In a range of human trials, viral vectors have emerged as safe and effective delivery vehicles for clinical gene therapy, particularly for monogenic recessive disorders, but there has also been early work on some idiopathic diseases. These successes have been enabled by research and development efforts focusing on vectors that combine low genotoxicity and immunogenicity with highly efficient delivery, including vehicles based on adeno-associated virus and lentivirus, which are increasingly enabling clinical success. However, numerous delivery challenges must be overcome to extend this success to many diseases; these challenges include developing techniques to evade preexisting immunity, to ensure more efficient transduction of therapeutically relevant cell types, to target delivery, and to ensure genomic maintenance. Fortunately, vector-engineering efforts are demonstrating promise in the development of next-generation gene therapy vectors that can overcome these barriers. This review highlights key historical trends in clinical gene therapy, the recent clinical successes of viral-based gene therapy, and current research that may enable future clinical application.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G. 1.  et al. 1989. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:49221059–65 [Google Scholar]
  2. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R. 2.  et al. 1989. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:49221066–73 [Google Scholar]
  3. Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK. 3.  et al. 1989. Identification of the cystic fibrosis gene: genetic analysis. Science 245:49221073–80 [Google Scholar]
  4. Macdonald M. 4.  1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72:6971–83 [Google Scholar]
  5. Mann R, Mulligan RC, Baltimore D. 5.  1983. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33:1153–59 [Google Scholar]
  6. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T. 6.  et al. 1995. T lymphocyte-directed gene therapy for ADA–SCID: initial trial results after 4 years. Science 270:5235475–80 [Google Scholar]
  7. Bordignon C, Notarangelo LD, Nobili N, Ferrari G, Casorati G. 7.  et al. 1995. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA immunodeficient patients. Science 270:5235470–75 [Google Scholar]
  8. Kohn DB, Weinberg KI, Nolta JA, Heiss LN, Lenarsky C. 8.  et al. 1995. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat. Med. 1:101017–23 [Google Scholar]
  9. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E. 9.  et al. 2000. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:5466669–72 [Google Scholar]
  10. Aiuti A, Slavin S, Aker M, Ficara F, Deola S. 10.  et al. 2002. Correction of ADA–SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296:55772410–13 [Google Scholar]
  11. Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B. 11.  et al. 2009. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N. Engl. J. Med. 360:5447–58 [Google Scholar]
  12. Kohn DB, Candotti F. 12.  2009. Gene therapy fulfilling its promise. N. Engl. J. Med. 360:5518–21 [Google Scholar]
  13. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N. 13.  et al. 2003. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:5644415–19 [Google Scholar]
  14. Wilson JM. 14.  2009. Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. Mol. Genet. Metab. 96:4151–57 [Google Scholar]
  15. Gabrilovich DI. 15.  2006. INGN 201 (Advexin): adenoviral p53 gene therapy for cancer. Expert Opin. Biol. Ther. 6:8823–32 [Google Scholar]
  16. Barquinero J, Eixarch H, Pérez-Melgosa M. 16.  2004. Retroviral vectors: new applications for an old tool. Gene Ther. 11:Suppl. 1S3–9 [Google Scholar]
  17. Rohdewohld H, Weiher H, Reik W, Jaenisch R, Breindl M. 17.  1987. Retrovirus integration and chromatin structure: Moloney murine leukemia proviral integration sites map near DNase I-hypersensitive sites. J. Virol. 61:2336–43 [Google Scholar]
  18. Vijaya S, Steffen DL, Robinson HL. 18.  1986. Acceptor sites for retroviral integrations map near DNase I-hypersensitive sites in chromatin. J. Virol. 60:2683–92 [Google Scholar]
  19. Cattoglio C, Facchini G, Sartori D, Antonelli A, Miccio A. 19.  et al. 2007. Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood 110:61770–78 [Google Scholar]
  20. Cattoglio C, Pellin D, Rizzi E, Maruggi G, Corti G. 20.  et al. 2010. High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors. Blood 116:255507–17 [Google Scholar]
  21. Roth SL, Malani N, Bushman FD. 21.  2011. Gammaretroviral integration into nucleosomal target DNA in vivo. J. Virol. 85:147393–401 [Google Scholar]
  22. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A. 22.  et al. 2008. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Investig. 118:93132–42 [Google Scholar]
  23. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M. 23.  et al. 2008. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Investig. 118:93143–50 [Google Scholar]
  24. Woods N-B, Bottero V, Schmidt M, von Kalle C, Verma IM. 24.  2006. Gene therapy: therapeutic gene causing lymphoma. Nature 440:70881123 [Google Scholar]
  25. Modlich U, Bohne J, Schmidt M, von Kalle C, Knöss S. 25.  et al. 2006. Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 108:82545–53 [Google Scholar]
