The immune system is governed by an immensely complex network of cells and both intracellular and extracellular molecular factors. It must respond to an ever-growing number of biochemical and biophysical inputs by eliciting appropriate and specific responses in order to maintain homeostasis. But as with any complex system, a plethora of false positives and false negatives can occur to generate dysregulated responses. Dysregulated immune responses are essential components of diverse inflammation-driven pathologies, including cancer, heart disease, and autoimmune disorders. Nanoscale biomaterials (i.e., nanobiomaterials) have emerged as highly customizable platforms that can be engineered to interact with and direct immune responses, holding potential for the design of novel and targeted approaches to redirect or inhibit inflammation. Here, we present recent developments of nanobiomaterials that were rationally designed to target and modulate inflammatory cells and biochemical pathways for the treatment of immune dysregulation.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Dolati S, Sadreddini S, Rostamzadeh D, Ahmadi M, Jadidi-Niaragh F, Yousefi M. 1.  2016. Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomed. Pharmacother 8030–41 [Google Scholar]
  2. Matsumoto Y, Nichols JW, Toh K, Nomoto T, Cabral H. 2.  et al. 2016. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat. Nanotechnol. 11:533–38 [Google Scholar]
  3. Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. 3.  2015. Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev. 115:11109–46 [Google Scholar]
  4. Kreyling WG, Semmler-Behnke M, Chaudhry Q. 4.  2010. A complementary definition of nanomaterial. Nano Today 5:165–68 [Google Scholar]
  5. Klaessig F, Marrapese M, Abe S. 5.  2011. Current perspectives in nanotechnology terminology and nomenclature. Nanotechnology Standards V Murashov, J Howard 21–52 Berlin: Springer [Google Scholar]
  6. Buzea C, Pacheco II, Robbie K. 6.  2007. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:17–71 [Google Scholar]
  7. Angelova A, Angelov B, Mutafchieva R, Lesieur S. 7.  2015. Biocompatible mesoporous and soft nanoarchitectures. J. Inorg. Organomet. Polym. Mater. 25:214–32 [Google Scholar]
  8. Smith DM, Simon JK, Baker JR Jr.. 8.  2013. Applications of nanotechnology for immunology. Nat. Rev. Immunol. 13:592–605 [Google Scholar]
  9. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV. 9.  et al. 2009. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8:543–57 [Google Scholar]
  10. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. 10.  2008. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. PNAS 105:14265–70 [Google Scholar]
  11. Scott EA, Elbert DL. 11.  2007. Mass spectrometric mapping of fibrinogen conformations at poly(ethylene terephthalate) interfaces. Biomaterials 28:3904–17 [Google Scholar]
  12. Owens DE, Peppas NA. 12.  2006. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307:93–102 [Google Scholar]
  13. Haniffa M, Bigley V, Collin M. 13.  2015. Human mononuclear phagocyte system reunited. Semin. Cell Dev. Biol. 41:59–69 [Google Scholar]
  14. Takeuchi O, Akira S. 14.  2010. Pattern recognition receptors and inflammation. Cell 140:805–20 [Google Scholar]
  15. Hubbell JA, Thomas SN, Swartz MA. 15.  2009. Materials engineering for immunomodulation. Nature 462:449–60 [Google Scholar]
  16. Bobbala S, Hook S. 16.  2016. Is there an optimal formulation and delivery strategy for subunit vaccines?. Pharm. Res. 33:2078–97 [Google Scholar]
