Recent research has demonstrated that tumor microenvironments play pivotal roles in tumor development and metastasis through various physical, chemical, and biological factors, including extracellular matrix (ECM) composition, matrix remodeling, oxygen tension, pH, cytokines, and matrix stiffness. An emerging trend in cancer research involves the creation of engineered three-dimensional tumor models using bioinspired hydrogels that accurately recapitulate the native tumor microenvironment. With recent advances in materials engineering, many researchers are developing engineered tumor models, which are promising platforms for the study of cancer biology and for screening of therapeutic agents for better clinical outcomes. In this review, we discuss the development and use of polymeric hydrogel materials to engineer native tumor ECMs for cancer research, focusing on emerging technologies in cancer engineering that aim to accelerate clinical outcomes.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1. NIH (Nat. Inst. Health) 2016. SEER Stat Fact Sheets: Cancer of Any Site Washington, DC: NIH http://seer.cancer.gov/statfacts/html/all.html
  2. Mullard A. 2.  2014. New drugs cost US$2.6 billion to develop. Nat. Rev. Drug Discov. 13:877 [Google Scholar]
  3. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. 3.  2014. Clinical development success rates for investigational drugs. Nat. Biotechnol. 32:40–51 [Google Scholar]
  4. Kantarjian HM, Fojo T, Mathisen M, Zwelling LA. 4.  2013. Cancer drugs in the United States: justum pretium—the just price. J. Clin. Oncol. 31:3600–4 [Google Scholar]
  5. Ahmed EM. 5.  2015. Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6:105–21 [Google Scholar]
  6. Zhu J, Marchant RE. 6.  2011. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devices 8607–26 [Google Scholar]
  7. Hanjaya-Putra D, Bose V, Shen Y-I, Yee J, Khetan S. 7.  et al. 2011. Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix. Blood 118:804–15 [Google Scholar]
  8. Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO. 8.  2011. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell. Proteom. 11:014647 [Google Scholar]
  9. Van der Rest M, Garrone R. 9.  1991. Collagen family of proteins. FASEB J 5:2814–23 [Google Scholar]
  10. Frantz C, Stewart KM, Weaver VM. 10.  2010. The extracellular matrix at a glance. J. Cell Sci. 123:4195–200 [Google Scholar]
  11. Rozario T, DeSimone DW. 11.  2010. The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Biol. 341:126–40 [Google Scholar]
  12. Robins S. 12.  2007. Biochemistry and functional significance of collagen cross-linking. Biochem. Soc. Trans. 35:849–52 [Google Scholar]
  13. Pankov R, Yamada KM. 13.  2002. Fibronectin at a glance. J. Cell Sci. 115:3861–63 [Google Scholar]
  14. Ioachim E, Charchanti A, Briasoulis E, Karavasilis V, Tsanou H. 14.  et al. 2002. Immunohistochemical expression of extracellular matrix components tenascin, fibronectin, collagen type IV and laminin in breast cancer: their prognostic value and role in tumour invasion and progression. Eur. J. Cancer 38:2362–70 [Google Scholar]
  15. Albrechtsen R, Nielsen M, Wewer U, Engvall E, Ruoslahti E. 15.  1981. Basement membrane changes in breast cancer detected by immunohistochemical staining for laminin. Cancer Res 41:5076–81 [Google Scholar]
  16. Nielsen M, Christensen L, Albrechtsen R. 16.  1983. The basement membrane component laminin in breast carcinomas and axillary lymph node metastases. Acta Pathol. Microbiol. Scand. A 91:257–64 [Google Scholar]
  17. Brown E, McKee T, diTomaso E, Pluen A, Seed B. 17.  et al. 2003. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat. Med. 9:796–800 [Google Scholar]
  18. Gibb L, Matthews D. 18.  2006. Two photon microscopy and second harmonic generation Unpubl. ms. https://pdfs.semanticscholar.org/e189/a6d5eb6b7e92154dfdd6746508801253872f.pdf
