1932

Abstract

Strategies to enhance, suppress, or qualitatively shape the immune response are of importance for diverse biomedical applications, such as the development of new vaccines, treatments for autoimmune diseases and allergies, strategies for regenerative medicine, and immunotherapies for cancer. However, the intricate cellular and molecular signals regulating the immune system are major hurdles to predictably manipulating the immune response and developing safe and effective therapies. To meet this challenge, biomaterials are being developed that control how, where, and when immune cells are stimulated in vivo, and that can finely control their differentiation in vitro. We review recent advances in the field of biomaterials for immunomodulation, focusing particularly on designing biomaterials to provide controlled immunostimulation, targeting drugs and vaccines to lymphoid organs, and serving as scaffolds to organize immune cells and emulate lymphoid tissues. These ongoing efforts highlight the many ways in which biomaterials can be brought to bear to engineer the immune system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071813-104814
2015-12-07
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/17/1/annurev-bioeng-071813-104814.html?itemId=/content/journals/10.1146/annurev-bioeng-071813-104814&mimeType=html&fmt=ahah

Literature Cited

  1. Puffer EB, Pontrello JK, Hollenbeck JJ, Kink JA, Kiessling LL. 1.  2007. Activating B cell signaling with defined multivalent ligands. ACS Chem. Biol. 2:252–62 [Google Scholar]
  2. Rudra JS, Tian YF, Jung JP, Collier JH. 2.  2010. A self-assembling peptide acting as an immune adjuvant. PNAS 107:622–27 [Google Scholar]
  3. Rudra JS, Sun T, Bird KC, Daniels MD, Gasiorowski JZ. 3.  et al. 2012. Modulating adaptive immune responses to peptide self-assemblies. ACS Nano 6:1557–64 [Google Scholar]
  4. Rudra JS, Mishra S, Chong AS, Mitchell RA, Nardin EH. 4.  et al. 2012. Self-assembled peptide nanofibers raising durable antibody responses against a malaria epitope. Biomaterials 33:6476–84 [Google Scholar]
  5. Chen J, Pompano RR, Santiago FW, Maillat L, Sciammas R. 5.  et al. 2013. The use of self-adjuvanting nanofiber vaccines to elicit high-affinity B cell responses to peptide antigens without inflammation. Biomaterials 34:8776–85 [Google Scholar]
  6. Hudalla GA, Modica JA, Tian YF, Rudra JS, Chong AS. 6.  et al. 2013. A self-adjuvanting supramolecular vaccine carrying a folded protein antigen. Adv. Healthc. Mater. 2:1114–19 [Google Scholar]
  7. Jung JP, Moyano JV, Collier JH. 7.  2011. Multifactorial optimization of endothelial cell growth using modular synthetic extracellular matrices. Integr. Biol. 3:185–96 [Google Scholar]
  8. Schroeder U, Graff A, Buchmeier S, Rigler P, Silvan U. 8.  et al. 2009. Peptide nanoparticles serve as a powerful platform for the immunogenic display of poorly antigenic actin determinants. J. Mol. Biol. 386:1368–81 [Google Scholar]
  9. Wang L, Hess A, Chang TZ, Wang Y-C, Champion JA. 9.  et al. 2014. Nanoclusters self-assembled from conformation-stabilized influenza M2e as broadly cross-protective influenza vaccines. Nanomedicine 10:473–82 [Google Scholar]
  10. Park J, Babensee JE. 10.  2012. Differential functional effects of biomaterials on dendritic cell maturation. Acta Biomater. 8:3606–17 [Google Scholar]
  11. Park J, Gerber MH, Babensee JE. 11.  2014. Phenotype and polarization of autologous t cells by biomaterial-treated dendritic cells. J. Biomed. Mater. Res. A 103:170–84 [Google Scholar]
  12. Babensee JE, Paranjpe A. 12.  2005. Differential levels of dendritic cell maturation on different biomaterials used in combination products. J. Biomed. Mater. Res. A 74:503–10 [Google Scholar]
  13. Ishii KJ, Coban C, Akira S. 13.  2005. Manifold mechanisms of toll-like receptor-ligand recognition. J. Clin. Immunol. 25:511–21 [Google Scholar]
  14. Yang Z, Hancock WS. 14.  2004. Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. J. Chromatogr. A 105379–88
  15. Reddy ST, Swartz MA, Hubbell JA. 15.  2006. Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol. 27:573–79 [Google Scholar]
  16. Shokouhi B, Coban C, Hasirci V, Aydin E, Dhanasingh A. 16.  et al. 2010. The role of multiple toll-like receptor signalling cascades on interactions between biomedical polymers and dendritic cells. Biomaterials 31:5759–71 [Google Scholar]
  17. Rogers TH, Babensee JE. 17.  2011. The role of integrins in the recognition and response of dendritic cells to biomaterials. Biomaterials 32:1270–79 [Google Scholar]
  18. Acharya AP, Dolgova NV, Clare-Salzler MJ, Keselowsky BG. 18.  2008. Adhesive substrate-modulation of adaptive immune responses. Biomaterials 29:4736–50 [Google Scholar]
