Photoacoustic imaging (PAI) of biological tissue has seen immense growth in the past decade, providing unprecedented spatial resolution and functional information at depths in the optical diffusive regime. PAI uniquely combines the advantages of optical excitation and those of acoustic detection. The hybrid imaging modality features high sensitivity to optical absorption and wide scalability of spatial resolution with the desired imaging depth. Here we first summarize the fundamental principles underpinning the technology, then highlight its practical implementation, and finally discuss recent advances toward clinical translation.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Bell AG. 1.  1880. On the production and reproduction of sound by light. Am. J. Sci. 20:305–24 [Google Scholar]
  2. Wang LV. 2.  2009. Photoacoustic Imaging and Spectroscopy Boca Raton, FL: CRC499
  3. Gusev VE, Karabutov AA. 3.  1993. Laser Optoacoustics New York: Am. Inst. Phys271
  4. Maugh TH. 4.  1975. Photoacoustic spectroscopy: new uses for an old technique. Science 188:38–9 [Google Scholar]
  5. Kruger RA. 5.  1994. Photoacoustic ultrasound. Med. Phys. 21:127–31 [Google Scholar]
  6. Wang LV, Zhao X, Sun H, Ku G. 6.  1999. Microwave-induced acoustic imaging of biological tissues. Rev. Sci. Instrum. 70:3744–48 [Google Scholar]
  7. Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang LV. 7.  2003. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 21:803–6 [Google Scholar]
  8. Wang LV. 8.  2008. Tutorial on photoacoustic microscopy and computed tomography. IEEE J. Sel. Top. Quant. 14:171–79 [Google Scholar]
  9. Hordvik A. 9.  1977. Measurement techniques for small absorption coefficients: recent advances. Appl. Opt. 16:2827–33 [Google Scholar]
  10. Wang LV, Hu S. 10.  2012. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335:1458–62 [Google Scholar]
  11. Culver JP, Ntziachristos V, Holboke MJ, Yodh AG. 11.  2001. Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis. Opt. Lett. 26:701–3 [Google Scholar]
  12. Calasso IG, Craig W, Diebold GJ. 12.  2001. Photoacoustic point source. Phys. Rev. Lett. 86:3550–53 [Google Scholar]
  13. Diebold GJ, Khan MI, Park SM. 13.  1990. Photoacoustic signatures of particulate matter: optical production of acoustic monopole radiation. Science 250:101–4 [Google Scholar]
  14. Diebold GJ, Sun T, Khan MI. 14.  1991. Photoacoustic monopole radiation in one, two, and three dimensions. Phys. Rev. Lett. 67:3384–87 [Google Scholar]
  15. Roitner H, Bauer-Marschallinger J, Berer T, Burgholzer P. 15.  2012. Experimental evaluation of time domain models for ultrasound attenuation losses in photoacoustic imaging. J. Acoust. Soc. Am. 131:3763–74 [Google Scholar]
  16. Wang LV, Wu H. 16.  2007. Biomedical Optics: Principles and Imaging Hoboken, NJ: Wiley-Intersci362
  17. Szabo TL. 17.  2004. Diagnostic Ultrasound Imaging: Inside Out Amsterdam: Elsevier Acad549
  18. Burgholzer P, Roitner H, Bauer-Marschallinger J, Grün H, Berer T, Paltauf G. 18.  2011. Compensation of ultrasound attenuation in photoacoustic imaging. Acoustic Waves: From Microdevices to Helioseismology MG Beghi 191–212 Rijeka, Croat: InTech652 [Google Scholar]
  19. Huang C, Nie L, Schoonover RW, Wang LV, Anastasio MA. 19.  2012. Photoacoustic computed tomography correcting for heterogeneity and attenuation. J. Biomed. Opt. 17:061211 [Google Scholar]
  20. Maslov K, Wang LV. 20.  2008. Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser. J. Biomed. Opt. 13:024006 [Google Scholar]
  21. Telenkov S, Mandelis A, Lashkari B, Forcht M. 21.  2009. Frequency-domain photothermoacoustics: alternative imaging modality of biological tissues. J. Appl. Phys. 105:102029 [Google Scholar]
  22. Telenkov SA, Mandelis A. 22.  2009. Photothermoacoustic imaging of biological tissues: maximum depth characterization comparison of time and frequency-domain measurements. J. Biomed. Opt. 14:044025 [Google Scholar]
  23. Telenkov SA, Mandelis A. 23.  2008. Fourier-domain methodology for depth-selective photothermoacoustic imaging of tissue chromophores. Eur. Phys. J. Spec. Top. 153:443–48 [Google Scholar]
  24. Telenkov S, Alwi R, Mandelis A, Worthington A. 24.  2011. Frequency-domain photoacoustic phased array probe for biomedical imaging applications. Opt. Lett. 36:4560–62 [Google Scholar]
  25. Karabutov AA, Savateeva EV, Podymova NB, Oraevsky AA. 25.  2000. Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer. J. Appl. Phys. 87:2003–14 [Google Scholar]
  26. Andreev VG, Karabutov AA, Oraevsky AA. 26.  2003. Detection of ultrawide-band ultrasound pulses in optoacoustic tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50:1383–90 [Google Scholar]
  27. Laser Inst. Am 2000. American National Standard for Safe Use of Lasers: ANSI Z136.1–2000. New York: Am. Natl. Stand. Inst.