  19. Kalluri R, Zeisberg M. 19.  2006. Fibroblasts in cancer. Nat. Rev. Cancer 6:392–401 [Google Scholar]
  20. Rodemann HP, Müller GA. 20.  1991. Characterization of human renal fibroblasts in health and disease. II. In vitro growth, differentiation, and collagen synthesis of fibroblasts from kidneys with interstitial fibrosis. Am. J. Kidney Dis. 17:684–86 [Google Scholar]
  21. Chang HY, Chi J-T, Dudoit S, Bondre C, van de Rijn M. 21.  et al. 2002. Diversity, topographic differentiation, and positional memory in human fibroblasts. PNAS 99:12877–82 [Google Scholar]
  22. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. 22.  2002. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3:349–63 [Google Scholar]
  23. Sieweke MH, Thompson NL, Sporn MB, Bissell MJ. 23.  1990. Mediation of wound-related Rous sarcoma virus tumorigenesis by TGF-β.. Science 248:1656–60 [Google Scholar]
  24. Page-McCaw A, Ewald AJ, Werb Z. 24.  2007. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 8:221–33 [Google Scholar]
  25. Cawston TE, Young DA. 25.  2010. Proteinases involved in matrix turnover during cartilage and bone breakdown. Cell Tissue Res 339:221–35 [Google Scholar]
  26. Nagase H, Visse R, Murphy G. 26.  2006. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 69:562–73 [Google Scholar]
  27. Pei D, Kang T, Qi H. 27.  2000. Cysteine array matrix metalloproteinase (CA-MMP)/MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. J. Biol. Chem. 275:33988–97 [Google Scholar]
  28. Seiki M. 28.  1999. Membrane‐type matrix metalloproteinases. Acta Pathol. Microbiol. Immunol. Scand. 107:137–43 [Google Scholar]
  29. Nagase H, Woessner JF Jr. 29.  1999. Matrix metalloproteinases. J. Biol. Chem. 274:21491–94 [Google Scholar]
  30. Nabeshima K, Inoue T, Shimao Y, Sameshima T. 30.  2002. Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol. Int. 52:255–64 [Google Scholar]
  31. Apte SS. 31.  2009. A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms. J. Biol. Chem. 284:31493–97 [Google Scholar]
  32. Lu P, Takai K, Weaver VM, Werb Z. 32.  2011. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3:a005058 [Google Scholar]
  33. Erler JT, Bennewith KL, Nicolau M, Dornhöfer N, Kong C. 33.  et al. 2006. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–26 [Google Scholar]
  34. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI. 34.  et al. 2005. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–54 [Google Scholar]
  35. Baker A, Bird D, Lang G, Cox TR, Erler J. 35.  2013. Lysyl oxidase enzymatic function increases stiffness to drive colorectal cancer progression through FAK. Oncogene 32:1863–68 [Google Scholar]
  36. Bonnans C, Chou J, Werb Z. 36.  2014. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15:786–801 [Google Scholar]
  37. Rautavuoma K, Takaluoma K, Passoja K, Pirskanen A, Kvist A-P. 37.  et al. 2002. Characterization of three fragments that constitute the monomers of the human lysyl hydroxylase isoenzymes 1–3: The 30-kDa N-terminal fragment is not required for lysyl hydroxylase activity. J. Biol. Chem. 277:23084–91 [Google Scholar]
  38. Hyry M, Lantto J, Myllyharju J. 38.  2009. Missense mutations that cause Bruck syndrome affect enzymatic activity, folding, and oligomerization of lysyl hydroxylase 2. J. Biol. Chem. 284:30917–24 [Google Scholar]
  39. Pirskanen A, Kaimio A-M, Myllylä R, Kivirikko KI. 39.  1996. Site-directed mutagenesis of human lysyl hydroxylase expressed in insect cells: identification of histidine residues and an aspartic acid residue critical for catalytic activity. J. Biol. Chem. 271:9398–402 [Google Scholar]
  40. Eisinger-Mathason TK, Zhang M, Qiu Q, Skuli N, Nakazawa MS. 40.  et al. 2013. Hypoxia-dependent modification of collagen networks promotes sarcoma metastasis. Cancer Discov 3:1190–205 [Google Scholar]