  17. Scott EA, Stano A, Gillard M, Maio-Liu AC, Swartz MA, Hubbell JA. 17.  2012. Dendritic cell activation and T cell priming with adjuvant- and antigen-loaded oxidation-sensitive polymersomes. Biomaterials 33:6211–19 [Google Scholar]
  18. Stano A, Scott EA, Dane KY, Swartz MA, Hubbell JA. 18.  2013. Tunable T cell immunity towards a protein antigen using polymersomes versus solid-core nanoparticles. Biomaterials 34:4339–46 [Google Scholar]
  19. Vasdekis AE, Scott EA, O'Neil CP, Psaltis D, Hubbell JA. 19.  2012. Precision intracellular delivery based on optofluidic polymersome rupture. ACS Nano 6:7850–57 [Google Scholar]
  20. Zhu J, Yamane H, Paul WE. 20.  2010. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28:445–89 [Google Scholar]
  21. Miller SD, Turley DM, Podojil JR. 21.  2007. Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nat. Rev. Immunol. 7:665–77 [Google Scholar]
  22. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. 22.  2008. Regulatory T cells and immune tolerance. Cell 133:775–87 [Google Scholar]
  23. Joyce JA, Fearon DT. 23.  2015. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348:74–80 [Google Scholar]
  24. Engblom C, Pfirschke C, Pittet MJ. 24.  2016. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 16:447–62 [Google Scholar]
  25. Firestein GS. 25.  2003. Evolving concepts of rheumatoid arthritis. Nature 423:356–61 [Google Scholar]
  26. Hsu P, Santner-Nanan B, Hu M, Skarratt K, Lee CH. 26.  et al. 2015. IL-10 potentiates differentiation of human induced regulatory T cells via STAT3 and Foxo1. J. Immunol. 195:3665–74 [Google Scholar]
  27. Saraiva M, O'Garra A. 27.  2010. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10:170–81 [Google Scholar]
  28. Roeleveld DM, Koenders MI. 28.  2015. The role of the Th17 cytokines IL-17 and IL-22 in rheumatoid arthritis pathogenesis and developments in cytokine immunotherapy. Cytokine 74:101–7 [Google Scholar]
  29. Drake CG, Jaffee E, Pardoll DM. 29.  2006. Mechanisms of immune evasion by tumors. Adv. Immunol. 90:51–81 [Google Scholar]
  30. North RJ. 30.  1982. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J. Exp. Med. 155:1063–74 [Google Scholar]
  31. Alderton GK. 31.  2014. Immunotherapy: Two hits are better than one. Nat. Rev. Cancer 14:451 [Google Scholar]
  32. Hanahan D, Weinberg RA. 32.  2011. Hallmarks of cancer: the next generation. Cell 144:646–74 [Google Scholar]
  33. Schäfer M, Werner S. 33.  2008. Cancer as an overhealing wound: an old hypothesis revisited. Nat. Rev. Mol. Cell Biol. 9:628–38 [Google Scholar]
  34. Heidland A, Klassen A, Rutkowski P, Bahner U. 34.  2006. The contribution of Rudolf Virchow to the concept of inflammation: What is still of importance?. J. Nephrol. 19:Suppl. 10S102–9 [Google Scholar]
  35. Amoozgar Z, Goldberg MS. 35.  2015. Targeting myeloid cells using nanoparticles to improve cancer immunotherapy. Adv. Drug Deliv. Rev. 91:38–51 [Google Scholar]
  36. Mantovani A, Allavena P, Sica A, Balkwill F. 36.  2008. Cancer-related inflammation. Nature 454:436–44 [Google Scholar]
  37. Kanasty R, Dorkin JR, Vegas A, Anderson D. 37.  2013. Delivery materials for siRNA therapeutics. Nat. Mater. 12:967–77 [Google Scholar]
  38. Xiao J, Duan X, Yin Q, Miao Z, Yu H. 38.  et al. 2013. The inhibition of metastasis and growth of breast cancer by blocking the NF-κB signaling pathway using bioreducible PEI-based/p65 shRNA complex nanoparticles. Biomaterials 34:5381–90 [Google Scholar]
