Cell signaling pathways control cells' responses to their environment through an intricate network of proteins and small molecules partitioned by intracellular structures, such as the cytoskeleton and nucleus. Our understanding of these pathways has been revised recently with the advent of more advanced experimental techniques; no longer are signaling pathways viewed as linear cascades of information flowing from membrane-bound receptors to the nucleus. Instead, such pathways must be understood in the context of networks, and studying such networks requires an integration of computational and experimental approaches. This understanding is becoming more important in designing novel therapies for diseases such as cancer. Using the MAPK (mitogen-activated protein kinase) and PI3K (class I phosphoinositide-3′ kinase) pathways as case studies of cellular signaling, we give an overview of these pathways and their functions. We then describe, using a number of case studies, how computational modeling has aided in understanding these pathways' deregulation in cancer, and how such understanding can be used to optimally tailor current therapies or help design new therapies against cancer.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Seger R, Krebs EG. 1.  1995. The MAPK signaling cascade. FASEB J. 9:9726–35 [Google Scholar]
  2. Creixell P, Schoof EM, Erler JT, Linding R. 2.  2012. Navigating cancer network attractors for tumor-specific therapy. Nat. Biotechnol. 30:9842–48 [Google Scholar]
  3. Lim W, Mayer B, Pawson T. 3.  2014. Cell Signaling: Principles And Mechanisms New York: Garland Sci. [Google Scholar]
  4. Snijder B, Pelkmans L. 4.  2011. Origins of regulated cell-to-cell variability. Nat. Rev. Mol. Cell Biol. 12:2119–25 [Google Scholar]
  5. Altschuler SJ, Wu LF. 5.  2010. Cellular heterogeneity: Do differences make a difference?. Cell 141:4559–63 [Google Scholar]
  6. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F. 6.  et al. 2010. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:169–80 [Google Scholar]
  7. Robinson DR, Wu YM, Lin SF. 7.  2000. The protein tyrosine kinase family of the human genome. Oncogene 19:495548–57 [Google Scholar]
  8. Tanizaki J, Okamoto I, Sakai K, Nakagawa K. 8.  2011. Differential roles of trans-phosphorylated EGFR, HER2, HER3, and RET as heterodimerisation partners of MET in lung cancer with MET amplification. Br. J. Cancer 105:6807–13 [Google Scholar]
  9. Guo A, Villen J, Kornhauser J, Lee KA, Stokes MP. 9.  et al. 2008. Signaling networks assembled by oncogenic EGFR and c-Met. PNAS 105:2692–97 [Google Scholar]
  10. Borisov N, Aksamitiene E, Kiyatkin A, Legewie S, Berkhout J. 10.  et al. 2009. Systems-level interactions between insulin-EGF networks amplify mitogenic signaling. Mol. Syst. Biol. 5:256 [Google Scholar]
  11. Gujral TS, Karp RL, Finski A, Chan M, Schwartz PE. 11.  et al. 2012. Profiling phospho-signaling networks in breast cancer using reverse-phase protein arrays. Oncogene 32:293470–76 [Google Scholar]
  12. Ferrell JE. 12.  1999. Building a cellular switch: more lessons from a good egg. BioEssays 21:10866–70 [Google Scholar]
  13. Albeck JG, Mills GB, Brugge JS. 13.  2013. Frequency-modulated pulses of ERK activity transmit quantitative proliferation signals. Mol. Cell 49:2249–61 [Google Scholar]
  14. Sturm OE, Orton R, Grindlay J, Birtwistle M, Vyshemirsky V. 14.  et al. 2010. The mammalian MAPK/ERK pathway exhibits properties of a negative feedback amplifier. Sci. Signal. 3:153ra90 [Google Scholar]
  15. Kiel C, Serrano L. 15.  2012. Challenges ahead in signal transduction: MAPK as an example. Curr. Opin. Biotechnol. 23:3305–14 [Google Scholar]
  16. Hanahan D, Weinberg RA. 16.  2011. Hallmarks of cancer: the next generation. Cell 144:5646–74 [Google Scholar]
  17. Stratton MR, Campbell PJ, Futreal PA. 17.  2009. The cancer genome. Nature 458:7239719–24 [Google Scholar]
  18. Dhomen N, Marais R. 18.  2007. New insight into BRAF mutations in cancer. Curr. Opin. Genet. Dev. 17:131–39 [Google Scholar]
  19. Marks JL, Gong Y, Chitale D, Golas B, McLellan MD. 19.  et al. 2008. Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Cancer Res. 68:145524–28 [Google Scholar]
  20. Choi YL, Soda M, Ueno T, Hamada T, Haruta H. 20.  et al. 2012. Oncogenic MAP2K1 mutations in human epithelial tumors. Carcinogenesis 33:5956–61 [Google Scholar]