  41. Gilkes DM, Bajpai S, Wong CC, Chaturvedi P, Hubbi ME. 41.  et al. 2013. Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol. Cancer Res. 11:456–66 [Google Scholar]
  42. Lewis DM, Park KM, Tang V, Xu Y, Pak K. 42.  et al. 2016. Intratumoral oxygen gradients mediate sarcoma cell invasion. PNAS 113:9292–97 [Google Scholar]
  43. Damaghi M, Wojtkowiak JW, Gillies RJ. 43.  2013. pH sensing and regulation in cancer. Front. Physiol. 4:370 [Google Scholar]
  44. Datta M, Via LE, Kamoun WS, Liu C, Chen W. 44.  et al. 2015. Anti–vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. PNAS 112:1827–32 [Google Scholar]
  45. Bertout JA, Patel SA, Simon MC. 45.  2008. The impact of O2 availability on human cancer. Nat. Rev. Cancer 8:967–75 [Google Scholar]
  46. Policastro LL, Ibáñez IL, Notcovich C, Duran HA, Podhajcer OL. 46.  2013. The tumor microenvironment: characterization, redox considerations, and novel approaches for reactive oxygen species–targeted gene therapy. Antioxid. Redox Signal. 19:854–95 [Google Scholar]
  47. Blumenson LE, Bross I. 47.  1976. A possible mechanism for enhancement of increased production of tumor angiogenic factor. Growth 40:205–9 [Google Scholar]
  48. Young S, Marshall R, Hill R. 48.  1988. Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. PNAS 85:9533–37 [Google Scholar]
  49. van den Brenk HAS, Moore V, Sharpington C, Orton C. 49.  1972. Production of metastases by a primary tumour irradiated under aerobic and anaerobic conditions in vivo. Br. J. Cancer 26:402–12 [Google Scholar]
  50. Young S, Hill R. 50.  1990. Effects of reoxygenation on cells from hypoxic regions of solid tumors: analysis of transplanted murine tumors for evidence of DNA overreplication. Cancer Res 50:5031–38 [Google Scholar]
  51. Heacock C, Sutherland R. 51.  1990. Enhanced synthesis of stress proteins caused by hypoxia and relation to altered cell growth and metabolism. Br. J. Cancer 62:217–25 [Google Scholar]
  52. Wang GL, Jiang BH, Rue EA, Semenza GL. 52.  1995. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. PNAS 92:5510–14 [Google Scholar]
  53. Jiang B-H, Semenza GL, Bauer C, Marti HH. 53.  1996. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. Cell Physiol. 271:C1172–80 [Google Scholar]
  54. Tian H, McKnight SL, Russell DW. 54.  1997. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11:72–82 [Google Scholar]
  55. Jain S, Maltepe E, Lu MM, Simon C, Bradfield CA. 55.  1998. Expression of ARNT, ARNT2, HIF1α, HIF2α and Ah receptor mRNAs in the developing mouse. Mech. Dev. 73:117–23 [Google Scholar]
  56. Wiesener MS, Jürgensen JS, Rosenberger C, Scholze CK, Hörstrup JH. 56.  et al. 2003. Widespread hypoxia-inducible expression of HIF-2α in distinct cell populations of different organs. FASEB J 17:271–73 [Google Scholar]
  57. Gilkes DM, Semenza GL. 57.  2013. Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol 9:1623–36 [Google Scholar]
  58. Brown JM, Wilson WR. 58.  2004. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 4:437–47 [Google Scholar]
  59. Eales K, Hollinshead K, Tennant D. 59.  2016. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis 5:e190 [Google Scholar]
  60. Cairns RA, Harris IS, Mak TW. 60.  2011. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11:85–95 [Google Scholar]
  61. Boyd NF, Lockwood GA, Byng JW, Tritchler DL, Yaffe MJ. 61.  1998. Mammographic densities and breast cancer risk. Cancer Epidemiol. Biomark. Prev. 7:1133–44 [Google Scholar]
  62. Pathak A, Kumar S. 62.  2012. Independent regulation of tumor cell migration by matrix stiffness and confinement. PNAS 109:10334–39 [Google Scholar]
  63. Wong S, Guo W-H, Wang Y-L. 63.  2014. Fibroblasts probe substrate rigidity with filopodia extensions before occupying an area. PNAS 111:17176–81 [Google Scholar]