  39. Yu H, Guo C, Feng B, Liu J, Chen X. 39.  et al. 2016. Triple-layered pH-responsive micelleplexes loaded with siRNA and cisplatin prodrug for NF-κB targeted treatment of metastatic breast cancer. Theranostics 6:14–27 [Google Scholar]
  40. Xu Z, Wang Y, Zhang L, Huang L. 40.  2014. Nanoparticle-delivered transforming growth factor β siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano 8:3636–45 [Google Scholar]
  41. Heo MB, Cho MY, Lim YT. 41.  2014. Polymer nanoparticles for enhanced immune response: combined delivery of tumor antigen and small interference RNA for immunosuppressive gene to dendritic cells. Acta Biomater 10:2169–76 [Google Scholar]
  42. Li SY, Liu Y, Xu CF, Shen S, Sun R. 42.  et al. 2016. Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation. J. Control. Release 231:17–28 [Google Scholar]
  43. Lu Y, Miao L, Wang Y, Xu Z, Zhao Y. 43.  et al. 2016. Curcumin micelles remodel tumor microenvironment and enhance vaccine activity in an advanced melanoma model. Mol. Ther. 24:364–74 [Google Scholar]
  44. Zhao Y, Huo M, Xu Z, Wang Y, Huang L. 44.  2015. Nanoparticle delivery of CDDO-Me remodels the tumor microenvironment and enhances vaccine therapy for melanoma. Biomaterials 68:54–66 [Google Scholar]
  45. Zhang X, Tian W, Cai X, Wang X, Dang W. 45.  et al. 2013. Hydrazinocurcumin encapsuled nanoparticles “re-educate” tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression. PLOS ONE 8:e65896 [Google Scholar]
  46. Zhang Y, Cui Z, Kong H, Xia K, Pan L. 46.  et al. 2016. One-shot immunomodulatory nanodiamond agents for cancer immunotherapy. Adv. Mater. 28:2699–708 [Google Scholar]
  47. Fadel TR, Sharp FA, Vudattu N, Ragheb R, Garyu J. 47.  et al. 2014. A carbon nanotube–polymer composite for T-cell therapy. Nat. Nano 9:639–47 [Google Scholar]
  48. Huang B, Abraham WD, Zheng Y, Bustamante López SC, Luo SS, Irvine DJ. 48.  2015. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci. Transl. Med. 7:291ra94 [Google Scholar]
  49. Jeanbart L, Kourtis IC, van der Vlies AJ, Swartz MA, Hubbell JA. 49.  2015. 6-Thioguanine-loaded polymeric micelles deplete myeloid-derived suppressor cells and enhance the efficacy of T cell immunotherapy in tumor-bearing mice. Cancer Immunol. Immun. 64:1033–46 [Google Scholar]
  50. Sasso MS, Lollo G, Pitorre M, Solito S, Pinton L. 50.  et al. 2016. Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid–derived suppressor cells and potentiate cancer immunotherapy. Biomaterials 96:47–62 [Google Scholar]
  51. He J, Duan SL, Yu X, Qian ZY, Zhou SF. 51.  et al. 2016. Folate-modified chitosan nanoparticles containing the IP-10 gene enhance melanoma-specific cytotoxic CD8+CD28+ T lymphocyte responses. Theranostics 6:752–61 [Google Scholar]
  52. Molinaro R, Corbo C, Martinez JO, Taraballi F, Evangelopoulos M. 52.  et al. 2016. Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat. Mater. 15:1037–46 [Google Scholar]
  53. Xin Q, Zhang H, Liu Q, Dong Z, Xiang H, Gong JR. 53.  2015. Extracellular biocoordinated zinc nanofibers inhibit malignant characteristics of cancer cell. Nano Lett 15:6490–93 [Google Scholar]
  54. 54. Scandinavian Simvastatin Survival Study Group 1994. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344:1383–89 [Google Scholar]
  55. Hansson GK. 55.  2005. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352:1685–95 [Google Scholar]
  56. Allen S, Liu YG, Scott E. 56.  2016. Engineering nanomaterials to address cell-mediated inflammation in atherosclerosis. Regen. Eng. Transl. Med. 2:37–50 [Google Scholar]