  19. Matzelle MM, Babensee JE. 19.  2004. Humoral immune responses to model antigen co-delivered with biomaterials used in tissue engineering. Biomaterials 25:295–304 [Google Scholar]
  20. Bennewitz NL, Babensee JE. 20.  2005. The effect of the physical form of poly(lactic-co-glycolic acid) carriers on the humoral immune response to co-delivered antigen. Biomaterials 26:2991–99 [Google Scholar]
  21. Babensee JE. 21.  2008. Interaction of dendritic cells with biomaterials. Semin. Immunol. 20:101–8 [Google Scholar]
  22. Norton LW, Park J, Babensee JE. 22.  2010. Biomaterial adjuvant effect is attenuated by anti-inflammatory drug delivery or material selection. J. Control. Release 146:341–48 [Google Scholar]
  23. Yoo J-W, Doshi N, Mitragotri S. 23.  2011. Adaptive micro and nanoparticles: temporal control over carrier properties to facilitate drug delivery. Adv. Drug Deliv. Rev. 63:1247–56 [Google Scholar]
  24. Moghimi SM, Hunter AC, Murray JC. 24.  2001. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53:283–318 [Google Scholar]
  25. Kobiasi MA, Chua BY, Tonkin D, Jackson DC, Mainwaring DE. 25.  2012. Control of size dispersity of chitosan biopolymer microparticles and nanoparticles to influence vaccine trafficking and cell uptake. J. Biomed. Mater. Res. A 100:1859–67 [Google Scholar]
  26. Sieving A, Wu B, Mayton L, Nasser S, Wooley PH. 26.  2003. Morphological characteristics of total joint arthroplasty-derived ultra-high molecular weight polyethylene (UHMWPE) wear debris that provoke inflammation in a murine model of inflammation. J. Biomed. Mater. Res. A 64:457–64 [Google Scholar]
  27. Decuzzi P, Pasqualini R, Arap W, Ferrari M. 27.  2009. Intravascular delivery of particulate systems: does geometry really matter?. Pharm. Res. 26:235–43 [Google Scholar]
  28. Decuzzi P, Lee S, Bhushan B, Ferrari M. 28.  2005. A theoretical model for the margination of particles within blood vessels. Ann. Biomed. Eng. 33:179–90 [Google Scholar]
  29. Baumgartner HR. 29.  1973. The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi. Microvasc. Res. 5:167–79 [Google Scholar]
  30. Yoo J-W, Chambers E, Mitragotri S. 30.  2010. Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr. Pharm. Des. 16:2298–307 [Google Scholar]
  31. Ilium L, Davis SS, Wilson CG, Thomas NW, Frier M, Hardy JG. 31.  1982. Blood clearance and organ deposition of intravenously administered colloidal particles: the effects of particle size, nature and shape. Int. J. Pharm. 12:135–46 [Google Scholar]
  32. Champion JA, Katare YK, Mitragotri S. 32.  2007. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release 121:3–9 [Google Scholar]
  33. Petros RA, DeSimone JM. 33.  2010. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9:615–27 [Google Scholar]
  34. Champion JA, Mitragotri S. 34.  2009. Shape induced inhibition of phagocytosis of polymer particles. Pharm. Res. 26:244–49 [Google Scholar]
  35. Yin Y, Xia Y. 35.  2001. Self-assembly of monodispersed spherical colloids into complex aggregates with well-defined sizes, shapes, and structures. Adv. Mater. 13:267–71 [Google Scholar]
  36. Muro S, Garnacho C, Champion JA, Leferovich J, Gajewski C. 36.  et al. 2008. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol. Ther. 16:1450–58 [Google Scholar]
  37. Yoo J-W, Doshi N, Mitragotri S. 37.  2010. Endocytosis and intracellular distribution of PLGA particles in endothelial cells: effect of particle geometry. Macromol. Rapid Commun. 31:142–48 [Google Scholar]
  38. Zhang K, Fang H, Chen Z, Taylor J-SA, Wooley KL. 38.  2008. Shape effects of nanoparticles conjugated with cell-penetrating peptides (HIV Tat PTD) on CHO cell uptake. Bioconjug. Chem. 19:1880–87 [Google Scholar]
  39. Kodali VK, Roos W, Spatz JP, Curtis JE. 39.  2007. Cell-assisted assembly of colloidal crystallites. Soft Matter 3:337–48 [Google Scholar]
  40. Vaine CA, Patel MK, Zhu J, Lee E, Finberg RW. 40.  et al. 2013. Tuning innate immune activation by surface texturing of polymer microparticles: the role of shape in inflammasome activation. J. Immunol. 190:3525–32 [Google Scholar]
  41. Juliano RL, Stamp D. 41.  1975. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem. Biophys. Res. Commun. 63:651–58 [Google Scholar]
  42. Duan X, Li Y. 42.  2013. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9:1521–32 [Google Scholar]
  43. Vonarbourg A, Passirani C, Saulnier P, Benoit J-P. 43.  2006. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27:4356–73 [Google Scholar]
  44. Champion JA, Walker A, Mitragotri S. 44.  2008. Role of particle size in phagocytosis of polymeric microspheres. Pharm. Res. 25:1815–21 [Google Scholar]
  45. Davis ME, Chen ZG, Shin DM. 45.  2008. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7:771–82 [Google Scholar]
  46. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. 46.  2008. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5:505–15 [Google Scholar]