  64. Haeger A, Krause M, Wolf K, Friedl P. 64.  2014. Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim. Biophys. Acta 1840:2386–95 [Google Scholar]
  65. Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH. 65.  et al. 2015. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1–G3BP2 mechanotransduction pathway. Nat. Cell. Biol. 17:678–88 [Google Scholar]
  66. Polet F, Feron O. 66.  2013. Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force. J. Intern. Med. 273:156–65 [Google Scholar]
  67. Carmeliet P, Jain RK. 67.  2000. Angiogenesis in cancer and other diseases. Nature 407:249–57 [Google Scholar]
  68. Carmeliet P. 68.  2005. Angiogenesis in life, disease and medicine. Nature 438:932–36 [Google Scholar]
  69. Jain RK. 69.  2005. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62 [Google Scholar]
  70. Weis SM, Cheresh DA. 70.  2011. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med. 17:1359–70 [Google Scholar]
  71. Dvorak HF, Brown LF, Detmar M, Dvorak AM. 71.  1995. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 146:1029–39 [Google Scholar]
  72. Siemann DW. 72.  2011. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor–vascular disrupting agents. Cancer Treat. Rev. 37:63–74 [Google Scholar]
  73. Dudley AC. 73.  2012. Tumor endothelial cells. Cold Spring Harb. Perspect. Med. 2:a006536 [Google Scholar]
  74. Vong S, Kalluri R. 74.  2011. The role of stromal myofibroblast and extracellular matrix in tumor angiogenesis. Genes Cancer 2:1139–45 [Google Scholar]
  75. Lai ES, Huang NF, Cooke JP, Fuller GG. 75.  2012. Aligned nanofibrillar collagen regulates endothelial organization and migration. Regen. Med. 7:649–61 [Google Scholar]
  76. Hielscher AC, Gerecht S. 76.  2012. Engineering approaches for investigating tumor angiogenesis: exploiting the role of the extracellular matrix. Cancer Res 72:6089–96 [Google Scholar]
  77. Stamati K, Priestley JV, Mudera V, Cheema U. 77.  2014. Laminin promotes vascular network formation in 3D in vitro collagen scaffolds by regulating VEGF uptake. Exp. Cell Res. 327:68–77 [Google Scholar]
  78. Kelley LC, Lohmer LL, Hagedorn EJ, Sherwood DR. 78.  2014. Traversing the basement membrane in vivo: a diversity of strategies. J. Cell Biol. 204:291–302 [Google Scholar]
  79. Hughes CS, Postovit LM, Lajoie GA. 79.  2010. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10:1886–90 [Google Scholar]
  80. García-Caballero M, Poveda BM, Medina , Quesada AR. 80.  2016. Targeting tumor angiogenesis for cancer prevention. Molecular Targets and Strategies in Cancer Prevention M Chatterjee 117–49 Berlin: Springer [Google Scholar]
  81. Heist RS, Duda DG, Sahani DV, Ancukiewicz M, Fidias P. 81.  et al. 2015. Improved tumor vascularization after anti-VEGF therapy with carboplatin and nab-paclitaxel associates with survival in lung cancer. PNAS 112:1547–52 [Google Scholar]
  82. Sullivan R, Paré GC, Frederiksen LJ, Semenza GL, Graham CH. 82.  2008. Hypoxia-induced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor 1 activity. Mol. Cancer Ther. 7:1961–73 [Google Scholar]
  83. Rosales AM, Anseth KS. 83.  2016. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 1:15012 [Google Scholar]
  84. Guvendiren M, Burdick JA. 84.  2013. Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr. Opin. Biotechnol. 24:841–46 [Google Scholar]
  85. Rice JJ, Martino MM, De Laporte L, Tortelli F, Briquez PS, Hubbell JA. 85.  2013. Engineering the regenerative microenvironment with biomaterials. Adv. Healthc. Mater. 2:57–71 [Google Scholar]
  86. Park KM, Blatchley MR, Gerecht S. 86.  2014. The design of dextran-based hypoxia-inducible hydrogels via in situ oxygen-consuming reaction. Macromol. Rapid Commun. 35:1968–75 [Google Scholar]