  57. Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdy P. 57.  et al. 2006. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12:178–80 [Google Scholar]
  58. Tabas I, Williams KJ, Boren J. 58.  2007. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116:1832–44 [Google Scholar]
  59. Cernuda-Morollon E, Ridley AJ. 59.  2006. Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells. Circ. Res. 98:757–67 [Google Scholar]
  60. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G. 60.  et al. 2010. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–61 [Google Scholar]
  61. Campbell JH, Campbell GR. 61.  1994. The role of smooth muscle cells in atherosclerosis. Curr. Opin. Lipidol. 5:323–30 [Google Scholar]
  62. Swirski FK, Libby P, Aikawa E, Alcaide P, Luscinskas FW. 62.  et al. 2007. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Investig. 117:195–205 [Google Scholar]
  63. Italiani P, Boraschi D. 63.  2014. From monocytes to M1/M2 macrophages: phenotypical versus functional differentiation. Front. Immunol. 5:514 [Google Scholar]
  64. Gautier EL, Huby T, Saint-Charles F, Ouzilleau B, Pirault J. 64.  et al. 2009. Conventional dendritic cells at the crossroads between immunity and cholesterol homeostasis in atherosclerosis. Circulation 119:2367–75 [Google Scholar]
  65. Bobryshev YV. 65.  2010. Dendritic cells and their role in atherogenesis. Lab. Investig. J. Tech. Methods Pathol. 90:970–84 [Google Scholar]
  66. Van de Broek B, Devoogdt N, D'Hollander A, Gijs HL, Jans K. 66.  et al. 2011. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano 5:4319–28 [Google Scholar]
  67. Cella M, Facchetti F, Lanzavecchia A, Colonna M. 67.  2000. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat. Immunol. 1:305–10 [Google Scholar]
  68. Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA. 68.  et al. 2001. Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194:863–69 [Google Scholar]
  69. Gotsman I, Grabie N, Gupta R, Dacosta R, MacConmara M. 69.  et al. 2006. Impaired regulatory T-cell response and enhanced atherosclerosis in the absence of inducible costimulatory molecule. Circulation 114:2047–55 [Google Scholar]
  70. Kzhyshkowska J, Neyen C, Gordon S. 70.  2012. Role of macrophage scavenger receptors in atherosclerosis. Immunobiology 217:492–502 [Google Scholar]
  71. Hansson GK, Hermansson A. 71.  2011. The immune system in atherosclerosis. Nat. Immunol. 12:204–12 [Google Scholar]
  72. Moore KJ, Sheedy FJ, Fisher EA. 72.  2013. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13:709–21 [Google Scholar]
  73. Tang J, Lobatto ME, Hassing L, van der Staay S, van Rijs SM. 73.  et al. 2015. Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation. Sci. Adv. 1:e1400223 [Google Scholar]
  74. Oh B, Lee CH. 74.  2015. Development of man-rGO for targeted eradication of macrophage ablation. Mol. Pharm. 12:3226–36 [Google Scholar]
  75. Peng Z, Qin J, Li B, Ye K, Zhang Y. 75.  et al. 2015. An effective approach to reduce inflammation and stenosis in carotid artery: polypyrrole nanoparticle–based photothermal therapy. Nanoscale 7:7682–91 [Google Scholar]
  76. Davignon J, Ganz P. 76.  2004. Role of endothelial dysfunction in atherosclerosis. Circulation 109:27–32 [Google Scholar]
  77. Sima AV, Stancu CS, Simionescu M. 77.  2009. Vascular endothelium in atherosclerosis. Cell Tissue Res 335:191–203 [Google Scholar]
  78. Xu H, Kona S, Su LC, Tsai YT, Dong JF. 78.  et al. 2013. Multi-ligand poly(l-lactic-co-glycolic acid) nanoparticles inhibit activation of endothelial cells. J. Cardiovasc. Transl. Res. 6:570–78 [Google Scholar]
