MA. 79.  et al. 2009. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–44 [Google Scholar]
  80. Jiang L, Shestov AA, Swain P, Yang C, Parker SJ. 80.  et al. 2016. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532:255–58 [Google Scholar]
  81. Mullen AR, Wheaton WW, Jin ES, Chen P-H, Sullivan LB. 81.  et al. 2011. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481:385–88 [Google Scholar]
  82. Wise DR, Ward PS, Shay JES, Cross JR, Gruber JJ. 82.  et al. 2011. Hypoxia promotes isocitrate dehydrogenase–dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. PNAS 108:19611–16 [Google Scholar]
  83. Fendt S-M, Bell EL, Keibler MA, Olenchock BA, Mayers JR. 83.  et al. 2013. Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells. Nat. Commun. 4:2236 [Google Scholar]
  84. Mullen AR, Hu Z, Shi X, Jiang L, Boroughs LK. 84.  et al. 2014. Oxidation of α-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Rep 7:1679–90 [Google Scholar]
  85. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J. 85.  et al. 2010. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. PNAS 107:8788–93 [Google Scholar]
  86. Pfau SJ, Amon A. 86.  2012. Chromosomal instability and aneuploidy in cancer: from yeast to man. EMBO Rep 13:515–27 [Google Scholar]
  87. Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. 87.  2014. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510:298–302 [Google Scholar]
  88. Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC. 88.  et al. 2012. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:656–70 [Google Scholar]
  89. Martínez-Reyes I, Chandel NS. 89.  2014. Mitochondrial one-carbon metabolism maintains redox balance during hypoxia. Cancer Discov 4:1371–73 [Google Scholar]
  90. Cairns RA, Harris IS, Mak TW. 90.  2011. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11:85–95 [Google Scholar]
  91. Wallace DC. 91.  2012. Mitochondria and cancer. Nat. Rev. Cancer 12:685–98 [Google Scholar]
  92. Jeon S-M, Chandel NS, Hay N. 92.  2012. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485:661–65 [Google Scholar]
  93. Conrad M, Sato H. 93.  2012. The oxidative stress–inducible cystine/glutamate antiporter, system xc: cystine supplier and beyond. Amino Acids 42:231–46 [Google Scholar]
  94. Kim D-H, Sarbassov DD, Ali SM, King JE, Latek RR. 94.  et al. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–75 [Google Scholar]
  95. Kim J, Guan K-L. 95.  2011. Amino acid signaling in TOR activation. Annu. Rev. Biochem. 80:1001–32 [Google Scholar]
  96. Cohen A, Hall MN. 96.  2009. An amino acid shuffle activates mTORC1. Cell 136:399–400 [Google Scholar]
  97. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H. 97.  et al. 2009. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521–34 [Google Scholar]
  98. Carobbio S, Frigerio F, Rubi B, Vetterli L, Bloksgaard M. 98.  et al. 2009. Deletion of glutamate dehydrogenase in β-cells abolishes part of the insulin secretory response not required for glucose homeostasis. J. Biol. Chem. 284:921–29 [Google Scholar]
  99. Durán RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R. 99.  et al. 2012. Glutaminolysis activates Rag–mTORC1 signaling. Mol. Cell 47:349–58 [Google Scholar]
  100. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC. 100.  et al. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–501 [Google Scholar]
  101. Kim SG, Hoffman GR, Poulogiannis G, Buel GR, Jang YJ. 101.  et al. 2013. Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT–RUVBL1/2 complex. Mol. Cell 49:172–85 [Google Scholar]
  102. Fernandez-Marcos PJ, Serrano M. 102.  2013. Sirt4: the glutamine gatekeeper. Cancer Cell 23:427–28 [Google Scholar]
  103. Jeong SM, Xiao C, Finley LWS, Lahusen T, Souza AL. 103.  et al. 2013. Sirt4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 23:450–63 [Google Scholar]
  104. Shanware NP, Bray K, Eng CH, Wang F, Follettie M. 104.  et al. 2014. Glutamine deprivation stimulates mTOR-JNK-dependent chemokine secretion. Nat. Commun. 5:4900 [Google Scholar]
  105. Fumarola C, Zerbini A, Guidotti GG. 105.  2001. Glutamine deprivation–mediated cell shrinkage induces ligand-independent CD95 receptor signaling and apoptosis. Cell Death Differ 8:1004–13 [Google Scholar]