  28. Zhu H, Isikman SO, Mudanyali O, Greenbaum A, Ozcan A. 28.  2013. Optical imaging techniques for point-of-care diagnostics. Lab Chip 13:51–67 [Google Scholar]
  29. Maslov K, Zhang HF, Hu S, Wang LV. 29.  2008. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt. Lett. 33:929–31 [Google Scholar]
  30. Hu S, Maslov K, Wang LV. 30.  2011. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt. Lett. 36:1134–36 [Google Scholar]
  31. Wang L, Maslov K, Yao J, Rao B, Wang LV. 31.  2011. Fast voice-coil scanning optical-resolution photo-acoustic microscopy. Opt. Lett. 36:139–41 [Google Scholar]
  32. Yao J, Huang CH, Wang L, Yang JM, Gao L. 32.  et al. 2012. Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror. J. Biomed. Opt. 17:080505 [Google Scholar]
  33. Zhang C, Maslov K, Hu S, Chen R, Zhou Q. 33.  et al. 2012. Reflection-mode submicron-resolution in vivo photoacoustic microscopy. J. Biomed. Opt. 17:020501 [Google Scholar]
  34. Zhang C, Maslov K, Wang LV. 34.  2010. Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo. Opt. Lett. 35:3195–97 [Google Scholar]
  35. Yuan Y, Yang S, Xing D. 35.  2012. Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer. Appl. Phys. Lett. 100:023702 [Google Scholar]
  36. Zhang C, Maslov K, Yao J, Wang LV. 36.  2012. In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer. J. Biomed. Opt. 17:116016 [Google Scholar]
  37. Liu Y, Zhang C, Wang LV. 37.  2012. Effects of light scattering on optical-resolution photoacoustic microscopy. J. Biomed. Opt. 17:126014 [Google Scholar]
  38. Yao DK, Maslov K, Shung KK, Zhou Q, Wang LV. 38.  2010. In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA. Opt. Lett. 35:4139–41 [Google Scholar]
  39. Wang L, Maslov K, Xing W, Garcia-Uribe A, Wang LV. 39.  2012. Video-rate functional photoacoustic microscopy at depths. J. Biomed. Opt. 17:106007 [Google Scholar]
  40. Zhang HF, Maslov K, Stoica G, Wang LV. 40.  2006. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24:848–51 [Google Scholar]
  41. Maslov K, Stoica G, Wang LV. 41.  2005. In vivo dark-field reflection-mode photoacoustic microscopy. Opt. Lett. 30:625–27 [Google Scholar]
  42. Hu S, Maslov K, Wang LV. 42.  2012. Three-dimensional optical-resolution photoacoustic microscopy. Biomedical Optical Imaging Technologies: Design and Applications R Liang 55–78 New York: Springer380 [Google Scholar]
  43. Song KH, Wang LV. 43.  2007. Deep reflection-mode photoacoustic imaging of biological tissue. J. Biomed. Opt. 12:060503 [Google Scholar]
  44. Xu Y, Wang LV, Ambartsoumian G, Kuchment P. 44.  2004. Reconstructions in limited-view thermoacoustic tomography. Med. Phys. 31:724–33 [Google Scholar]
  45. Xu M, Wang LV. 45.  2006. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77:041101 [Google Scholar]
  46. Xu M, Wang LV. 46.  2005. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E 71:016706 [Google Scholar]
  47. Song L, Maslov K, Bitton R, Shung KK, Wang LV. 47.  2008. Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array. J. Biomed. Opt. 13:054028 [Google Scholar]
  48. Buehler A, Herzog E, Razansky D, Ntziachristos V. 48.  2010. Video rate optoacoustic tomography of mouse kidney perfusion. Opt. Lett. 35:2475–77 [Google Scholar]
  49. Razansky D, Buehler A, Ntziachristos V. 49.  2011. Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat. Protoc. 6:1121–29 [Google Scholar]
  50. Gamelin J, Maurudis A, Aguirre A, Huang F, Guo P. 50.  et al. 2009. A real-time photoacoustic tomography system for small animals. Opt. Express 17:10489–98 [Google Scholar]