  47. Venturoli D, Rippe B. 47.  2005. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am. J. Physiol. Ren. Physiol. 288:F605–13 [Google Scholar]
  48. Yuan F. 48.  1998. Transvascular drug delivery in solid tumors. Semin. Radiat. Oncol. 8:164–75 [Google Scholar]
  49. Foged C, Brodin B, Frokjaer S, Sundblad A. 49.  2005. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm. 298:315–22 [Google Scholar]
  50. Tran KK, Shen H. 50.  2009. The role of phagosomal pH on the size-dependent efficiency of cross-presentation by dendritic cells. Biomaterials 30:1356–62 [Google Scholar]
  51. Hotaling NA, Cummings RD, Ratner DM, Babensee JE. 51.  2014. Molecular factors in dendritic cell responses to adsorbed glycoconjugates. Biomaterials 35:5862–74 [Google Scholar]
  52. Arvizo RR, Miranda OR, Moyano DF, Walden CA, Giri K. 52.  et al. 2011. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLOS ONE 6:e24374 [Google Scholar]
  53. He C, Hu Y, Yin L, Tang C, Yin C. 53.  2010. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657–66 [Google Scholar]
  54. Roser M, Fischer D, Kissel T. 54.  1998. Surface-modified biodegradable albumin nano- and microspheres. II: Effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur. J. Pharm. Biopharm. 46:255–63 [Google Scholar]
  55. Thiele L, Rothen-Rutishauser B, Jilek S, Wunderli-Allenspach H, Merkle HP, Walter E. 55.  2001. Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages?. J. Control. Release 76:59–71 [Google Scholar]
  56. Xu F, Yuan Y, Shan X, Liu C, Tao X. 56.  et al. 2009. Long-circulation of hemoglobin-loaded polymeric nanoparticles as oxygen carriers with modulated surface charges. Int. J. Pharm. 377:199–206 [Google Scholar]
  57. Xiao K, Li Y, Luo J, Lee JS, Xiao W. 57.  et al. 2011. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32:3435–46 [Google Scholar]
  58. Holzapfel V, Musyanovych A, Landfester K, Lorenz MR, Mailänder V. 58.  2005. Preparation of fluorescent carboxyl and amino functionalized polystyrene particles by miniemulsion polymerization as markers for cells. Macromol. Chem. Phys. 206:2440–49 [Google Scholar]
  59. Musyanovych A, Dausend J, Dass M, Walther P, Mailänder V, Landfester K. 59.  2011. Criteria impacting the cellular uptake of nanoparticles: a study emphasizing polymer type and surfactant effects. Acta Biomater. 7:4160–68 [Google Scholar]
  60. Kaminskas LM, Boyd BJ. 60.  2011. Nanosized drug delivery vectors and the reticuloendothelial system. Intracellular Delivery A Prokop 155–78 Dordrecht, Neth: Springer [Google Scholar]
  61. Sheng Y, Liu C, Yuan Y, Tao X, Yang F. 61.  et al. 2009. Long-circulating polymeric nanoparticles bearing a combinatorial coating of PEG and water-soluble chitosan. Biomaterials 30:2340–48 [Google Scholar]
  62. Gref R, Domb A, Quellec P, Blunk T, Müller RH. 62.  et al. 1995. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv. Drug Deliv. Rev. 16:215–33 [Google Scholar]
  63. Zahr AS, Davis CA, Pishko MV. 63.  2006. Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). Langmuir 22:8178–85 [Google Scholar]
  64. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. 64.  1994. Biodegradable long-circulating polymeric nanospheres. Science 263:1600–3 [Google Scholar]
  65. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV. 65.  et al. 2009. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8:543–57 [Google Scholar]
  66. Storm G, Belliot SO, Daemen T, Lasic DD. 66.  1995. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv. Drug Deliv. Rev. 17:31–48 [Google Scholar]
  67. Owens DE 3rd, Peppas NA. 67.  2006. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307:93–102 [Google Scholar]
  68. Petros RA, DeSimone JM. 68.  2010. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9:615–27 [Google Scholar]
  69. Hotaling NA, Ratner DM, Cummings RD, Babensee JE. 69.  2014. Presentation modality of glycoconjugates modulates dendritic cell phenotype. Biomater. Sci. 2:1426–39 [Google Scholar]
  70. Shibata Y, Kogiso M, Huang C-J, Nouri-Shirazi M, Mizoguchi E, Dorey CK. 70.  2012. Macrophage chitin binding proteins in phagocytosis and M1 activation in response to chitin microparticles. J. Immunol. 188:172.27 [Google Scholar]
  71. Link A, Zabel F, Schnetzler Y, Titz A, Brombacher F, Bachmann MF. 71.  2012. Innate immunity mediates follicular transport of particulate but not soluble protein antigen. J. Immunol. 188:3724–33 [Google Scholar]
  72. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H. 72.  et al. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9:847–56 [Google Scholar]
  73. Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A. 73.  et al. 2010. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. PNAS 107:19449–54 [Google Scholar]