  106. Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. 106.  2007. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J. Cell Biol. 178:93–105 [Google Scholar]
  107. Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G. 107.  et al. 2013. Cisplatin induces a mitochondrial–ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLOS ONE 8:e81162 [Google Scholar]
  108. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I. 108.  et al. 2012. Molecular mechanisms of cisplatin resistance. Oncogene 31:1869–83 [Google Scholar]
  109. Rocha CRR, Garcia CCM, Vieira DB, Quinet A, de Andrade–Lima LC. 109.  et al. 2014. Glutathione depletion sensitizes cisplatin- and temozolomide-resistant glioma cells in vitro and in vivo. Cell Death Dis 5:e1505 [Google Scholar]
  110. Wang W, Kryczek I, Dostá L, Munkarah A, Liu JR. 110.  et al. 2016. Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell 165:1–14 [Google Scholar]
  111. Calorini L, Bianchini F. 111.  2010. Environmental control of invasiveness and metastatic dissemination of tumor cells: the role of tumor cell–host cell interactions. Cell Commun. Signal. 8:24 [Google Scholar]
  112. LeBleu VS, O'Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K. 112.  et al. 2014. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16:992–1003 [Google Scholar]
  113. Santidrian AF, Matsuno-Yagi A, Ritland M, Seo BB, LeBoeuf SE. 113.  et al. 2013. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J. Clin. Investig. 123:1068–81 [Google Scholar]
  114. Liu G, Zhu J, Yu M, Cai C, Zhou Y. 114.  et al. 2015. Glutamate dehydrogenase is a novel prognostic marker and predicts metastases in colorectal cancer patients. J. Transl. Med. 13:144 [Google Scholar]
  115. Parsons DW, Jones S, Zhang X, Lin JC-H, Leary RJ. 115.  et al. 2008. An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–12 [Google Scholar]
  116. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA. 116.  et al. 2009. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360:765–73 [Google Scholar]
  117. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD. 117.  et al. 2010. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–34 [Google Scholar]
  118. Xu W, Yang H, Liu Y, Yang Y, Wang P. 118.  et al. 2011. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30 [Google Scholar]
  119. Carey BW, Finley LWS, Cross JR, Allis CD, Thompson CB. 119.  2014. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518:413–16 [Google Scholar]
  120. Janeway KA, Kim SY, Lodish M, Nosé V, Rustin P. 120.  et al. 2011. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. PNAS 108:314–18 [Google Scholar]
  121. Xiao M, Yang H, Xu W, Ma S, Lin H. 121.  et al. 2012. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 26:1326–38 [Google Scholar]
  122. Intlekofer AM, Dematteo RG, Venneti S, Finley LWS, Lu C. 122.  et al. 2015. Hypoxia induces production of l-2-hydroxyglutarate. Cell Metab 22:304–11 [Google Scholar]
  123. Oldham WM, Clish CB, Yang Y, Loscalzo J. 123.  2015. Hypoxia-mediated increases in l-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab 22:291–303 [Google Scholar]
  124. Shi Y, Thrippleton MJ, Makin SD, Marshall I, Geerlings MI. 124.  et al. 2016. Cerebral blood flow in small vessel disease: a systematic review and meta-analysis. J. Cereb. Blood Flow Metab. 36:1653–67 [Google Scholar]
  125. Burgering BM, Coffer PJ. 125.  1995. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602 [Google Scholar]
  126. Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF. 126.  et al. 1998. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279:710–14 [Google Scholar]
  127. van der Vos KE, Eliasson P, Proikas-Cezanne T, Vervoort SJ, van Boxtel R. 127.  et al. 2012. Modulation of glutamine metabolism by the PI(3)K–PKB–FOXO network regulates autophagy. Nat. Cell Biol. 14:829–37 [Google Scholar]
  128. Bott AJ, Peng I-C, Fan Y, Faubert B, Zhao L. 128.  et al. 2015. Oncogenic Myc induces expression of glutamine synthetase through promoter demethylation. Cell Metab 22:1068–77 [Google Scholar]
  129. Kung H-N, Marks JR, Chi J-T. 129.  2011. Glutamine synthetase is a genetic determinant of cell type–specific glutamine independence in breast epithelia. PLOS Genet 7:e1002229 [Google Scholar]