  79. Kowalski PS, Zwiers PJ, Morselt HW, Kuldo JM, Leus NG. 79.  et al. 2014. Anti-VCAM-1 SAINT-O-somes enable endothelial-specific delivery of siRNA and downregulation of inflammatory genes in activated endothelium in vivo. J. Control. Release 176:64–75 [Google Scholar]
  80. Feil S, Fehrenbacher B, Lukowski R, Essmann F, Schulze-Osthoff K. 80.  et al. 2014. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ. Res. 115:662–67 [Google Scholar]
  81. Kim D, Lee D, Jang YL, Chae SY, Choi D. 81.  et al. 2012. Facial amphipathic deoxycholic acid–modified polyethyleneimine for efficient MMP-2 siRNA delivery in vascular smooth muscle cells. Eur. J. Pharm. Biopharm. 81:14–23 [Google Scholar]
  82. Yi S, Allen SD, Liu Y-G, Ouyang BZ, Li X. 82.  et al. 2016. Tailoring nanostructure morphology for enhanced targeting of dendritic cells in atherosclerosis. ACS Nano 10:11290–303 [Google Scholar]
  83. Park J, Gao W, Whiston R, Strom TB, Metcalfe S, Fahmy TM. 83.  2011. Modulation of CD4+ T lymphocyte lineage outcomes with targeted, nanoparticle-mediated cytokine delivery. Mol. Pharm. 8:143–52 [Google Scholar]
  84. Goossens P, Gijbels MJ, Zernecke A, Eijgelaar W, Vergouwe MN. 84.  et al. 2010. Myeloid type I interferon signaling promotes atherosclerosis by stimulating macrophage recruitment to lesions. Cell Metab 12:142–53 [Google Scholar]
  85. Getz GS, Vanderlaan PA, Reardon CA. 85.  2011. Natural killer T cells in lipoprotein metabolism and atherosclerosis. Thromb. Haemost. 106:814–19 [Google Scholar]
  86. Guillerey C, Mouries J, Polo G, Doyen N, Law HK. 86.  et al. 2012. Pivotal role of plasmacytoid dendritic cells in inflammation and NK-cell responses after TLR9 triggering in mice. Blood 120:90–99 [Google Scholar]
  87. Liu C, Lou Y, Lizee G, Qin H, Liu S. 87.  et al. 2008. Plasmacytoid dendritic cells induce NK cell–dependent, tumor antigen–specific T cell cross-priming and tumor regression in mice. J. Clin. Investig. 118:1165–75 [Google Scholar]
  88. Tupin E, Kinjo Y, Kronenberg M. 88.  2007. The unique role of natural killer T cells in the response to microorganisms. Nat. Rev. Microbiol. 5:405–17 [Google Scholar]
  89. Hotaling NA, Tang L, Irvine DJ, Babensee JE. 89.  2015. Biomaterial strategies for immunomodulation. Annu. Rev. Biomed. Eng 17317–49 [Google Scholar]
  90. Denis MC, Mahmood U, Benoist C, Mathis D, Weissleder R. 90.  2004. Imaging inflammation of the pancreatic islets in type 1 diabetes. PNAS 101:12634–39 [Google Scholar]
  91. Pickup JC. 91.  2012. Management of diabetes mellitus: Is the pump mightier than the pen?. Nat. Rev. Endocrinol. 8:425–33 [Google Scholar]
  92. Shapiro AMJ, Lakey JRT, Ryan EA, Korbutt GS, Toth E. 92.  et al. 2000. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343:230–38 [Google Scholar]
  93. Khosravi-Maharlooei M, Hajizadeh-Saffar E, Tahamtani Y, Basiri M, Montazeri L. 93.  et al. 2015. Therapy of endocrine disease. Islet transplantation for type 1 diabetes: so close and yet so far away. Eur. J. Endocrinol. 173:R165–83 [Google Scholar]
  94. Bayry J, Gautier J-F. 94.  2016. Regulatory T cell immunotherapy for type 1 diabetes: a step closer to success?. Cell Metab 23:231–33 [Google Scholar]
  95. Ganguly D, Haak S, Sisirak V, Reizis B. 95.  2013. The role of dendritic cells in autoimmunity. Nat. Rev. Immunol. 13:566–77 [Google Scholar]
  96. Han S, Donelan W, Wang H, Reeves W, Yang L-J. 96.  2013. Novel autoantigens in type 1 diabetes. Am. J. Transl. Res. 5:379–92 [Google Scholar]
