1932

Abstract

Advanced laryngeal cancer sometimes necessitates the removal of the complete larynx. This procedure involves suturing the trachea to an opening in the neck, the most disturbing consequence of which is the loss of voice. Since 1859, several devices have been developed for voice restoration, based mainly on a vibrating reed element. However, the resulting sound is very monotonous and thus unpleasant. Presently the most successful way of voice restoration is the placement of a one-way shunt valve in the tracheo-esophageal wall, thus preventing aspiration and allowing air to flow from the lungs to the esophagus, where soft tissues start to vibrate for substitute voicing. However, the quality of this voice is often poor. New artificial vocal folds to be placed within the shunt valve have been developed, and a membrane-principle concept appears very promising, owing to the self-cleaning construction and the high voice quality. Future developments will include electronic voice sources. Hopefully these developments will result in a high-quality voice, after 150 years of research.

Associated Article

There are media items related to this article:
Sound-Producing Voice Prostheses: 150 Years of Research: Video 5

Associated Article

There are media items related to this article:
Sound-Producing Voice Prostheses: 150 Years of Research: Video 4

Associated Article

There are media items related to this article:
Sound-Producing Voice Prostheses: 150 Years of Research: Video 9

Associated Article

There are media items related to this article:
Sound-Producing Voice Prostheses: 150 Years of Research: Video 3

Associated Article

There are media items related to this article:
Sound-Producing Voice Prostheses: 150 Years of Research: Video 2

Associated Article

There are media items related to this article:
Sound-Producing Voice Prostheses: 150 Years of Research: Video 7

Associated Article

There are media items related to this article:
Sound-Producing Voice Prostheses: 150 Years of Research: Video 1

Associated Article

There are media items related to this article:
Sound-Producing Voice Prostheses: 150 Years of Research: Video 6

Associated Article

There are media items related to this article:
Sound-Producing Voice Prostheses: 150 Years of Research: Video 8
Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071811-150014
2014-07-11
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/16/1/annurev-bioeng-071811-150014.html?itemId=/content/journals/10.1146/annurev-bioeng-071811-150014&mimeType=html&fmt=ahah