  51. Xia J, Chatni MR, Maslov K, Guo Z, Wang K. 51.  et al. 2012. Whole-body ring-shaped confocal photo-acoustic computed tomography of small animals in vivo. J. Biomed. Opt. 17:050506 [Google Scholar]
  52. Kruger RA, Lam RB, Reinecke DR, Del Rio SP, Doyle RP. 52.  2010. Photoacoustic angiography of the breast. Med. Phys. 37:6096–100 [Google Scholar]
  53. Yang JM, Maslov K, Yang HC, Zhou Q, Shung KK, Wang LV. 53.  2009. Photoacoustic endoscopy. Opt. Lett. 34:1591–93 [Google Scholar]
  54. Yang JM, Favazza C, Chen R, Yao J, Cai X. 54.  et al. 2012. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat. Med. 18:1297–1302 [Google Scholar]
  55. Paltauf G, Nuster R, Haltmeier M, Burgholzer P. 55.  2007. Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector. Appl. Opt. 46:3352–58 [Google Scholar]
  56. Nuster R, Zangerl G, Haltmeier M, Paltauf G. 56.  2010. Full field detection in photoacoustic tomography. Opt. Express 18:6288–99 [Google Scholar]
  57. Nuster R, Gruen H, Reitinger B, Burgholzer P, Gratt S. 57.  et al. 2011. Downstream Fabry-Perot interferometer for acoustic wave monitoring in photoacoustic tomography. Opt. Lett. 36:981–83 [Google Scholar]
  58. Nuster R, Gratt S, Passler K, Meyer D, Paltauf G. 58.  2012. Photoacoustic section imaging using an elliptical acoustic mirror and optical detection. J. Biomed. Opt. 17:030503 [Google Scholar]
  59. Nuster R, Paltauf G. 59.  2012. Real-time photoacoustic imaging with optical ultrasound detection. Proc. SPIE 8223:82231K doi:10.1117/12.910195 [Google Scholar]
  60. Laufer J, Johnson P, Zhang E, Treeby B, Cox B. 60.  et al. 2012. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J. Biomed. Opt. 17:056016 [Google Scholar]
  61. Laufer J, Norris F, Cleary J, Zhang E, Treeby B. 61.  et al. 2012. In vivo photoacoustic imaging of mouse embryos. J. Biomed. Opt. 17:061220 [Google Scholar]
  62. Zhang E, Laufer J, Beard P. 62.  2008. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl. Opt. 47:561–77 [Google Scholar]
  63. Wang LV. 63.  2001. Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model. Phys. Rev. Lett. 87:043903 [Google Scholar]
  64. Popescu G, Ikeda T, Dasari RR, Feld MS. 64.  2006. Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett. 31:775–77 [Google Scholar]
  65. Xie Z, Chen SL, Ling T, Guo LJ, Carson PL, Wang X. 65.  2011. Pure optical photoacoustic microscopy. Opt. Express 19:9027–34 [Google Scholar]
  66. Chen SL, Ling T, Guo LJ. 66.  2011. Low-noise small-size microring ultrasonic detectors for high-resolution photoacoustic imaging. J. Biomed. Opt. 16:056001 [Google Scholar]
  67. Ling T, Chen SL, Guo LJ. 67.  2011. High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators. Appl. Phys. Lett. 98:204103 [Google Scholar]
  68. Zhang EZ, Beard PC. 68.  2011. A miniature all-optical photoacoustic imaging probe. Proc. SPIE 7899:78991F doi: 10.1117/12.874883 [Google Scholar]
  69. Bateman RM, Sharpe MD, Ellis CG. 69.  2003. Bench-to-bedside review: microvascular dysfunction in sepsis—hemodynamics, oxygen transport, and nitric oxide. Crit. Care 7:359–73 [Google Scholar]
  70. Zhang HF, Maslov K, Sivaramakrishnan M, Stoica G, Wang LV. 70.  2007. Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy. Appl. Phys. Lett. 90:053901 [Google Scholar]
  71. Gao L, Hagen N, Tkaczyk TS. 71.  2012. Quantitative comparison between full-spectrum and filter-based imaging in hyperspectral fluorescence microscopy. J. Microsc. 246:113–23 [Google Scholar]
  72. Wang Y, Maslov K, Wang LV. 72.  2012. Spectrally encoded photoacoustic microscopy using a digital mirror device. J. Biomed. Opt. 17:066020 [Google Scholar]
  73. Cox B, Laufer JG, Arridge SR, Beard PC. 73.  2012. Quantitative spectroscopic photoacoustic imaging: a review. J. Biomed. Opt. 17:061202 [Google Scholar]