  87. Park KM, Gerecht S. 87.  2014. Hypoxia-inducible hydrogels. Nat. Commun. 5:4075 [Google Scholar]
  88. Shinde UP, Yeon B, Jeong B. 88.  2013. Recent progress of in situ formed gels for biomedical applications. Prog. Polym. Sci. 38:672–701 [Google Scholar]
  89. Place ES, Evans ND, Stevens MM. 89.  2009. Complexity in biomaterials for tissue engineering. Nat. Mater. 8:457–70 [Google Scholar]
  90. Leitinger B, Hohenester E. 90.  2007. Mammalian collagen receptors. Matrix Biol 26:146–55 [Google Scholar]
  91. Kadler KE, Baldock C, Bella J, Boot-Handford RP. 91.  2007. Collagens at a glance. J. Cell Sci. 120:1955–58 [Google Scholar]
  92. Girton T, Oegema T, Grassl E, Isenberg B, Tranquillo R. 92.  2000. Mechanisms of stiffening and strengthening in media-equivalents fabricated using glycation. J. Biomech. Eng. 122:216–23 [Google Scholar]
  93. Orban JM, Wilson LB, Kofroth JA, El‐Kurdi MS, Maul TM, Vorp DA. 93.  2004. Crosslinking of collagen gels by transglutaminase. J. Biomed. Mater. Res. A 68756–62 [Google Scholar]
  94. Zhang X, Chen X, Yang T, Zhang N, Dong L. 94.  et al. 2014. The effects of different crossing-linking conditions of genipin on type I collagen scaffolds: an in vitro evaluation. Cell Tissue Bank 15:531–41 [Google Scholar]
  95. Liang Y, Jeong J, DeVolder RJ, Cha C, Wang F. 95.  et al. 2011. A cell-instructive hydrogel to regulate malignancy of 3D tumor spheroids with matrix rigidity. Biomaterials 32:9308–15 [Google Scholar]
  96. Ahmed TA, Dare EV, Hincke M. 96.  2008. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. B 14:199–215 [Google Scholar]
  97. Blombäck B. 97.  1996. Fibrinogen and fibrin proteins with complex roles in hemostasis and thrombosis. Thromb. Res. 83:1–75 [Google Scholar]
  98. Fuss C, Palmaz JC, Sprague EA. 98.  2001. Fibrinogen: structure, function, and surface interactions. J. Vasc. Interv. Radiol. 12:677–82 [Google Scholar]
  99. Hogg PJ, Jackson CM. 99.  1989. Fibrin monomer protects thrombin from inactivation by heparin–antithrombin. III. Implications for heparin efficacy. PNAS 86:3619–23 [Google Scholar]
  100. Del Bufalo F, Manzo T, Hoyos V, Yagyu S, Caruana I. 100.  et al. 2016. 3D modeling of human cancer: a PEG–fibrin hydrogel system to study the role of tumor microenvironment and recapitulate the in vivo effect of oncolytic adenovirus. Biomaterials 84:76–85 [Google Scholar]
  101. Hern DL, Hubbell JA. 101.  1998. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res 39266–76 [Google Scholar]
  102. Yang C, Tibbitt MW, Basta L, Anseth KS. 102.  2014. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13:645–52 [Google Scholar]
  103. Lutolf M, Hubbell J. 103.  2003. Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 4:713–22 [Google Scholar]
  104. Darling NJ, Hung Y-S, Sharma S, Segura T, Darling N. 104.  2016. Controlling the kinetics of thiol-maleimide Michael-type addition gelation kinetics for the generation of homogenous poly(ethylene glycol) hydrogels. Biomaterials 101:199–206 [Google Scholar]
  105. Rowley JA, Madlambayan G, Mooney DJ. 105.  1999. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53 [Google Scholar]
  106. Augst AD, Kong HJ, Mooney DJ. 106.  2006. Alginate hydrogels as biomaterials. Macromol. Biosci. 6:623–33 [Google Scholar]
  107. Lee K, Silva EA, Mooney DJ. 107.  2011. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J. R. Soc. Interface 8:153–70 [Google Scholar]
  108. Dhoot NO, Tobias CA, Fischer I, Wheatley MA. 108.  2004. Peptide‐modified alginate surfaces as a growth permissive substrate for neurite outgrowth. J. Biomed. Mater. Res. A 71191–200 [Google Scholar]
  109. Hou J, Li C, Guan Y, Zhang Y, Zhu X. 109.  2015. Enzymatically crosslinked alginate hydrogels with improved adhesion properties. Polym. Chem. 6:2204–13 [Google Scholar]