Literature Cited

  1. Visser JWW, Otter Coebergh R, Schouten LJ. 1.  1998. Head and Neck Tumours in the Netherlands 1989–1995 Utrecht, Neth: Neth. Cancer Regist. [Google Scholar]
  2. Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R. 2.  et al. eds; 2012. SEER cancer statistics review, 1975–2009 (vintage 2009 populations) Surveillance, Epidemiology, and End Results (SEER) Prog., Natl. Cancer Inst., Bethesda, MD, updated Nov. 2011. http://seer.cancer.gov/csr/1975_2009_pops09/ [Google Scholar]
  3. Hinds MW, Thomas DB, O'Reilly HP. 3.  1979. Asbestos, dental X-rays, tobacco, and alcohol in the epidemiology of laryngeal cancer. Cancer 44:1114–20 [Google Scholar]
  4. Jiang J, Lin E, Hanson DG. 4.  2000. Vocal fold physiology. Otolaryngol. Clin. N. Am. 33:699–718 [Google Scholar]
  5. Borden GJ, Harris KS. 5.  1980. Speech Science Primer: Physiology, Acoustics, and Perception of Speech Baltimore, MD: Williams & Wilkins [Google Scholar]
  6. Hilgers FJ, Aaronson NK, Ackerstaff AH, Schouwenburg PF, Van Zandwijk N. 6.  1991. The influence of a heat and moisture exchanger (HME) on the respiratory symptoms after total laryngectomy. Clin. Otolaryngol. Allied Sci. 16:152–56 [Google Scholar]
  7. Singer MI, Blom ED. 7.  1980. An endoscopic technique for restoration of voice after laryngectomy. Ann. Otol. Rhinol. Laryngol. 89:529–33 [Google Scholar]
  8. Herrmann IF. 8.  1986. Speech Restoration via Voice Prostheses Berlin: Springer [Google Scholar]
  9. Hilgers FJ, Ackerstaff AH, Balm AJ, Tan IB, Aaronson NK, Persson JO. 9.  1997. Development and clinical evaluation of a second-generation voice prosthesis (Provox 2), designed for anterograde and retrograde insertion. Acta Otolaryngol. 117:889–96 [Google Scholar]
  10. Neu TR, de Boer CE, Verkerke GJ, Schutte HK, Rakhorst G. 10.  et al. 1994. Biofilm development in time on a silicone voice prosthesis—a case study. Microb. Ecol. Health Dis. 7:27–33 [Google Scholar]
  11. Singer MI, Blom ED. 11.  1981. Selective myotomy for voice restoration after total laryngectomy. Arch. Otolaryngol. 107:670–73 [Google Scholar]
  12. Cheesman AD, Knight J, McIvor J, Perry A. 12.  1986. Tracheo-oesophageal ‘puncture speech’: an assessment technique for failed oesophageal speakers. J. Laryngol. Otol. 100:191–99 [Google Scholar]
  13. Qi Y, Weinberg B. 13.  1995. Characteristics of voicing source waveforms produced by esophageal and tracheoesophageal speakers. J. Speech Hear. Res. 38:536–48 [Google Scholar]
  14. Hart JT, Collier R, Cohen A. 14.  1990. A Perceptual Study of Intonation: An Experimental-Phonetic Approach to Speech Melody Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  15. Pruyn JF, de Jong PC, Bosman LJ, Van Poppel JW, Van den Borne HW. 15.  et al. 1986. Psychosocial aspects of head and neck cancer—a review of the literature. Clin. Otolaryngol. Allied Sci. 11:469–74 [Google Scholar]
  16. Stevens KN. 16.  2000. Acoustic Phonetics Cambridge, MA: MIT Press [Google Scholar]
  17. Schutte HK. 17.  1980. The efficiency of voice production PhD Thesis, Univ. Groningen, Groningen, Neth. [Google Scholar]
  18. Rosenberg AE. 18.  1970. Effect of glottal pulse shape on the quality of natural vowels. J. Acoust. Soc. Am. 49:583–90 [Google Scholar]
  19. Van der Torn M, Van Gogh CDL, Verdonck de Leeuw IM, Festen JM, Mahieu HF. 19.  2006. Analysis of failure of voice production by a sound-producing voice prosthesis. J. Laryngol. Otol. 120:455–62 [Google Scholar]
  20. Gray H. 20.  2000. Henry Gray's Anatomy of the Human Body New York: Bartleby.com, 20th. ed. [Google Scholar]
  21. Titze IR. 21.  2000. Principles of Voice Production Iowa City, IA: Natl. Cent. Voice Speech, 2nd. ed. [Google Scholar]
  22. Gray SD. 22.  2000. Cellular physiology of the vocal folds. Otolaryngol. Clin. N. Am. 33:679–98 [Google Scholar]
  23. Sivasankar M, Fisher KV. 23.  2007. Vocal fold epithelial response to luminal osmotic perturbation. J. Speech Lang. Hear. Res. 50:886–98 [Google Scholar]