  74. Demento SL, Eisenbarth SC, Foellmer HG, Platt C, Caplan MJ. 74.  et al. 2009. Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 27:3013–21 [Google Scholar]
  75. Demento SL, Bonafé N, Cui W, Kaech SM, Caplan MJ. 75.  et al. 2010. TLR9-targeted biodegradable nanoparticles as immunization vectors protect against West Nile encephalitis. J. Immunol. 185:2989–97 [Google Scholar]
  76. Jewell CM, López SCB, Irvine DJ. 76.  2011. In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles. PNAS 108:15745–50 [Google Scholar]
  77. Duthie MS, Windish HP, Fox CB, Reed SG. 77.  2011. Use of defined TLR ligands as adjuvants within human vaccines. Immunol. Rev. 239:178–96 [Google Scholar]
  78. Moon JJ, Suh H, Li AV, Ockenhouse CF, Yadava A, Irvine DJ. 78.  2012. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. PNAS 109:1080–85 [Google Scholar]
  79. Moon JJ, Suh H, Bershteyn A, Stephan MT, Liu H. 79.  et al. 2011. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat. Mater. 10:243–51 [Google Scholar]
  80. Sánchez A, Tobío M, González L, Fabra A, Alonso MJ. 80.  2003. Biodegradable micro- and nanoparticles as long-term delivery vehicles for interferon-α. Eur. J. Pharm. Sci. 18:221–29 [Google Scholar]
  81. Chen L, Apte RN, Cohen S. 81.  1997. Characterization of PLGA microspheres for the controlled delivery of IL-1α for tumor immunotherapy. J. Control. Release 43:261–72 [Google Scholar]
  82. Hora MS, Rana RK, Nunberg JH, Tice TR, Gilley RM, Hudson ME. 82.  1990. Controlled release of interleukin-2 from biodegradable microspheres. Nat. Biotechnol. 8:755–58 [Google Scholar]
  83. Li Y-P, Pei Y-Y, Zhou Z-H, Zhang X-Y, Gu Z-H. 83.  et al. 2001. PEGylated polycyanoacrylate nanoparticles as tumor necrosis factor-α carriers. J. Control. Release 71:287–96 [Google Scholar]
  84. Golumbek PT, Azhari R, Jaffee EM, Levitsky HI, Lazenby A. 84.  et al. 1993. Controlled release, biodegradable cytokine depots: a new approach in cancer vaccine design. Cancer Res. 53:5841–44 [Google Scholar]
  85. Lu L, Stamatas GN, Mikos AG. 85.  2000. Controlled release of transforming growth factor β1 from biodegradable polymer microparticles. J. Biomed. Mater. Res. 50:440–51 [Google Scholar]
  86. Demento SL, Siefert AL, Bandyopadhyay A, Sharp FA, Fahmy TM. 86.  2011. Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol. 29:294–306 [Google Scholar]
  87. St. John AL, Chan CY, Staats HF, Leong KW, Abraham SN. 87.  2012. Synthetic mast cell granules as adjuvants to promote and polarize immunity in lymph nodes. Nat. Mater. 11:250–57 [Google Scholar]
  88. Bielekova B, Goodwin B, Richert N, Cortese I, Kondo T. 88.  et al. 2000. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat. Med. 6:1167–75 [Google Scholar]
  89. Freedman MS, Bar-Or A, Oger J, Traboulsee A, Patry D. 89.  et al. 2011. A phase III study evaluating the efficacy and safety of MBP8298 in secondary progressive MS. Neurology 77:1551–60 [Google Scholar]
  90. Smith CE, Eagar TN, Strominger JL, Miller SD. 90.  2005. Differential induction of IgE-mediated anaphylaxis after soluble versus cell-bound tolerogenic peptide therapy of autoimmune encephalomyelitis. PNAS 102:9595–600 [Google Scholar]
  91. Look M, Stern E, Wang QA, DiPlacido LD, Kashgarian M. 91.  et al. 2013. Nanogel-based delivery of mycophenolic acid ameliorates systemic lupus erythematosus in mice. J. Clin. Investig. 123:1741–49 [Google Scholar]
  92. Schweingruber N, Haine A, Tiede K, Karabinskaya A, van den Brandt J. 92.  et al. 2011. Liposomal encapsulation of glucocorticoids alters their mode of action in the treatment of experimental autoimmune encephalomyelitis. J. Immunol. 187:4310–18 [Google Scholar]
  93. Thomas TP, Goonewardena SN, Majoros IJ, Kotlyar A, Cao Z. 93.  et al. 2011. Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheumatol. 63:2671–80 [Google Scholar]
  94. Zhao H, Kiptoo P, Williams TD, Siahaan TJ, Topp EM. 94.  2010. Immune response to controlled release of immunomodulating peptides in a murine experimental autoimmune encephalomyelitis (EAE) model. J. Control. Release 141:145–52 [Google Scholar]
  95. Metcalfe SM, Watson TJ, Shurey S, Adams E, Green CJ. 95.  2005. Leukemia inhibitory factor is linked to regulatory transplantation tolerance. Transplantation 79:726–30 [Google Scholar]
  96. Park J, Gao W, Whiston R, Strom TB, Metcalfe S, Fahmy TM. 96.  2011. Modulation of CD4+ T lymphocyte lineage outcomes with targeted, nanoparticle-mediated cytokine delivery. Mol. Pharm. 8:143–52 [Google Scholar]
  97. Mueller DL. 97.  2010. Mechanisms maintaining peripheral tolerance. Nat. Immunol. 11:21–27 [Google Scholar]
  98. Hochreiter-Hufford A, Ravichandran KS. 98.  2013. Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol. 5:a008748 [Google Scholar]