  97. Yang J, Chow I-T, Sosinowski T, Torres-Chinn N, Greenbaum CJ. 97.  et al. 2014. Autoreactive T cells specific for insulin B:11–23 recognize a low-affinity peptide register in human subjects with autoimmune diabetes. PNAS 111:14840–45 [Google Scholar]
  98. Zhang L, Nakayama M, Eisenbarth GS. 98.  2008. Insulin as an autoantigen in NOD/human diabetes. Curr. Opin. Immunol. 20:111–18 [Google Scholar]
  99. Leconet W, Petit P, Peraldi-Roux S, Bresson D. 99.  2012. Nonviral delivery of small interfering RNA into pancreas-associated immune cells prevents autoimmune diabetes. Mol. Ther. 20:2315–25 [Google Scholar]
  100. Tsai S, Shameli A, Yamanouchi J, Clemente-Casares X, Wang J. 100.  et al. 2010. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity 32:568–80 [Google Scholar]
  101. Clemente-Casares X, Blanco J, Ambalavanan P, Yamanouchi J, Singha S. 101.  et al. 2016. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature 530:434–40 [Google Scholar]
  102. Yeste A, Takenaka MC, Mascanfroni ID, Nadeau M, Kenison JE. 102.  et al. 2016. Tolerogenic nanoparticles inhibit T cell–mediated autoimmunity through SOCS2. Sci. Signal. 9:ra61 [Google Scholar]
  103. Pujol-Autonell I, Serracant-Prat A, Cano-Sarabia M, Ampudia RM, Rodriguez-Fernandez S. 103.  et al. 2015. Use of autoantigen-loaded phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes. PLOS ONE 10:e0127057 [Google Scholar]
  104. Yoon YM, Lewis JS, Carstens MR, Campbell-Thompson M, Wasserfall CH. 104.  et al. 2015. A combination hydrogel microparticle–based vaccine prevents type 1 diabetes in non-obese diabetic mice. Sci. Rep. 5:13155 [Google Scholar]
  105. Bruni A, Gala-Lopez B, Pepper AR, Abualhassan NS, Shapiro A. 105.  2014. Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes Metab. Syndr. Obes. 7:211–23 [Google Scholar]
  106. Delong T, Wiles TA, Baker RL, Bradley B, Barbour G. 106.  et al. 2016. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 351:711–14 [Google Scholar]
  107. Culina S, Gupta N, Boisgard R, Afonso G. 107.  Gagnerault M-C. et al. 2015. Materno-fetal transfer of preproinsulin through the neonatal Fc receptor prevents autoimmune diabetes. Diabetes 64:3532–42 [Google Scholar]
  108. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS. 108.  et al. 2014. Defining the clinical course of multiple sclerosis. The 2013 revisions. Neurology 83:278–86 [Google Scholar]
  109. Marcos-Ramiro B, Nacarino PO, Serrano-Pertierra E, Blanco-Gelaz, Weksler BB. 109.  et al. 2014. Microparticles in multiple sclerosis and clinically isolated syndrome: effect on endothelial barrier function. BMC Neurosci 15:110 [Google Scholar]
  110. Haghikia A, Hohlfeld R, Gold R, Fugger L. 110.  2013. Therapies for multiple sclerosis: translational achievements and outstanding needs. Trends Mol. Med. 19:309–19 [Google Scholar]
  111. Lalive PH, Neuhaus O, Benkhoucha M, Burger D, Hohlfeld R. 111.  et al. 2011. Glatiramer acetate in the treatment of multiple sclerosis: emerging concepts regarding its mechanism of action. CNS Drugs 25:401–14 [Google Scholar]
  112. Tabansky I, Messina MD, Bangeranye C, Goldstein J, Blitz-Shabbir KM. 112.  et al. 2015. Advancing drug delivery systems for the treatment of multiple sclerosis. Immunol. Res. 63:58–69 [Google Scholar]
  113. Zhang X, Chen G, Wen L, Yang F, Al Shao. 113.  et al. 2013. Novel multiple agents loaded PLGA nanoparticles for brain delivery via inner ear administration: in vitro and in vivo evaluation. Eur. J. Pharm. Sci. 48:595–603 [Google Scholar]