  21. De Luca A, Maiello MR, D'Alessio A, Pergameno M, Normanno N. 21.  2012. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin. Ther. Targets 16:Suppl. 2S17–27 [Google Scholar]
  22. Clark JP, Cooper CS. 22.  2009. ETS gene fusions in prostate cancer. Nat. Rev. Urol. 6:8429–39 [Google Scholar]
  23. Mehra R, Dhanasekaran SM, Palanisamy N, Vats P, Cao X. 23.  et al. 2013. Comprehensive analysis of ETS family members in melanoma by fluorescence in situ hybridization reveals recurrent ETV1 amplification. Transl. Oncol. 6:4405–12 [Google Scholar]
  24. Klamt S, Saez-Rodriguez J, Lindquist JA, Simeoni L, Gilles ED. 24.  2006. A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinform. 7:56 [Google Scholar]
  25. Smalley KSM, Lioni M, Dalla Palma M, Xiao M, Desai B. 25.  et al. 2008. Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol. Cancer Ther. 7:92876–83 [Google Scholar]
  26. Cohen P. 26.  2002. Protein kinases—the major drug targets of the twenty-first century?. Nat. Rev. Drug Discov. 1:4309–15 [Google Scholar]
  27. Weinstein IB, Joe A. 27.  2008. Oncogene addiction. Cancer Res. 68:93077–803080 [Google Scholar]
  28. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D. 28.  et al. 2012. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366:10883–92 [Google Scholar]
  29. Corcoran RB, Dias-Santagata D, Bergethon K, Iafrate AJ, Settleman J, Engelman JA. 29.  2010. BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. Sci. Signal. 3:149ra84 [Google Scholar]
  30. Little AS, Balmanno K, Sale MJ, Newman S, Dry JR. 30.  et al. 2011. Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells. Sci. Signal. 4:166ra17 [Google Scholar]
  31. Singh DK, Ku C-J, Wichaidit C, Steininger RJ, Wu LF, Altschuler SJ. 31.  2010. Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities. Mol. Syst. Biol. 6:369 [Google Scholar]
  32. Cohen AA, Geva-Zatorsky N, Eden E, Frenkel-Morgenstern M, Issaeva I. 32.  et al. 2008. Dynamic proteomics of individual cancer cells in response to a drug. Science 322:59071511–16 [Google Scholar]
  33. Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E. 33.  2009. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nat. Cell Biol. 11:111287–96 [Google Scholar]
  34. Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK. 34.  2009. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459:7245428–32 [Google Scholar]
  35. Little AS, Smith PD, Cook SJ. 35.  2013. Mechanisms of acquired resistance to ERK1/2 pathway inhibitors. Oncogene 32:101207–15 [Google Scholar]
  36. Laplante M, Sabatini DM. 36.  2012. mTOR signaling in growth control and disease. Cell 149:2274–93 [Google Scholar]
  37. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R. 37.  et al. 2012. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483:7387100–3 [Google Scholar]
  38. Lito P, Pratilas CA, Joseph EW, Tadi M, Halilovic E. 38.  et al. 2012. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22:5668–82 [Google Scholar]
  39. Duncan JS, Whittle MC, Nakamura K, Abell AN, Midland AA. 39.  et al. 2012. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149:2307–21 [Google Scholar]
  40. Kholodenko B, Yaffe MB, Kolch W. 40.  2012. Computational approaches for analyzing information flow in biological networks. Sci. Signal. 5:220re1 [Google Scholar]
  41. Schoeberl B, Pace EA, Fitzgerald JB, Harms BD, Xu L. 41.  et al. 2009. Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci. Signal. 2:77ra31 [Google Scholar]
  42. Mendoza MC, Er EE, Blenis J. 42.  2011. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem. Sci. 36:6320–28 [Google Scholar]
  43. Fujita Y, Komatsu N, Matsuda M, Aoki K. 43.  2014. Fluorescence resonance energy transfer-based quantitative analysis of feedforward and feedback loops in epidermal growth factor receptor signaling and the sensitivity to molecular targeting drugs. FEBS J. 281:143177–92 [Google Scholar]
  44. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. 44.  2012. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40:D1D109–14 [Google Scholar]
  45. Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O. 45.  et al. 2011. Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res. 39:D685–90 [Google Scholar]
  46. Fazekas D, Koltai M, Türei D, Módos D, Pálfy M. 46.  et al. 2013. SignaLink 2—a signaling pathway resource with multi-layered regulatory networks. BMC Syst. Biol. 7:17 [Google Scholar]
  47. Saez-Rodriguez J, Alexopoulos LG, Zhang M, Morris MK, Lauffenburger DA, Sorger PK. 47.  2011. Comparing signaling networks between normal and transformed hepatocytes using discrete logical models. Cancer Res. 71:165400–11 [Google Scholar]