  99. Luo XR, Pothoven KL, McCarthy D, DeGutes M, Martin A. 99.  et al. 2008. ECDI-fixed allogeneic splenocytes induce donor-specific tolerance for long-term survival of islet transplants via two distinct mechanisms. PNAS 105:14527–32 [Google Scholar]
  100. Getts DR, Martin AJ, McCarthy DP, Terry RL, Hunter ZN. 100.  et al. 2012. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat. Biotechnol. 30:1217–24 [Google Scholar]
  101. Tsai SE, Shameli A, Yamanouchi J, Clemente-Casares X, Wang JG. 101.  et al. 2010. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity 32:568–80 [Google Scholar]
  102. Jhunjhunwala S, Chen LC, Nichols EE, Thomson AW, Raimondi G, Little SR. 102.  2013. All-trans retinoic acid and rapamycin synergize with transforming growth factor-β1 to induce regulatory T cells but confer different migratory capacities. J. Leukoc. Biol. 94:981–89 [Google Scholar]
  103. Jhunjhunwala S, Balmert SC, Raimondi G, Dons E, Nichols EE. 103.  et al. 2012. Controlled release formulations of IL-2, TGF-β1 and rapamycin for the induction of regulatory T cells. J. Control. Release 159:78–84 [Google Scholar]
  104. Yeste A, Nadeau M, Burns EJ, Weiner HL, Quintana FJ. 104.  2012. Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. PNAS 109:11270–75 [Google Scholar]
  105. Hume PS, He J, Haskins K, Anseth KS. 105.  2012. Strategies to reduce dendritic cell activation through functional biomaterial design. Biomaterials 33:3615–25 [Google Scholar]
  106. Lammermann T, Sixt M. 106.  2008. The microanatomy of T-cell responses. Immunol. Rev. 221:26–43 [Google Scholar]
  107. Pape KA, Catron DM, Itano AA, Jenkins MK. 107.  2007. The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity 26:491–502 [Google Scholar]
  108. Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. 108.  2006. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J. Control. Release 112:26–34 [Google Scholar]
  109. Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ. 109.  et al. 2007. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 25:1159–64 [Google Scholar]
  110. Rehor A, Hubbell JA, Tirelli N. 110.  2005. Oxidation-sensitive polymeric nanoparticles. Langmuir 21:411–17 [Google Scholar]
  111. Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J. 111.  et al. 2004. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 173:3148–54 [Google Scholar]
  112. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. 112.  2008. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 38:1404–13 [Google Scholar]
  113. Joshi VB, Geary SM, Salem AK. 113.  2013. Biodegradable particles as vaccine delivery systems: size matters. AAPS J. 15:85–94 [Google Scholar]
  114. Holmgren J, Czerkinsky C. 114.  2005. Mucosal immunity and vaccines. Nat. Med. 11:S45–53 [Google Scholar]
  115. Neutra MR, Kozlowski PA. 115.  2006. Mucosal vaccines: the promise and the challenge. Nat. Rev. Immunol. 6:148–58 [Google Scholar]
  116. Nembrini C, Stano A, Dane KY, Ballester M, van der Vlies AJ. 116.  et al. 2011. Nanoparticle conjugation of antigen enhances cytotoxic T-cell responses in pulmonary vaccination. PNAS 108:E989–97 [Google Scholar]
  117. Ballester M, Nembrini C, Dhar N, de Titta A, de Piano C. 117.  et al. 2011. Nanoparticle conjugation and pulmonary delivery enhance the protective efficacy of Ag85B and CpG against tuberculosis. Vaccine 29:6959–66 [Google Scholar]
  118. Ensign LM, Tang BC, Wang Y-Y, Tse TA, Hoen T. 118.  et al. 2012. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci. Transl. Med. 4:138ra79 [Google Scholar]
  119. Lai SK, Wang YY, Hanes J. 119.  2009. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61:158–71 [Google Scholar]
  120. Lai SK, Wang Y-Y, Hida K, Cone R, Hanes J. 120.  2010. Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. PNAS 107:598–603 [Google Scholar]
  121. Thornton EE, Looney MR, Bose O, Sen D, Sheppard D. 121.  et al. 2012. Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung. J. Exp. Med. 209:1183–99 [Google Scholar]
  122. Li AV, Moon JJ, Abraham W, Suh H, Elkhader J. 122.  et al. 2013. Generation of effector memory T cell-based mucosal and systemic immunity with pulmonary nanoparticle vaccination. Sci. Transl. Med. 5:204ra130 [Google Scholar]
  123. Kuo-Haller P, Cu Y, Blum J, Appleton JA, Saltzman WM. 123.  2010. Vaccine delivery by polymeric vehicles in the mouse reproductive tract induces sustained local and systemic immunity. Mol. Pharm. 7:1585–95 [Google Scholar]
  124. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P. 124.  et al. 2002. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–54 [Google Scholar]
  125. Rosenberg SA, Yang JC, Restifo NP. 125.  2004. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10:909–15 [Google Scholar]
  126. Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ. 126.  et al. 2008. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med. 358:2698–703 [Google Scholar]
