1932

Abstract

The study of blood ex vivo can occur in closed or open systems, with or without flow. Microfluidic devices, which constrain fluids to a small (typically submillimeter) scale, facilitate analysis of platelet function, coagulation biology, cellular biorheology, adhesion dynamics, and pharmacology and, as a result, can be an invaluable tool for clinical diagnostics. An experimental session can accommodate hundreds to thousands of unique clotting, or thrombotic, events. Using microfluidics, thrombotic events can be studied on defined surfaces of biopolymers, matrix proteins, and tissue factor, under constant flow rate or constant pressure drop conditions. Distinct shear rates can be generated on a device using a single perfusion pump. Microfluidics facilitated both the determination of intraluminal thrombus permeability and the discovery that platelet contractility can be activated by a sudden decrease in flow. Microfluidic devices are ideal for multicolor imaging of platelets, fibrin, and phosphatidylserine and provide a human blood analog to mouse injury models. Overall, microfluidic advances offer many opportunities for research, drug testing under relevant hemodynamic conditions, and clinical diagnostics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071812-152406
2013-07-11
2024-04-15
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-bioeng-071812-152406
Loading
/content/journals/10.1146/annurev-bioeng-071812-152406
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error