  110. Sun J-Y, Zhao X, Illeperuma WR, Chaudhuri O, Oh KH. 110.  et al. 2012. Highly stretchable and tough hydrogels. Nature 489:133–36 [Google Scholar]
  111. Klotz BJ, Gawlitta D, Rosenberg AJ, Malda J, Melchels FP. 111.  2016. Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol 34:394–407 [Google Scholar]
  112. Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G. 112.  2002. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit. Rev. Biochem. Mol. Biol. 37:375–536 [Google Scholar]
  113. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. 113.  2010. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–44 [Google Scholar]
  114. Colosi C, Shin SR, Manoharan V, Massa S, Costantini M. 114.  et al. 2015. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low‐viscosity bioink. Adv. Mater. 28:677–84 [Google Scholar]
  115. Yue K, Trujillo–de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. 115.  2015. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254–71 [Google Scholar]
  116. Highley CB, Prestwich GD, Burdick JA. 116.  2016. Recent advances in hyaluronic acid hydrogels for biomedical applications. Curr. Opin. Biotechnol. 40:35–40 [Google Scholar]
  117. Allison DD, Grande-Allen KJ. 117.  2006. Hyaluronan: a powerful tissue engineering tool. Tissue Eng 12:2131–40 [Google Scholar]
  118. Turley EA, Noble PW, Bourguignon LY. 118.  2002. Signaling properties of hyaluronan receptors. J. Biol. Chem. 277:4589–92 [Google Scholar]
  119. Rodell CB, Kaminski AL, Burdick JA. 119.  2013. Rational design of network properties in guest–host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules 14:4125–34 [Google Scholar]
  120. Khetan S, Guvendiren M, Legant WR, Cohen DM, Chen CS, Burdick JA. 120.  2013. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12:458–65 [Google Scholar]
  121. Kusuma S, Shen Y-I, Hanjaya-Putra D, Mali P, Cheng L, Gerecht S. 121.  2013. Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. PNAS 110:12601–6 [Google Scholar]
  122. Hanahan D, Weinberg RA. 122.  2011. Hallmarks of cancer: the next generation. Cell 144:646–74 [Google Scholar]
  123. Gu L, Mooney DJ. 123.  2016. Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nat. Rev. Cancer 16:56–66 [Google Scholar]
  124. Zaman MH. 124.  2013. The role of engineering approaches in analysing cancer invasion and metastasis. Nat. Rev. Cancer 13:596–603 [Google Scholar]
  125. Roudsari LC, West JL. 125.  2016. Studying the influence of angiogenesis in in vitro cancer model systems. Adv. Drug Deliv. Rev. 97:250–59 [Google Scholar]
  126. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD. 126.  et al. 2014. Cancer treatment and survivorship statistics, 2014. Cancer J. Clin. 64:252–71 [Google Scholar]
  127. Taubenberger AV. 127.  2014. In vitro microenvironments to study breast cancer bone colonisation. Adv. Drug Deliv. Rev. 79:135–44 [Google Scholar]
  128. Charoen KM, Fallica B, Colson YL, Zaman MH, Grinstaff MW. 128.  2014. Embedded multicellular spheroids as a biomimetic 3D cancer model for evaluating drug and drug–device combinations. Biomaterials 35:2264–71 [Google Scholar]
  129. Fisher SA, Anandakumaran PN, Owen SC, Shoichet MS. 129.  2015. Tuning the microenvironment: Click‐crosslinked hyaluronic acid-‐based hydrogels provide a platform for studying breast cancer cell invasion. Adv. Funct. Mater. 25:7163–72 [Google Scholar]
  130. Taylor BS, Barretina J, Maki RG, Antonescu CR, Singer S, Ladanyi M. 130.  2011. Advances in sarcoma genomics and new therapeutic targets. Nat. Rev. Cancer 11:541–57 [Google Scholar]
  131. Singh SP, Schwartz MP, Lee JY, Fairbanks BD, Anseth KS. 131.  2014. A peptide functionalized poly(ethylene glycol) (PEG) hydrogel for investigating the influence of biochemical and biophysical matrix properties on tumor cell migration. Biomater. Sci. 2:1024–34 [Google Scholar]