  127. Mackinnon S, Thomson K, Verfuerth S, Peggs K, Lowdell M. 127.  2008. Adoptive cellular therapy for cytomegalovirus infection following allogeneic stem cell transplantation using virus-specific T cells. Blood Cells Mol. Dis. 40:63–67 [Google Scholar]
  128. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC. 128.  et al. 2006. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–29 [Google Scholar]
  129. Berger C, Berger M, Hackman RC, Gough M, Elliott C. 129.  et al. 2009. Safety and immunologic effects of IL-15 administration in nonhuman primates. Blood 114:2417–26 [Google Scholar]
  130. Thompson JA, Lee DJ, Cox WW, Lindgren CG, Collins C. 130.  et al. 1987. Recombinant interleukin-2 toxicity, pharmacokinetics, and immunomodulatory effects in a phase I trial. Cancer Res. 47:4202–7 [Google Scholar]
  131. Stephan MT, Moon JJ, Um SH, Bershteyn A, Irvine DJ. 131.  2010. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16:1035–41 [Google Scholar]
  132. Stephan MT, Stephan SB, Bak P, Chen J, Irvine DJ. 132.  2012. Synapse-directed delivery of immunomodulators using T-cell-conjugated nanoparticles. Biomaterials 33:5776–87 [Google Scholar]
  133. Zheng Y, Stephan MT, Gai SA, Abraham W, Shearer A, Irvine DJ. 133.  2013. In vivo targeting of adoptively transferred T-cells with antibody- and cytokine-conjugated liposomes. J. Control. Release 172:426–35 [Google Scholar]
  134. Irvine DJ, Stachowiak AN, Hori Y. 134.  2008. Lymphoid tissue engineering: invoking lymphoid tissue neogenesis in immunotherapy and models of immunity. Semin. Immunol. 20:137–46 [Google Scholar]
  135. Cupedo T, Stroock A, Coles M. 135.  2012. Application of tissue engineering to the immune system: development of artificial lymph nodes. Front. Immunol. 3:1–6 [Google Scholar]
  136. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. 136.  2012. Humanized mice for immune system investigation: progress, promise and challenges. Nat. Rev. Immunol. 12:786–98 [Google Scholar]
  137. Scadden DT, Poznansky MC, Evans RH, Foxall RB, Olszak IT. 137.  et al. 2000. Efficient generation of human T cells from a tissue-engineered thymic organoid. Nat. Biotechnol. 18:729–34 [Google Scholar]
  138. Taqvi S, Dixit L, Roy K. 138.  2006. Biomaterial-based notch signaling for the differentiation of hematopoietic stem cells into T cells. J. Biomed. Mater. Res. A 79:689–97 [Google Scholar]
  139. Mebius RE. 139.  2003. Organogenesis of lymphoid tissues. Nat. Rev. Immunol. 3:292–303 [Google Scholar]
  140. Drayton DL, Liao S, Mounzer RH, Ruddle NH. 140.  2006. Lymphoid organ development: from ontogeny to neogenesis. Nat. Immunol. 7:344–53 [Google Scholar]
  141. Suematsu S, Watanabe T. 141.  2004. Generation of a synthetic lymphoid tissue-like organoid in mice. Nat. Biotechnol. 22:1539–45 [Google Scholar]
  142. Tan JKH, Watanabe T. 142.  2010. Artificial engineering of secondary lymphoid organs. Advances in Immunology 105 FW Alt 131–157 Amsterdam: Elsevier [Google Scholar]
  143. Okamoto N, Chihara R, Shimizu C, Nishimoto S, Watanabe T. 143.  2007. Artificial lymph nodes induce potent secondary immune responses in naive and immunodeficient mice. J. Clin. Investig. 117:997–1007 [Google Scholar]
  144. Giese C, Lubitz A, Demmler CD, Reuschel J, Bergner K, Marx U. 144.  2010. Immunological substance testing on human lymphatic micro-organoids in vitro. J. Biotechnol. 148:38–45 [Google Scholar]
  145. Giese C, Demmler CD, Ammer R, Hartmann S, Lubitz A. 145.  et al. 2006. A human lymph node in vitro—challenges and progress. Artif. Organs 30:803–8 [Google Scholar]
  146. Higbee RG, Byers AM, Dhir V, Drake D, Fahlenkamp HG. 146.  et al. 2009. An immunologic model for rapid vaccine assessment—a clinical trial in a test tube. Altern. Lab. Anim. 37:Suppl. 119–27 [Google Scholar]
  147. Woolf E, Grigorova I, Sagiv A, Grabovsky V, Feigelson SW. 147.  et al. 2007. Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nat. Immunol. 8:1076–85 [Google Scholar]
  148. Stachowiak AN, Irvine DJ. 148.  2008. Inverse opal hydrogel-collagen composite scaffolds as a supportive microenvironment for immune cell migration. J. Biomed. Mater. Res. A 85:815–28 [Google Scholar]
  149. Stachowiak AN, Bershteyn A, Tzatzalos E, Irvine DJ. 149.  2005. Bioactive hydrogels with an ordered cellular structure combine interconnected macroporosity and robust mechanical properties. Adv. Mater. 17:399–403 [Google Scholar]
  150. Cyster JG. 150.  2005. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23:127–59 [Google Scholar]
  151. Tomei AA, Siegert S, Britschgi MR, Luther SA, Swartz MA. 151.  2009. Fluid flow regulates stromal cell organization and CCL21 expression in a tissue-engineered lymph node microenvironment. J. Immunol. 183:4273–83 [Google Scholar]