  74. Daoudi K, Hussain A, Hondebrink E, Steenbergen W. 74.  2012. Correcting photoacoustic signals for fluence variations using acousto-optic modulation. Opt. Express 20:14117–29 [Google Scholar]
  75. Bauer AQ, Nothdurft RE, Erpelding TN, Wang LV, Culver JP. 75.  2011. Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography. J. Biomed. Opt. 16:096016 [Google Scholar]
  76. Li Z, Li H, Zeng Z, Xie W, Chen WR. 76.  2012. Determination of optical absorption coefficient with focusing photoacoustic imaging. J. Biomed. Opt. 17:061216 [Google Scholar]
  77. Guo Z, Hu S, Wang LV. 77.  2010. Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue. Opt. Lett. 35:2067–69 [Google Scholar]
  78. Guo Z, Favazza C, Garcia-Uribe A, Wang LV. 78.  2012. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime. J. Biomed. Opt. 17:066011 [Google Scholar]
  79. Ray A, Rajian JR, Lee YE, Wang X, Kopelman R. 79.  2012. Lifetime-based photoacoustic oxygen sensing in vivo. J. Biomed. Opt. 17:057004 [Google Scholar]
  80. Hu S, Maslov K, Wang LV. 80.  2009. Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy. Opt. Express 17:7688–93 [Google Scholar]
  81. Gao L, Wang L, Li C, Liu Y, Ke H. 81.  et al. 2013. Single-cell photoacoustic thermometry. J. Biomed. Opt. 18:026003 [Google Scholar]
  82. Gao L, Zhang C, Li C, Wang LV. 82.  2013. Intracellular temperature mapping with fluorescence-assisted photoacoustic-thermometry. Appl. Phys. Lett. 102:193705 [Google Scholar]
  83. Larina IV, Larin KV, Esenaliev RO. 83.  2005. Real-time optoacoustic monitoring of temperature in tissues. J. Phys. D Appl. Phys. 38:2633–39 [Google Scholar]
  84. Shah J, Park S, Aglyamov S, Larson T, Ma L. 84.  et al. 2008. Photoacoustic imaging and temperature measurement for photothermal cancer therapy. J. Biomed. Opt. 13:034024 [Google Scholar]
  85. Pramanik M, Wang LV. 85.  2009. Thermoacoustic and photoacoustic sensing of temperature. J. Biomed. Opt. 14:054024 [Google Scholar]
  86. Christopher DA, Burns PN, Armstrong J, Foster FS. 86.  1996. A high-frequency continuous-wave Doppler ultrasound system for the detection of blood flow in the microcirculation. Ultrasound Med. Biol. 22:1191–203 [Google Scholar]
  87. Fang H, Maslov K, Wang LV. 87.  2007. Photoacoustic Doppler effect from flowing small light-absorbing particles. Phys. Rev. Lett. 99:184501 [Google Scholar]
  88. Fang H, Maslov K, Wang LV. 88.  2007. Photoacoustic Doppler flow measurement in optically scattering media. Appl. Phys. Lett. 91:264103 [Google Scholar]
  89. Brunker J, Beard P. 89.  2012. Pulsed photoacoustic Doppler flowmetry using time-domain cross-correlation: accuracy, resolution and scalability. J. Acoust. Soc. Am. 132:1780–91 [Google Scholar]
  90. Yao J, Maslov K, Shi Y, Taber L, Wang LV. 90.  2010. In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth. Opt. Lett. 35:1419–21 [Google Scholar]
  91. Ren H, Brecke KM, Ding Z, Zhao Y, Nelson JS, Chen Z. 91.  2002. Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography. Opt. Lett. 27:409–11 [Google Scholar]
  92. Yeung KW. 92.  1998. Angle-insensitive flow measurement using Doppler bandwidth. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45:574–80 [Google Scholar]
  93. Bouwens A, Szlag D, Szkulmowski M, Bolmont T, Wojtkowski M, Lasser T. 93.  2013. Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography. Opt. Express 21:17711–29 [Google Scholar]
  94. Heimdal A, Torp H. 94.  1997. Ultrasound Doppler measurements of low velocity blood flow: limitations due to clutter signals from vibrating muscles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44:873–81 [Google Scholar]