  24. Hirano M. 24.  1975. Phonosurgery: basic and clinical investigations. Otologia (Fukuoka) 21:Suppl. 1239–440 [Google Scholar]
  25. Hirano M, Kakita Y. 25.  1985. Cover-body theory of vocal fold vibration. Speech Science: Recent Advances RG Daniloff 1–46 San Diego: College-Hill [Google Scholar]
  26. Titze IR. 26.  1988. The physics of small-amplitude oscillation of the vocal folds. J. Acoust. Soc. Am. 83:1536–52 [Google Scholar]
  27. Thomson SL, Mongeau L, Frankel SH. 27.  2005. Aerodynamic transfer of energy to the vocal folds. J. Acoust. Soc. Am. 118:1689–700 [Google Scholar]
  28. Park JB, Mongeau L. 28.  2008. Experimental investigation of the influence of a posterior gap on glottal flow and sound. J. Acoust. Soc. Am. 124:1171–79 [Google Scholar]
  29. Voigt D, Döllinger M, Eysholdt U, Yang A, Gürlek E, Lohscheller J. 29.  2010. Objective detection and quantification of mucosal wave propagation. J. Acoust. Soc. Am. 128:EL347–53 [Google Scholar]
  30. Zhang Z, Neubauer J, Berry DA. 30.  2006. The influence of subglottal acoustics on laboratory models of phonation. J. Acoust. Soc. Am. 120:1558–69 [Google Scholar]
  31. Titze IR. 31.  2006. The Myoelastic Aerodynamic Theory of Phonation Denver, CO: Natl. Cent. Voice Speech [Google Scholar]
  32. Titze IR, Talkin DT. 32.  1979. A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation. J. Acoust. Soc. Am. 66:60–74 [Google Scholar]
  33. Berry DA, Clark MJ, Montequin DW, Titze IR. 33.  2001. Characterization of the medial surface of the vocal folds. Ann. Otol. Rhinol. Laryngol. 110:470–77 [Google Scholar]
  34. Sidlof P, Svec JG, Horacek J, Vesely J, Klepacek I, Havlik R. 34.  2008. Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production. J. Biomech. 41:985–95 [Google Scholar]
  35. Hochenegg J. 35.  1892. Totale Kehlkopf-extirpation und Resection des Oesophagus wegen Carcinoma larynges. Oesophagoplastik. Ein neuer Sprechapparat. Viener Klin. Wochenschr. 5:123–27 [Google Scholar]
  36. Alipour F, Titze IR. 36.  1991. Elastic models of vocal fold tissues. J. Acoust. Soc. Am. 90:1326–31 [Google Scholar]
  37. Alipour F, Titze IR, Hunter EJ, Tayama N. 37.  2005. Active and passive properties of canine abduction/adduction laryngeal muscles. J. Voice 19:350–59 [Google Scholar]
  38. Chan RW, Fu M, Young L, Tirunagari N. 38.  2007. Relative contributions of collagen and elastin to elasticity of the vocal fold under tension. Ann. Biomed. Eng. 35:1471–83 [Google Scholar]
  39. Min YB, Titze IR, Alipour-Haghighi F. 39.  1995. Stress-strain response of the human vocal ligament. Ann. Otol. Rhinol. Laryngol. 104:563–69 [Google Scholar]
  40. Chan RW, Rodriguez ML. 40.  2008. A simple-shear rheometer for linear viscoelastic characterization of vocal fold tissues at phonatory frequencies. J. Acoust. Soc. Am. 124:1207–19 [Google Scholar]
  41. Cranen B, Boves L. 41.  1985. Pressure measurements during speech production using semiconductor miniature pressure transducers: impact on models for speech production. J. Acoust. Soc. Am. 77:1543–51 [Google Scholar]
  42. Bielamowicz S, Berke GS, Kreiman J, Gerratt BR. 42.  1999. Exit jet particle velocity in the in vivo canine laryngeal model with variable nerve stimulation. J. Voice 13:153–60 [Google Scholar]
  43. Svec JG, Sram F, Schutte HK. 43.  2007. Videokymography in voice disorders: What to look for?. Ann. Otol. Rhinol. Laryngol. 116:172–80 [Google Scholar]
  44. Cooper DS. 44.  1986. Research in laryngeal physiology with excised larynges. Otolaryngology—Head and Neck Surgery 3 CW Cummings 1728–37 St. Louis, MO: Mosby-Year Book, 2nd. ed. [Google Scholar]
  45. Lebrun Y. 45.  1973. The Artificial Larynx Amsterdam: Zwets & Zeitlinger [Google Scholar]
  46. Shadle CH, Barney AM, Thomas DW. 46.  1991. An investigation into the acoustics and aerodynamics of the larynx. Vocal Fold Physiology: Acoustic, Perceptual, and Physiological Aspects of Voice Mechanisms J Gauffin, B Hammarberg 73–82 San Diego: Singular Publ. [Google Scholar]