  152. Ali OA, Emerich D, Dranoff G, Mooney DJ. 152.  2009. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci. Transl. Med. 1:8ra19 [Google Scholar]
  153. Ali OA, Huebsch N, Cao L, Dranoff G, Mooney DJ. 153.  2009. Infection-mimicking materials to program dendritic cells in situ. Nat. Mater. 8:151–58 [Google Scholar]
  154. Kim J, Li WA, Choi Y, Lewin SA, Verbeke CS. 154.  et al. 2015. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat. Biotechnol. 33:64–72 [Google Scholar]
  155. Singh A, Suri S, Roy K. 155.  2009. In-situ crosslinking hydrogels for combinatorial delivery of chemokines and siRNA-DNA carrying microparticles to dendritic cells. Biomaterials 30:5187–200 [Google Scholar]
  156. Singh A, Qin H, Fernandez I, Wei J, Lin J. 156.  et al. 2011. An injectable synthetic immune-priming center mediates efficient T-cell class switching and T-helper 1 response against B cell lymphoma. J. Control. Release 155:184–92 [Google Scholar]
  157. Singh A, Nie H, Ghosn B, Qin H, Kwak LW, Roy K. 157.  2008. Efficient modulation of T-cell response by dual-mode, single-carrier delivery of cytokine-targeted siRNA and DNA vaccine to antigen-presenting cells. Mol. Ther. 16:2011–21 [Google Scholar]
  158. Park J, Wrzesinski SH, Stern E, Look M, Criscione J. 158.  et al. 2012. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat. Mater. 11:895–905 [Google Scholar]
  159. Hori Y, Stern PJ, Hynes RO, Irvine DJ. 159.  2009. Engulfing tumors with synthetic extracellular matrices for cancer immunotherapy. Biomaterials 30:6757–67 [Google Scholar]
  160. Hori Y, Winans AM, Irvine DJ. 160.  2009. Modular injectable matrices based on alginate solution/microsphere mixtures that gel in situ and co-deliver immunomodulatory factors. Acta Biomater. 5:969–82 [Google Scholar]
  161. Hori Y, Winans AM, Huang CC, Horrigan EM, Irvine DJ. 161.  2008. Injectable dendritic cell-carrying alginate gels for immunization and immunotherapy. Biomaterials 29:3671–82 [Google Scholar]
  162. González PA, Carreño LJ, Coombs D, Mora JE, Palmieri E. 162.  et al. 2005. T cell receptor binding kinetics required for T cell activation depend on the density of cognate ligand on the antigen-presenting cell. PNAS 102:4824–29 [Google Scholar]
  163. Andersen PS, Menné C, Mariuzza RA, Geisler C, Karjalainen K. 163.  2001. A response calculus for immobilized T cell receptor ligands. J. Biol. Chem. 276:49125–32 [Google Scholar]
  164. Anderson AO, Shaw S. 164.  2005. Conduit for privileged communications in the lymph node. Immunity 22:3–5 [Google Scholar]
  165. Fadel TR, Steenblock ER, Stern E, Li N, Wang X. 165.  et al. 2008. Enhanced cellular activation with single walled carbon nanotube bundles presenting antibody stimuli. Nano Lett. 8:2070–76 [Google Scholar]
  166. Fadel TR, Li N, Shah S, Look M, Pfefferle LD. 166.  et al. 2013. Adsorption of multimeric T cell antigens on carbon nanotubes: effect on protein structure and antigen-specific T cell stimulation. Small 9:666–72 [Google Scholar]
  167. Sheng K-C, Kalkanidis M, Pouniotis DS, Esparon S, Tang CK. 167.  et al. 2008. Delivery of antigen using a novel mannosylated dendrimer potentiates immunogenicity in vitro and in vivo. Eur. J. Immunol. 38:424–36 [Google Scholar]
  168. Pisani MJ, Wheate NJ, Keene FR, Aldrich-Wright JR, Collins JG. 168.  2009. Anionic PAMAM dendrimers as drug delivery vehicles for transition metal-based anticancer drugs. J. Inorg. Biochem. 103:373–80 [Google Scholar]
  169. Fahmy TM, Schneck JP, Saltzman WM. 169.  2007. A nanoscopic multivalent antigen-presenting carrier for sensitive detection and drug delivery to T cells. Nanomed. Nanotechnol. Biol. Med. 3:75–85 [Google Scholar]
  170. Zhou J, Neff CP, Liu X, Zhang J, Li H. 170.  et al. 2011. Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol. Ther. 19:2228–38 [Google Scholar]
  171. García-Vallejo JJ, Ambrosini M, Overbeek A, van Riel WE, Bloem K. 171.  et al. 2013. Multivalent glycopeptide dendrimers for the targeted delivery of antigens to dendritic cells. Mol. Immunol. 53:387–97 [Google Scholar]
  172. Steenblock ER, Fadel T, Labowsky M, Pober JS, Fahmy TM. 172.  2011. An artificial antigen-presenting cell with paracrine delivery of IL-2 impacts the magnitude and direction of the T cell response. J. Biol. Chem. 286:34883–92 [Google Scholar]
  173. Demento S, Steenblock ER, Fahmy TM. 173.  2009. Biomimetic approaches to modulating the T cell immune response with nano- and micro- particles. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009:1161–66 [Google Scholar]
  174. Fernandez I, Ooi TP, Roy K. 174.  2013. Generation of functional, antigen-specific CD8+ human T cells from cord-blood stem cells using exogenous notch and tetramer-TCR signaling. Stem Cell 32:93–104 [Google Scholar]