  48. Klinger B, Sieber A, Fritsche-Guenther R, Witzel F, Berry L. 48.  et al. 2013. Network quantification of EGFR signaling unveils potential for targeted combination therapy. Mol. Syst. Biol. 9:1673 [Google Scholar]
  49. Kirouac DC, Du JY, Lahdenranta J, Overland R, Yarar D. 49.  et al. 2013. Computational modeling of ERBB2-amplified breast cancer identifies combined ErbB2/3 blockade as superior to the combination of MEK and AKT inhibitors. Sci. Signal. 6:288ra68 [Google Scholar]
  50. Birtwistle MR, Mager DE, Gallo JM. 50.  2013. Mechanistic versus empirical network models of drug action. CPT Pharmacomet. Syst. Pharmacol. 2:9e72 [Google Scholar]
  51. Sorger PK, Allerheiligen S, Abernethy DR, Altman RB, Brouwer KLR. 51.  et al. 2011. Quantitative and Systems Pharmacology in the Post-Genomic Era: New Approaches to Discovering Drugs And Understanding Therapeutic Mechanisms Bethesda, MD: NIH [Google Scholar]
  52. Yaffe MB. 52.  2013. The scientific drunk and the lamppost: massive sequencing efforts in cancer discovery and treatment. Sci. Signal. 6:269pe13 [Google Scholar]
  53. Gonçalves E, Bucher J, Ryll A, Niklas J, Mauch K. 53.  et al. 2013. Bridging the layers: towards integration of signal transduction, regulation and metabolism into mathematical models. Mol. Biosyst. 9:71576–83 [Google Scholar]
  54. Nakakuki T, Birtwistle MR, Saeki Y, Yumoto N, Ide K. 54.  et al. 2010. Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics. Cell 141:5884–96 [Google Scholar]
  55. Stelniec-Klotz I, Legewie S, Tchernitsa O, Witzel F, Klinger B. 55.  et al. 2012. Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS. Mol. Syst. Biol. 8:601 [Google Scholar]
  56. Huang S-SC, Clarke DC, Gosline SJC, Labadorf A, Chouinard CR. 56.  et al. 2013. Linking proteomic and transcriptional data through the interactome and epigenome reveals a map of oncogene-induced signaling. PLOS Comput. Biol. 9:2e1002887 [Google Scholar]
  57. Dang CV. 57.  2012. Links between metabolism and cancer. Genes Dev. 26:9877–90 [Google Scholar]
  58. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR. 58.  et al. 2012. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:7408500–4 [Google Scholar]
  59. Jorgensen C, Sherman A, Chen GI, Pasculescu A, Poliakov A. 59.  et al. 2009. Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells. Science 326:59591502–9 [Google Scholar]
  60. Kim HD, Guo TW, Wu AP, Wells A, Gertler FB, Lauffenburger DA. 60.  2008. Epidermal growth factor-induced enhancement of glioblastoma cell migration in 3D arises from an intrinsic increase in speed but an extrinsic matrix- and proteolysis-dependent increase in persistence. Mol. Biol. Cell 19:104249–59 [Google Scholar]
  61. Deisboeck TS, Wang Z, Macklin P, Cristini V. 61.  2011. Multiscale cancer modeling. Annu. Rev. Biomed. Eng. 13:127–55 [Google Scholar]
  62. Lau KS, Juchheim AM, Cavaliere KR, Philips SR, Lauffenburger DA, Haigis KM. 62.  2011. In vivo systems analysis identifies spatial and temporal aspects of the modulation of TNF-α-induced apoptosis and proliferation by MAPKs. Sci. Signal. 4:165ra16 [Google Scholar]
  63. Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM. 63.  et al. 2012. A whole-cell computational model predicts phenotype from genotype. Cell 150:2389–401 [Google Scholar]
  64. Kolitz SE, Lauffenburger DA. 64.  2012. Measurement and modeling of signaling at a single-cell level. Biochemistry 51:7433–43 [Google Scholar]
  65. Kirouac DC, Saez-Rodriguez J, Swantek J, Burke JM, Lauffenburger DA, Sorger PK. 65.  2012. Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks. BMC Syst. Biol. 6:129 [Google Scholar]
  66. Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP. 66.  2005. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308:5721523–29 [Google Scholar]
  67. Niepel M, Hafner M, Pace EA, Chung M, Chai DH. 67.  et al. 2013. Profiles of basal and stimulated receptor signaling networks predict drug response in breast cancer lines. Sci. Signal. 6:294ra84 [Google Scholar]
  68. Tentner AR, Lee MJ, Ostheimer GJ, Samson LD, Lauffenburger DA, Yaffe MB. 68.  2012. Combined experimental and computational analysis of DNA damage signaling reveals context-dependent roles for Erk in apoptosis and G1/S arrest after genotoxic stress. Mol. Syst. Biol. 8:568 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error