  130. Meley D, Bauvy C, Houben-Weerts JHPM, Dubbelhuis PF, Helmond MTJ. 130.  et al. 2006. AMP-activated protein kinase and the regulation of autophagic proteolysis. J. Biol. Chem. 281:34870–79 [Google Scholar]
  131. White E. 131.  2015. The role for autophagy in cancer. J. Clin. Investig. 125:42–46 [Google Scholar]
  132. Levine B, Packer M, Codogno P. 132.  2015. Development of autophagy inducers in clinical medicine. J. Clin. Investig.12514–24 [Google Scholar]
  133. Strohecker AM, Guo JY, Karsli-Uzunbas G, Price SM, Chen GJ. 133.  et al. 2013. Autophagy sustains mitochondrial glutamine metabolism and growth of BRAFV600E-driven lung tumors. Cancer Discov 3:1272–85 [Google Scholar]
  134. Kamphorst JJ, Cross JR, Fan J, de Stanchina E, Mathew R. 134.  et al. 2013. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. PNAS 110:8882–87 [Google Scholar]
  135. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ. 135.  et al. 2013. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497:633–37 [Google Scholar]
  136. Zhao H, Yang L, Baddour J, Achreja A, Bernard V. 136.  et al. 2016. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife 5:e10250 [Google Scholar]
  137. Hanahan D, Coussens LM. 137.  2012. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–22 [Google Scholar]
  138. Martinez-Outschoorn UE, Lisanti MP, Sotgia F. 138.  2014. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin. Cancer Biol. 25:47–60 [Google Scholar]
  139. Lisanti MP, Martinez-Outschoorn UE, Sotgia F. 139.  2013. Oncogenes induce the cancer-associated fibroblast phenotype: Metabolic symbiosis and “fibroblast addiction” are new therapeutic targets for drug discovery. Cell Cycle 12:2723–32 [Google Scholar]
  140. Yang L, Achreja A, Yeung TL, Mangala LS, Jiang D. 140.  et al. 2016. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment–regulated cancer cell growth. Cell Metab 24:685–700 [Google Scholar]
  141. Kelloff GJ, Hoffman JM, Johnson B, Scher HI, Siegel BA. 141.  et al. 2005. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Res. 11:2785–808 [Google Scholar]
  142. Patronas NJ, Di Chiro G, Kufta C, Bairamian D, Kornblith PL. 142.  et al. 1985. Prediction of survival in glioma patients by means of positron emission tomography. J. Neurosurg. 62:816–22 [Google Scholar]
  143. Wang J-H, Chen W-L, Li J-M, Wu S-F, Chen T-L. 143.  et al. 2013. Prognostic significance of 2-hydroxyglutarate levels in acute myeloid leukemia in China. PNAS 110:17017–22 [Google Scholar]
  144. Lieberman BP, Ploessl K, Wang L, Qu W, Zha Z. 144.  et al. 2011. PET imaging of glutaminolysis in tumors by 18F-(2S,4R)4-fluoroglutamine. J. Nucl. Med. 52:1947–55 [Google Scholar]
  145. Qu W, Zha Z, Ploessl K, Lieberman BP, Zhu L. 145.  et al. 2011. Synthesis of optically pure 4-fluoro-glutamines as potential metabolic imaging agents for tumors. J. Am. Chem. Soc. 133:1122–33 [Google Scholar]
  146. Wu Z, Zha Z, Li G, Lieberman BP, Choi SR. 146.  et al. 2014. [18F](2S,4S)-4-(3-Fluoropropyl)glutamine as a tumor imaging agent. Mol. Pharm. 11:3852–66 [Google Scholar]
  147. Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P. 147.  et al. 2015. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci. Transl. Med. 7:274ra17 [Google Scholar]
  148. Ploessl K, Wang L, Lieberman BP, Qu W, Kung HF. 148.  2012. Comparative evaluation of 18F-labeled glutamic acid and glutamine as tumor metabolic imaging agents. J. Nucl. Med. 53:1616–24 [Google Scholar]
  149. Glunde K, Bhujwalla ZM. 149.  2011. Metabolic tumor imaging using magnetic resonance spectroscopy. Semin. Oncol. 38:26–41 [Google Scholar]
  150. Griffin JL, Shockcor JP. 150.  2004. Metabolic profiles of cancer cells. Nat. Rev. Cancer 4:551–61 [Google Scholar]
  151. Hertz L, Dringen R, Schousboe A, Robinson SR. 151.  1999. Astrocytes: glutamate producers for neurons. J. Neurosci. Res. 57:417–28 [Google Scholar]
  152. Chawla S, Oleaga L, Wang S, Krejza J, Wolf RL. 152.  et al. 2010. Role of proton magnetic resonance spectroscopy in differentiating oligodendrogliomas from astrocytomas. J. Neuroimaging 20:3–8 [Google Scholar]
  153. Chawla S, Wang S, Wolf RL, Woo JH, Wang J. 153.  et al. 2007. Arterial spin-labeling and MR spectroscopy in the differentiation of gliomas. Am. J. Neuroradiol. 28:1683–89 [Google Scholar]