  47. Alipour F, Scherer RC. 47.  1995. Pulsatile airflow during phonation: an excised larynx model. J. Acoust. Soc. Am. 97:1241–48 [Google Scholar]
  48. Alipour F, Scherer RC, Finnegan E. 48.  1997. Pressure-flow relationships during phonation as a function of adduction. J. Voice 11:187–94 [Google Scholar]
  49. Alipour F, Scherer RC. 49.  2000. Dynamic glottal pressures in an excised hemilarynx model. J. Voice 14:443–54 [Google Scholar]
  50. Khosla S, Muruguppan S, Gutmark E, Scherer RC. 50.  2007. Vortical flow field during phonation in an excised canine larynx model. Ann. Otol. Rhinol. Laryngol. 116:217–28 [Google Scholar]
  51. Oren L, Khosla S, Murugappan S, King R, Gutmark E. 51.  2009. Role of subglottal shape in turbulence reduction. Ann. Otol. Rhinol. Laryngol. 118:232–40 [Google Scholar]
  52. Khosla S, Murugappan S, Paniello R, Ying J, Gutmark E. 52.  2009. Role of vortices in voice production: normal versus asymmetric tension. Laryngoscope 119:216–21 [Google Scholar]
  53. Döllinger M, Tayama N, Berry DA. 53.  2005. Empirical eigenfunctions and medial surface dynamics of a human vocal fold. Methods Inf. Med. 44:384–91 [Google Scholar]
  54. Döllinger M, Berry DA, Berke GS. 54.  2005. Medial surface dynamics of an in vivo canine vocal fold during phonation. J. Acoust. Soc. Am. 117:3174–83 [Google Scholar]
  55. Kniesburges S, Thomson SL, Barney A, Triep M, Sidlof P. 55.  et al. 2011. In vitro experimental investigation of voice production. Curr. Bioinform. 6:305–22 [Google Scholar]
  56. Kucinschi BR, Scherer RC, de Witt KJ, Ng TT. 56.  2006. Flow visualization and acoustic consequences of the air moving through a static model of the human larynx. J. Biomech. Eng. 128:380–90 [Google Scholar]
  57. Scherer RC, Shinwari D, de Witt KJ, Zhang C, Kucinschi BR, Afjeh AA. 57.  2001. Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees. J. Acoust. Soc. Am. 109:1616–30 [Google Scholar]
  58. Erath BD, Plesniak MW. 58.  2006. An investigation of bimodal jet trajectory in flow through scaled models of the human vocal tract. Exp. Fluids 40:683–96 [Google Scholar]
  59. Farley J, Thomson SL. 59.  2011. Acquisition of detailed laryngeal flow measurements in geometrically realistic models. J. Acoust. Soc. Am. 130:EL82–86 [Google Scholar]
  60. Deverge M, Pelorson X, Vilain C, Lagree PY, Chentouf F. 60.  et al. 2003. Influence of collision on the flow through in-vitro rigid models of the vocal folds. J. Acoust. Soc. Am. 114:3354–62 [Google Scholar]
  61. Kucinschi BR, Scherer RC, de Witt KJ, Ng TT. 61.  2006. An experimental analysis of the pressures and flows within a driven mechanical model of phonation. J. Acoust. Soc. Am. 119:3011–21 [Google Scholar]
  62. Krane M, Barry M, Wei T. 62.  2007. Unsteady behavior of flow in a scaled-up vocal folds model. J. Acoust. Soc. Am. 122:3659–70 [Google Scholar]
  63. Triep M, Brücker C. 63.  2010. Three-dimensional nature of the glottal jet. J. Acoust. Soc. Am. 127:1537–47 [Google Scholar]
  64. Chan RW, Titze IR. 64.  2006. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics. J. Acoust. Soc. Am. 119:2351–62 [Google Scholar]
  65. Neubauer J, Zhang Z, Miraghaie R, Berry DA. 65.  2007. Coherent structures of the near field flow in a self-oscillating physical model of the vocal folds. J. Acoust. Soc. Am. 121:1102–18 [Google Scholar]
  66. Berry DA, Zhang Z, Neubauer J. 66.  2006. Mechanisms of irregular vibration in a physical model of the vocal folds. J. Acoust. Soc. Am. 120:EL36–42 [Google Scholar]
  67. Pickup BA, Thomson SL. 67.  2009. Influence of asymmetric stiffness on the structural and aerodynamic response of synthetic vocal fold models. J. Biomech. 42:2219–25 [Google Scholar]
  68. Popolo PS, Titze IR. 68.  2008. Qualification of a quantitative laryngeal imaging system using videostroboscopy and videokymography. Ann. Otol. Rhinol. Laryngol. 117:404–12 [Google Scholar]