  132. Lewis DM, Park KM, Tang V, Xu Y, Pak K. 132.  et al. 2016. Intratumoral oxygen gradients mediate sarcoma cell invasion. PNAS 113:9292–97 [Google Scholar]
  133. Agnihotri S, Burrell KE, Wolf A, Jalali S, Hawkins C. 133.  et al. 2013. Glioblastoma: a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch. Immunol. Ther. Exp. 61:25–41 [Google Scholar]
  134. Rape A, Ananthanarayanan B, Kumar S. 134.  2014. Engineering strategies to mimic the glioblastoma microenvironment. Adv. Drug Deliv. Rev. 79:172–83 [Google Scholar]
  135. Wang C, Tong X, Yang F. 135.  2014. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Mol. Pharm. 11:2115–25 [Google Scholar]
  136. Siegel R, Naishadham D, Jemal A. 136.  2013. Cancer statistics, 2013. Cancer J. Clin. 63:11–30 [Google Scholar]
  137. Loessner D, Holzapfel BM, Clements JA. 137.  2014. Engineered microenvironments provide new insights into ovarian and prostate cancer progression and drug responses. Adv. Drug Deliv. Rev. 79:193–213 [Google Scholar]
  138. Fong EL, Martinez M, Yang J, Mikos AG, Navone NM. 138.  et al. 2014. Hydrogel-based 3D model of patient-derived prostate xenograft tumors suitable for drug screening. Mol. Pharmacol. 11:2040–50 [Google Scholar]
  139. Siegel RL, Miller KD, Jemal A. 139.  2015. Cancer statistics, 2015. Cancer J. Clin 65:5–29 [Google Scholar]
  140. Kaemmerer E, Melchels FP, Holzapfel BM, Meckel T, Hutmacher DW, Loessner D. 140.  2014. Gelatine methacrylamide–based hydrogels: an alternative three-dimensional cancer cell culture system. Acta Biomater 10:2551–62 [Google Scholar]
  141. Asghar W, El Assal R, Shafiee H, Pitteri S, Paulmurugan R, Demirci U. 141.  2015. Engineering cancer microenvironments for in vitro 3-D tumor models. Mater. Today 18:539–53 [Google Scholar]
  142. Wang L, Li Y, Huang G, Zhang X, Pingguan-Murphy B. 142.  et al. 2016. Hydrogel-based methods for engineering cellular microenvironment with spatiotemporal gradients. Crit. Rev. Biotechnol. 36:553–65 [Google Scholar]
  143. Shen Y-I, Abaci HE, Krupski Y, Weng L-C, Burdick JA, Gerecht S. 143.  2014. Hyaluronic acid hydrogel stiffness and oxygen tension affect cancer cell fate and endothelial sprouting. Biomater. Sci. 2:655–65 [Google Scholar]
  144. van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T. 144.  2015. Microfluidic 3D cell culture: from tools to tissue models. Curr. Opin. Biotechnol. 35:118–26 [Google Scholar]
  145. Sung KE, Beebe DJ. 145.  2014. Microfluidic 3D models of cancer. Adv. Drug Deliv. Rev. 79:68–78 [Google Scholar]
  146. Jeon JS, Zervantonakis IK, Chung S, Kamm RD, Charest JL. 146.  2013. In vitro model of tumor cell extravasation. PLOS ONE 8:e56910 [Google Scholar]
  147. Knowlton S, Onal S, Yu CH, Zhao JJ, Tasoglu S. 147.  2015. Bioprinting for cancer research. Trends Biotechnol 33:504–13 [Google Scholar]
  148. Zhao Y, Yao R, Ouyang L, Ding H, Zhang T. 148.  et al. 2014. Three-dimensional printing of HeLa cells for cervical tumor model in vitro. Biofabrication 6:035001 [Google Scholar]
  149. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. 149.  2010. Reconstituting organ-level lung functions on a chip. Science 328:1662–68 [Google Scholar]
  150. Dickinson LE, Lütgebaucks C, Lewis DM, Gerecht S. 150.  2012. Patterning microscale extracellular matrices to study endothelial and cancer cell interactions in vitro. Lab Chip 12:4244–48 [Google Scholar]
  151. Highley CB, Rodell CB, Burdick JA. 151.  2015. Direct 3D printing of shear‐thinning hydrogels into self‐healing hydrogels. Adv. Mater. 27:5075–79 [Google Scholar]
  152. Jonas O, Landry HM, Fuller JE, Santini JT, Baselga J. 152.  et al. 2015. An implantable microdevice to perform high-throughput in vivo drug sensitivity testing in tumors. Sci. Transl. Med. 7:284ra57 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error