  114. Calvo P, Gouritin B, Villarroya H, Eclancher F, Giannavola C. 114.  et al. 2002. Quantification and localization of PEGylated polycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in the rat. Eur. J. Neurosci. 15:1317–26 [Google Scholar]
  115. Chen Y, Liu L. 115.  2012. Modern methods for delivery of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev. 64:640–65 [Google Scholar]
  116. Liu L, Venkatraman SS, Yang YY, Guo K, Lu J. 116.  et al. 2008. Polymeric micelles anchored with TAT for delivery of antibiotics across the blood–brain barrier. Peptide Sci 90:617–23 [Google Scholar]
  117. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S. 117.  et al. 2011. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther. 19:1769–79 [Google Scholar]
  118. Latha TS, Lomada D, Dharani PK, Muthukonda SV, Reddy MC. 118.  2016. Ti–O based nanomaterials ameliorate experimental autoimmune encephalomyelitis and collagen-induced arthritis. RSC Adv 6:8870–80 [Google Scholar]
  119. Getts DR, Martin AJ, McCarthy DP, Terry RL, Hunter ZN. 119.  et al. 2012. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat. Biotechnol. 30:1217–24 [Google Scholar]
  120. Hunter Z, McCarthy DP, Yap WT, Harp CT, Getts DR. 120.  et al. 2014. A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS Nano 8:2148–60 [Google Scholar]
  121. Getts DR, Terry RL, Getts MT, Deffrasnes C, Müller M. 121.  et al. 2014. Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci. Transl. Med. 6:219ra7 [Google Scholar]
  122. Cappellano G, Woldetsadik AD, Orilieri E, Shivakumar Y, Rizzi M. 122.  et al. 2014. Subcutaneous inverse vaccination with PLGA particles loaded with a MOG peptide and IL-10 decreases the severity of experimental autoimmune encephalomyelitis. Vaccine 32:5681–89 [Google Scholar]
  123. Maldonado RA, LaMothe RA, Ferrari JD, Zhang A-H, Rossi RJ. 123.  et al. 2015. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. PNAS 112:e156–65 [Google Scholar]
  124. Meier FM, Frerix M, Hermann W, Müller-Ladner U. 124.  2013. Current immunotherapy in rheumatoid arthritis. Immunotherapy 5:955–74 [Google Scholar]
  125. Park JS, Yang HN, Jeon SY, Woo DG, Kim MS, Park K-H. 125.  2012. The use of anti-COX2 siRNA coated onto PLGA nanoparticles loading dexamethasone in the treatment of rheumatoid arthritis. Biomaterials 33:8600–12 [Google Scholar]
  126. Byeon HJ, Lee C, Lee S, Lee ES, Choi H-G. 126.  et al. 2016. Pharmaceutical potential of tacrolimus-loaded albumin nanoparticles having targetability to rheumatoid arthritis tissues. Int. J. Pharm. 497:268–76 [Google Scholar]
  127. Kim MJ, Park J-S, Lee SJ, Jang J, Park JS. 127.  et al. 2015. Notch1 targeting siRNA delivery nanoparticles for rheumatoid arthritis therapy. J. Control. Release 216:140–48 [Google Scholar]
  128. Heo R, Park J-S, Jang HJ, Kim S-H, Shin JM. 128.  et al. 2014. Hyaluronan nanoparticles bearing γ-secretase inhibitor: in vivo therapeutic effects on rheumatoid arthritis. J. Control. Release 192:295–300 [Google Scholar]
  129. Jain S, Tran T-H, Amiji M. 129.  2015. Macrophage repolarization with targeted alginate nanoparticles containing IL-10 plasmid DNA for the treatment of experimental arthritis. Biomaterials 61:162–77 [Google Scholar]
  130. Abraham C, Cho JH. 130.  2009. Inflammatory bowel disease. N. Engl. J. Med. 361:2066–78 [Google Scholar]
  131. Elson CO, Cong Y, McCracken VJ, Dimmitt RA, Lorenz RG, Weaver CT. 131.  2005. Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol. Rev. 206:260–76 [Google Scholar]