  154. Majós C, Julià-Sapé M, Alonso J, Serrallonga M, Aguilera C. 154.  et al. 2004. Brain tumor classification by proton MR spectroscopy: comparison of diagnostic accuracy at short and long TE. Am. J. Neuroradiol. 25:1696–704 [Google Scholar]
  155. Wilson M, Gill SK, MacPherson L, English M, Arvanitis TN, Peet AC. 155.  2014. Noninvasive detection of glutamate predicts survival in pediatric medulloblastoma. Clin. Cancer Res. 20:4532–39 [Google Scholar]
  156. Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H. 156.  et al. 2015. A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34:189–201 [Google Scholar]
  157. Yuneva MO, Fan TWM, Allen TD, Higashi RM, Ferraris DV. 157.  et al. 2012. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 15:157–70 [Google Scholar]
  158. Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H. 158.  et al. 2012. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab 15:827–37 [Google Scholar]
  159. Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK. 159.  et al. 2014. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159:1603–14 [Google Scholar]
  160. Davidson SM, Papagiannakopoulos T, Olenchock BA, Heyman JE, Keibler MA. 160.  et al. 2016. Environment impacts the metabolic dependencies of Ras-driven non-small-cell lung cancer. Cell Metab 23:517–28 [Google Scholar]
  161. Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O. 161.  et al. 2015. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17:1556–68 [Google Scholar]
  162. Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PEZ, Harzstark AL. 162.  et al. 2013. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci. Transl. Med. 5:198ra108 [Google Scholar]
  163. Wilson DM, Kurhanewicz J. 163.  2014. Hyperpolarized 13C MR for molecular imaging of prostate cancer. J. Nucl. Med. 55:1567–72 [Google Scholar]
  164. Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L. 164.  et al. 2003. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. PNAS 100:10158–63 [Google Scholar]
  165. Gallagher FA, Kettunen MI, Day SE, Lerche M, Brindle KM. 165.  2008. 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn. Reson. Med. 60:253–57 [Google Scholar]
  166. Cabella C, Karlsson M, Canapè C, Catanzaro G, Colombo Serra S. 166.  et al. 2013. In vivo and in vitro liver cancer metabolism observed with hyperpolarized [5-13C]glutamine. J. Magn. Reson. 232:45–52 [Google Scholar]
  167. Barb AW, Hekmatyar SK, Glushka JN, Prestegard JH. 167.  2011. Exchange facilitated indirect detection of hyperpolarized 15ND2-amido-glutamine. J. Magn. Reson. 212:304–10 [Google Scholar]
  168. Hassanein M, Hoeksema MD, Shiota M, Qian J, Harris BK. 168.  et al. 2013. SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin. Cancer Res. 19:560–70 [Google Scholar]
  169. Hassanein M, Qian J, Hoeksema MD, Wang J, Jacobovitz M. 169.  et al. 2015. Targeting SLC1A5-mediated glutamine dependence in non-small-cell lung cancer. Int. J. Cancer 137:1587–97 [Google Scholar]
  170. Robinson MM, McBryant SJ, Tsukamoto T, Rojas C, Ferraris DV. 170.  et al. 2007. Novel mechanism of inhibition of rat kidney–type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem. J. 406:407–14 [Google Scholar]
  171. Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T. 171.  et al. 2014. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13:890–901 [Google Scholar]
  172. Wang J-B, Erickson JW, Fuji R, Ramachandran S, Gao P. 172.  et al. 2010. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18:207–19 [Google Scholar]
  173. Wilson KF, Erickson JW, Antonyak MA, Cerione RA. 173.  2013. Rho GTPases and their roles in cancer metabolism. Trends Mol. Med. 19:74–82 [Google Scholar]
  174. Li C, Allen A, Kwagh J, Doliba NM, Qin W. 174.  et al. 2006. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. J. Biol. Chem. 281:10214–21 [Google Scholar]
  175. Korangath P, Teo WW, Sadik H, Han L, Mori N. 175.  et al. 2015. Targeting glutamine metabolism in breast cancer with aminooxyacetate. Clin. Cancer Res.3263–73 [Google Scholar]
  176. Farber S, Diamond LK, Mercer RD, Sylvester RFJ, Wolff JA. 176.  1948. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). N. Engl. J. Med. 238:787–93 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error