  95. Chen SL, Ling T, Huang SW, Won Baac H, Guo LJ. 95.  2010. Photoacoustic correlation spectroscopy and its application to low-speed flow measurement. Opt. Lett. 35:1200–2 [Google Scholar]
  96. Chen SL, Xie Z, Carson PL, Wang X, Guo LJ. 96.  2011. In vivo flow speed measurement of capillaries by photoacoustic correlation spectroscopy. Opt. Lett. 36:4017–19 [Google Scholar]
  97. Galanzha EI, Zharov VP. 97.  2012. Photoacoustic flow cytometry. Methods 57:280–96 [Google Scholar]
  98. Zharov VP, Galanzha EI, Shashkov EV, Kim JW, Khlebtsov NG, Tuchin VV. 98.  2007. Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo. J. Biomed. Opt. 12:051503 [Google Scholar]
  99. Galanzha EI, Shashkov EV, Kelly T, Kim JW, Yang L, Zharov VP. 99.  2009. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol. 4:855–60 [Google Scholar]
  100. Galanzha EI, Shashkov EV, Spring PM, Suen JY, Zharov VP. 100.  2009. In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res. 69:7926–34 [Google Scholar]
  101. Yu M, Stott S, Toner M, Maheswaran S, Haber DA. 101.  2011. Circulating tumor cells: approaches to isolation and characterization. J. Cell Biol. 192:373–82 [Google Scholar]
  102. Galanzha EI, Shashkov EV, Tuchin VV, Zharov VP. 102.  2008. In vivo multispectral, multiparameter, photo-acoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes. Cytometry A 73:884–94 [Google Scholar]
  103. Xia J, Pelivanov I, Wei C, Hu X, Gao X, O'Donnell M. 103.  2012. Suppression of background signal in magnetomotive photoacoustic imaging of magnetic microspheres mimicking targeted cells. J. Biomed. Opt. 17:061224 [Google Scholar]
  104. Wei CW, Xia J, Pelivanov I, Hu X, Gao X, O'Donnell M. 104.  2012. Trapping and dynamic manipulation of polystyrene beads mimicking circulating tumor cells using targeted magnetic/photoacoustic contrast agents. J. Biomed. Opt. 17:101517 [Google Scholar]
  105. Wei C-w, Xia J, Pelivanov I, Jia C, Huang S-W. 105.  et al. 2013. Magnetomotive photoacoustic imaging: in vitro studies of magnetic trapping with simultaneous photoacoustic detection of rare circulating tumor cells. J. Biophotonics 6:513–22 [Google Scholar]
  106. Pietraszewska-Bogiel A, Gadella T. 106.  2010. FRET microscopy: from principle to routine technology in cell biology. J. Microsc. 241:111–18 [Google Scholar]
  107. Wang Y, Wang LV. 107.  2012. Förster resonance energy transfer photoacoustic microscopy. J. Biomed. Opt. 17:086007 [Google Scholar]
  108. Wang Y, Xia J, Wang LV. 108.  2013. Deep-tissue photoacoustic tomography of Förster resonance energy transfer. J. Biomed. Opt. 18:101316 [Google Scholar]
  109. Min W, Freudiger CW, Lu S, Xie XS. 109.  2011. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu. Rev. Phys. Chem. 62:507–30 [Google Scholar]
  110. Yakovlev VV, Zhang HF, Noojin GD, Denton ML, Thomas RJ, Scully MO. 110.  2010. Stimulated Raman photoacoustic imaging. Proc. Natl. Acad. Sci. USA 107:20335–39 [Google Scholar]
  111. Wang HW, Chai N, Wang P, Hu S, Dou W. 111.  et al. 2011. Label-free bond-selective imaging by listening to vibrationally excited molecules. Phys. Rev. Lett. 106:238106 [Google Scholar]
  112. Ermilov SA, Khamapirad T, Conjusteau A, Leonard MH, Lacewell R. 112.  et al. 2009. Laser optoacoustic imaging system for detection of breast cancer. J. Biomed. Opt. 14:024007 [Google Scholar]
  113. Jose J, Manohar S, Kolkman RG, Steenbergen W, Van Leeuwen TG. 113.  2009. Imaging of tumor vasculature using Twente photoacoustic systems. J. Biophotonics 2:701–17 [Google Scholar]