  132. De Souza HS, Fiocchi C. 132.  2015. Immunopathogenesis of IBD: current state of the art. Nat. Rev. Gastroenterol. Hepatol. 13:13–27 [Google Scholar]
  133. Sreedhar R, Arumugam S, Thandavarayan RA, Karuppagounder V, Watanabe K. 133.  2016. Curcumin as a therapeutic agent in the chemoprevention of inflammatory bowel disease. Drug Discov. Today 21:843–49 [Google Scholar]
  134. Viscido A, Capannolo A, Latella G, Caprilli R, Frieri G. 134.  2014. Nanotechnology in the treatment of inflammatory bowel diseases. J. Crohn's Colitis 8:903–18 [Google Scholar]
  135. Hua S, Marks E, Schneider JJ, Keely S. 135.  2015. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomed. Nanotechnol. Biol. Med 111117–32 [Google Scholar]
  136. Beloqui A, Coco R, Memvanga PB, Ucakar B, des Rieux A, Préat V. 136.  2014. pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. Int. J. Pharm. 473:203–12 [Google Scholar]
  137. Zhang M, Viennois E, Prasad M, Zhang Y, Wang L. 137.  et al. 2016. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 101:321–40 [Google Scholar]
  138. Sinha SR, Nguyen LP, Inayathullah M, Malkovskiy A, Habte F. 138.  et al. 2015. A thermo-sensitive delivery platform for topical administration of inflammatory bowel disease therapies. Gastroenterology 149:52–55 [Google Scholar]
  139. Huang Z, Gan J, Jia L, Guo G, Wang C. 139.  et al. 2015. An orally administrated nucleotide-delivery vehicle targeting colonic macrophages for the treatment of inflammatory bowel disease. Biomaterials 48:26–36 [Google Scholar]
  140. Li LY, Chen SF, Zheng J, Ratner BD, Jiang SY. 140.  2005. Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: the molecular basis for nonfouling behavior. J. Phys. Chem. B 109:2934–41 [Google Scholar]
  141. McPherson T, Kidane A, Szleifer I, Park K. 141.  1998. Prevention of protein adsorption by tethered poly(ethylene oxide) layers: experiments and single-chain mean-field analysis. Langmuir 14:176–86 [Google Scholar]
  142. Verhoef JJF, Carpenter JF, Anchordoquy TJ, Schellekens H. 142.  2014. Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics. Drug Discov. Today 19:1945–52 [Google Scholar]
  143. Lila ASA, Kiwada H, Ishida T. 143.  2013. The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J. Control. Release 172:38–47 [Google Scholar]
  144. Cao ZQ, Jiang SY. 144.  2012. Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles. Nano Today 7:404–13 [Google Scholar]
  145. Yang W, Liu SJ, Bai T, Keefe AJ, Zhang L. 145.  et al. 2014. Poly(carboxybetaine) nanomaterials enable long circulation and prevent polymer-specific antibody production. Nano Today 9:10–16 [Google Scholar]
  146. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M. 146.  et al. 2007. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2:249–55 [Google Scholar]
  147. Duan X, Li Y. 147.  2013. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9:1521–32 [Google Scholar]
  148. Rossman JS, Leser GP, Lamb RA. 148.  2012. Filamentous influenza virus enters cells via macropinocytosis. J. Virol. 86:10950–60 [Google Scholar]
  149. Gao H, Shi W, Freund LB. 149.  2005. Mechanics of receptor-mediated endocytosis. PNAS 102:9469–74 [Google Scholar]
  150. Nel AE, Madler L, Velegol D, Xia T, Hoek EM. 150.  et al. 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8:543–57 [Google Scholar]
  151. Brisse E, Wouters CH, Matthys P. 151.  2015. Hemophagocytic lymphohistiocytosis (HLH): a heterogeneous spectrum of cytokine-driven immune disorders. Cytokine Growth Factor Rev 26:263–80 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error