  175. Pulendran B, Tang H, Manicassamy S. 175.  2010. Programming dendritic cells to induce TH2 and tolerogenic responses. Nat. Immunol. 11:647–55 [Google Scholar]
  176. Kawai T, Akira S. 176.  2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–50 [Google Scholar]
  177. Chueh F-Y, Yu C-L. 177.  2012. Engagement of T-cell antigen receptor and CD4/CD8 co-receptors induces prolonged stat activation through autocrine/paracrine stimulation in human primary T cells. Biochem. Biophys. Res. Commun. 426:242–46 [Google Scholar]
  178. Ng THS, Britton GJ, Hill EV, Verhagen J, Burton BR, Wraith DC. 178.  2013. Regulation of adaptive immunity: the role of interleukin-10. Front. Immunol. 4:129 [Google Scholar]
  179. Pescatori M, Bedognetti D, Venturelli E, Ménard-Moyon C, Bernardini C. 179.  et al. 2013. Functionalized carbon nanotubes as immunomodulator systems. Biomaterials 34:4395–403 [Google Scholar]
  180. Aldinucci A, Turco A, Biagioli T, Toma FM, Bani D. 180.  et al. 2013. Carbon nanotube scaffolds instruct human dendritic cells: modulating immune responses by contacts at the nanoscale. Nano Lett. 13:6098–105 [Google Scholar]
  181. Forte G, Pagliari S, Ebara M, Uto K, Tam JKV. 181.  et al. 2012. Substrate stiffness modulates gene expression and phenotype in neonatal cardiomyocytes in vitro. Tissue Eng. Part A 18:1837–48 [Google Scholar]
  182. Garrigues GE, Cho DR, Rubash HE, Goldring SR, Herndon JH, Shanbhag AS. 182.  2005. Gene expression clustering using self-organizing maps: analysis of the macrophage response to particulate biomaterials. Biomaterials 26:2933–45 [Google Scholar]
  183. Mesure L, De Visscher G, Vranken I, Lebacq A, Flameng W. 183.  2010. Gene expression study of monocytes/macrophages during early foreign body reaction and identification of potential precursors of myofibroblasts. PLOS ONE 5e12949
  184. Kou PM, Babensee JE. 184.  2010. Validation of a high-throughput methodology to assess the effects of biomaterials on dendritic cell phenotype. Acta Biomater. 6:2621–30 [Google Scholar]
  185. Kou PM, Schwartz Z, Boyan BD, Babensee JE. 185.  2011. Dendritic cell responses to surface properties of clinical titanium surfaces. Acta Biomater. 7:1354–63 [Google Scholar]
  186. Kou PM, Pallassana N, Bowden R, Cunningham B, Joy A. 186.  et al. 2012. Predicting biomaterial property–dendritic cell phenotype relationships from the multivariate analysis of responses to polymethacrylates. Biomaterials 33:1699–713 [Google Scholar]
  187. Garcia-Cordero JL, Nembrini C, Stano A, Hubbell JA, Maerkl SJ. 187.  2013. A high-throughput nanoimmunoassay chip applied to large-scale vaccine adjuvant screening. Integr. Biol. 5:650–58 [Google Scholar]
  188. Yang J, Mei Y, Hook AL, Taylor M, Urquhart AJ. 188.  et al. 2010. Polymer surface functionalities that control human embryoid body cell adhesion revealed by high throughput surface characterization of combinatorial material microarrays. Biomaterials 31:8827–38 [Google Scholar]
  189. Ali OA, Mooney DJ. 189.  2011. Immunologically active biomaterials for cancer therapy. Curr. Top. Microbiol. Immunol. 344:279–97 [Google Scholar]
  190. Moon JJ, Huang B, Irvine DJ. 190.  2012. Engineering nano- and microparticles to tune immunity. Adv. Mater. 24:3724–46 [Google Scholar]
  191. Nakaya HI, Wrammert J, Lee EK, Racioppi L, Marie-Kunze S. 191.  et al. 2011. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol. 12:786–95 [Google Scholar]
  192. Franco LM, Bucasas KL, Wells JM, Niño D, Wang X. 192.  et al. 2013. Integrative genomic analysis of the human immune response to influenza vaccination. eLife 2:e00299 [Google Scholar]
  193. Flach TL, Ng G, Hari A, Desrosiers MD, Zhang P. 193.  et al. 2011. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat. Med. 17:479–87 [Google Scholar]
  194. Li H, Li Y, Jiao J, Hu HM. 194.  2011. Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat. Nanotechnol. 6:645–50 [Google Scholar]
  195. Lambrecht BN, Kool M, Willart MA, Hammad H. 195.  2009. Mechanism of action of clinically approved adjuvants. Curr. Opin. Immunol. 21:23–29 [Google Scholar]
  196. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS. 196.  et al. 2011. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17:4550–57 [Google Scholar]
  197. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA. 197.  et al. 2011. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363:711–23 [Google Scholar]
  198. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC. 198.  et al. 2012. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366:2443–54 [Google Scholar]
  199. Mellman I, Coukos G, Dranoff G. 199.  2011. Cancer immunotherapy comes of age. Nature 480:480–89 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071813-104814
Loading
/content/journals/10.1146/annurev-bioeng-071813-104814
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error