  114. Heijblom M, Piras D, Xia W, Van Hespen JCG, Klaase JM. 114.  et al. 2012. Visualizing breast cancer using the Twente photoacoustic mammoscope: What do we learn from twelve new patient measurements?. Opt. Express 20:11582–97 [Google Scholar]
  115. Nie L, Cai X, Maslov K, Garcia-Uribe A, Anastasio MA, Wang LV. 115.  2012. Photoacoustic tomography through a whole adult human skull with a photon recycler. J. Biomed. Opt. 17:110506 [Google Scholar]
  116. Erpelding TN, Kim C, Pramanik M, Jankovic L, Maslov K. 116.  et al. 2010. Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system. Radiology 256:102–10 [Google Scholar]
  117. Kim C, Erpelding TN, Maslov K, Jankovic L, Akers WJ. 117.  et al. 2010. Handheld array-based photoacoustic probe for guiding needle biopsy of sentinel lymph nodes. J. Biomed. Opt. 15:046010 [Google Scholar]
  118. Ke H, Erpelding TN, Jankovic L, Liu C, Wang LV. 118.  2012. Performance characterization of an integrated ultrasound, photoacoustic, and thermoacoustic imaging system. J. Biomed. Opt. 17:056010 [Google Scholar]
  119. Manohar S, Kharine A, Van Hespen JC, Steenbergen W, Van Leeuwen TG. 119.  2005. The Twente Photoacoustic Mammoscope: system overview and performance. Phys. Med. Biol. 50:2543–57 [Google Scholar]
  120. Yang XM, Wang LV. 120.  2008. Monkey brain cortex imaging by photoacoustic tomography. J. Biomed. Opt. 13:044009 [Google Scholar]
  121. Nie LM, Guo ZJ, Wang LV. 121.  2011. Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers. J. Biomed. Opt. 16:076005 [Google Scholar]
  122. Wang XD, Chamberland DL, Xi GH. 122.  2008. Noninvasive reflection mode photoacoustic imaging through infant skull toward imaging of neonatal brains. J. Neurosci. Methods 168:412–21 [Google Scholar]
  123. Huang C, Nie L, Schoonover RW, Guo Z, Schirra CO. 123.  et al. 2012. Aberration correction for transcranial photoacoustic tomography of primates employing adjunct image data. J. Biomed. Opt. 17:066016 [Google Scholar]
  124. Koelliker SL, Chung MA, Mainiero MB, Steinhoff MM, Cady B. 124.  2008. Axillary lymph nodes: US-guided fine-needle aspiration for initial staging of breast cancer—correlation with primary tumor size. Radiology 246:81–89 [Google Scholar]
  125. Manohar S, Vaartjes SE, Van Hespen JC, Klaase JM, Van den Engh FM. 125.  et al. 2007. Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt. Express 15:12277–85 [Google Scholar]
  126. Kim C, Erpelding TN, Jankovic L, Pashley MD, Wang LV. 126.  2010. Deeply penetrating in vivo photo-acoustic imaging using a clinical ultrasound array system. Biomed. Opt. Express 1:278–84 [Google Scholar]
  127. Kim C, Erpelding TN, Jankovic L, Wang LV. 127.  2011. Performance benchmarks of an array-based hand-held photoacoustic probe adapted from a clinical ultrasound system for non-invasive sentinel lymph node imaging. Philos. Trans. R. Soc. A 369:4644–50 [Google Scholar]
  128. Luke GP, Yeager D, Emelianov SY. 128.  2012. Biomedical applications of photoacoustic imaging with exogenous contrast agents. Ann. Biomed. Eng. 40:422–37 [Google Scholar]
  129. Shao P, Shi W, Hajireza P, Zemp RJ. 129.  2012. Integrated micro-endoscopy system for simultaneous fluorescence and optical-resolution photoacoustic imaging. J. Biomed. Opt. 17:076024 [Google Scholar]
  130. Jiao S, Jiang M, Hu J, Fawzi A, Zhou Q. 130.  et al. 2010. Photoacoustic ophthalmoscopy for in vivo retinal imaging. Opt. Express 18:3967–72 [Google Scholar]
  131. Li L, Maslov K, Ku G, Wang LV. 131.  2009. Three-dimensional combined photoacoustic and optical coherence microscopy for in vivo microcirculation studies. Opt. Express 17:16450–55 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error