  69. Chhetri DK, Zhang Z, Neubauer J. 69.  2011. Measurement of Young's modulus of vocal folds by indentation. J. Voice 25:1–7 [Google Scholar]
  70. Shaw SM, Thomson SL, Dromey C, Smith S. 70.  2012. Frequency response of synthetic vocal fold models with linear and nonlinear material properties. J. Speech Lang. Hear. Res. 55:1395–406 [Google Scholar]
  71. Murray PR, Thomson SL. 71.  2011. Synthetic, multi-layer, self-oscillating vocal fold model fabrication. J. Vis. Exp. 58:e3498 [Google Scholar]
  72. Murray PR, Thomson SL. 72.  2012. Vibratory responses of synthetic, self-oscillating vocal fold models. J. Acoust. Soc. Am. 132:3428–38 [Google Scholar]
  73. Lucero JC. 73.  1998. Optimal glottal configuration for ease of phonation. J. Voice 12:151–58 [Google Scholar]
  74. Flanagan JL, Landgraf LL. 74.  1968 (1973). Self-oscillating source for vocal-tract synthesizers. IEEE Trans. Audio Electroacoust. 1657–64 Reprint in Speech Synthesis, ed. JL Flanagan, LR Rabiner Stroudsburg, PA: Dowden, Hutchinson & Ross [Google Scholar]
  75. Ishizaka K, Flanagan JL. 75.  1972. Synthesis of voiced sounds from a two-mass model of the vocal cords. Bell Syst. Tech. J. 51:1233–68 [Google Scholar]
  76. Berry DA, Titze IR. 76.  1996. Normal modes in a continuum model of vocal fold tissues. J. Acoust. Soc. Am. 100:3345–54 [Google Scholar]
  77. Cook DD, Nauman E, Mongeau L. 77.  2009. Ranking vocal fold model parameters by their influence on modal frequencies. J. Acoust. Soc. Am. 126:2002–10 [Google Scholar]
  78. Cook DD, Mongeau L. 78.  2007. Sensitivity of a continuum vocal fold model to geometric parameters, constraints, and boundary conditions. J. Acoust. Soc. Am. 121:2247–53 [Google Scholar]
  79. Alipour F, Berry DA, Titze IR. 79.  2000. A finite-element model of vocal-fold vibration. J. Acoust. Soc. Am. 108:3003–12 [Google Scholar]
  80. Alipour F, Scherer RC. 80.  2000. Vocal fold bulging effects on phonation using a biophysical computer model. J. Voice 14:470–83 [Google Scholar]
  81. Alipour F, Scherer RC. 81.  2004. Flow separation in a computational oscillating vocal fold model. J. Acoust. Soc. Am. 116:31710–19 [Google Scholar]
  82. De Oliveira Rosa M, Pereira JC, Grellet M, Alwan A. 82.  2003. A contribution to simulating a three-dimensional larynx model using the finite element method. J. Acoust. Soc. Am. 114:2893–905 [Google Scholar]
  83. Tao C, Jiang JJ, Zhang Y. 83.  2006. Simulation of vocal fold impact pressures with a self-oscillating finite-element model. J. Acoust. Soc. Am. 119:3987–94 [Google Scholar]
  84. Hunter EJ, Titze IR, Alipour F. 84.  2004. A three-dimensional model of vocal fold abduction/adduction. J. Acoust. Soc. Am. 115:1747–59 [Google Scholar]
  85. Zhao W, Zhang C, Frankel SH, Mongeau L. 85.  2002. Computational aeroacoustics of phonation, part I: numerical methods, acoustic analogy validation, and effects of glottal geometry. J. Acoust. Soc. Am. 112:2134–46 [Google Scholar]
  86. Zhang C, Zhao W, Frankel SH, Mongeau L. 86.  2002. Computational aeroacoustics of phonation, part II: effects of flow parameters and ventricular folds. J. Acoust. Soc. Am. 112:2147–54 [Google Scholar]
  87. Tao C, Jiang JJ, Zhang Y. 87.  2009. A fluid-saturated poroelastic model of the vocal folds with hydrated tissue. J. Biomech. 42:774–80 [Google Scholar]
  88. Zhang Z, Neubauer J, Berry DA. 88.  2007. Physical mechanisms of phonation onset: a linear stability analysis of an aeroelastic continuum model of phonation. J. Acoust. Soc. Am. 122:2279–95 [Google Scholar]
  89. Li S, Scherer RC, Wan M, Wang S, Wu H. 89.  2006. Numerical study of the effects of inferior and superior vocal fold surface angles on vocal fold pressure distributions. J. Acoust. Soc. Am. 119:3003–10 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071811-150014
Loading
/content/journals/10.1146/annurev-bioeng-071811-150014
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error