  26. Cavazza A, Cocchiarella F, Bartholomae C, Schmidt M, Pincelli C. 26.  et al. 2013. Self-inactivating MLV vectors have a reduced genotoxic profile in human epidermal keratinocytes. Gene Ther. 20:9949–57 [Google Scholar]
  27. Naldini L, Blömer U, Gallay P, Ory D, Mulligan R. 27.  et al. 1996. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:5259263–67 [Google Scholar]
  28. Escors D, Breckpot K. 28.  2010. Lentiviral vectors in gene therapy: their current status and future potential. Arch. Immunol. Ther. Exp. (Warsz) 58:2107–19 [Google Scholar]
  29. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M. 29.  et al. 1998. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72:118463–71 [Google Scholar]
  30. Schröder ARW, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. 30.  2002. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:4521–29 [Google Scholar]
  31. Wu X, Li Y, Crise B, Burgess SM. 31.  2003. Transcription start regions in the human genome are favored targets for MLV integration. Science 300:56261749–51 [Google Scholar]
  32. Mitchell RS, Beitzel BF, Schroder ARW, Shinn P, Chen H. 32.  et al. 2004. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLOS Biol. 2:8E234 [Google Scholar]
  33. Barr SD, Ciuffi A, Leipzig J, Shinn P, Ecker JR, Bushman FD. 33.  2006. HIV integration site selection: targeting in macrophages and the effects of different routes of viral entry. Mol. Ther. 14:2218–25 [Google Scholar]
  34. Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD. 34.  2007. HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res. 17:81186–94 [Google Scholar]
  35. Wang GP, Levine BL, Binder GK, Berry CC, Malani N. 35.  et al. 2009. Analysis of lentiviral vector integration in HIV+ study subjects receiving autologous infusions of gene modified CD4+ T cells. Mol. Ther. 17:5844–50 [Google Scholar]
  36. Lewinski MK, Yamashita M, Emerman M, Ciuffi A, Marshall H. 36.  et al. 2006. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLOS Pathog. 2:6e60 [Google Scholar]
  37. Cherepanov P, Ambrosio ALB, Rahman S, Ellenberger T, Engelman A. 37.  2005. Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. PNAS 102:4817308–13 [Google Scholar]
  38. Cherepanov P, Maertens G, Proost P, Devreese B, Van Beeumen J. 38.  et al. 2003. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J. Biol. Chem. 278:1372–81 [Google Scholar]
  39. Emiliani S, Mousnier A, Busschots K, Maroun M, Van Maele B. 39.  et al. 2005. Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication. J. Biol. Chem. 280:2725517–23 [Google Scholar]
  40. Llano M, Saenz DT, Meehan A, Wongthida P, Peretz M. 40.  et al. 2006. An essential role for LEDGF/p75 in HIV integration. Science 314:5798461–64 [Google Scholar]
  41. De Rijck J, Bartholomeeusen K, Ceulemans H, Debyser Z, Gijsbers R. 41.  2010. High-resolution profiling of the LEDGF/p75 chromatin interaction in the encode region. Nucleic Acids Res. 38:186135–47 [Google Scholar]
  42. Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J. 42.  et al. 2005. A role for LEDGF/p75 in targeting HIV DNA integration. Nat. Med. 11:121287–89 [Google Scholar]
  43. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M. 43.  et al. 2006. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat. Biotechnol. 24:6687–96 [Google Scholar]
  44. Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC. 44.  et al. 2009. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J. Clin. Investig. 119:4964–75 [Google Scholar]
  45. Wagner TA, McLaughlin S, Garg K, Cheung CYK, Larsen BB. 45.  et al. 2014. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 345:6196570–73 [Google Scholar]
  46. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K. 46.  et al. 2010. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 467:7313318–22 [Google Scholar]
  47. Ronen K, Negre O, Roth S, Colomb C, Malani N. 47.  et al. 2011. Distribution of lentiviral vector integration sites in mice following therapeutic gene transfer to treat β-thalassemia. Mol. Ther. 19:71273–86 [Google Scholar]
  48. DePolo NJ, Reed JD, Sheridan PL, Townsend K, Sauter SL. 48.  et al. 2000. VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum. Mol. Ther. 2:3218–22 [Google Scholar]
  49. Knipe DM, Howley PM. 49.  2007. Fields' Virology Philadelphia, PA: Lippincott Williams & Wilkins
  50. Sonntag F, Schmidt K, Kleinschmidt JA. 50.  2010. A viral assembly factor promotes AAV2 capsid formation in the nucleolus. PNAS 107:2210220–25 [Google Scholar]
  51. Sonntag F, Köther K, Schmidt K, Weghofer M, Raupp C. 51.  et al. 2011. The assembly-activating protein promotes capsid assembly of different adeno-associated virus serotypes. J. Virol. 85:2312686–97 [Google Scholar]
  52. Flotte TR. 52.  2004. Gene therapy progress and prospects: recombinant adeno-associated virus (rAAV) vectors. Gene Ther. 11:10805–10 [Google Scholar]
  53. Schaffer DV, Koerber JT, Lim K. 53.  2008. Molecular engineering of viral gene delivery vehicles. Annu. Rev. Biomed. Eng. 10:169–94 [Google Scholar]
  54. Wu Z, Asokan A, Samulski RJ. 54.  2006. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol. Ther. 14:3316–27 [Google Scholar]
  55. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M. 55.  et al. 2006. Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat. Med. 12:3342–47 [Google Scholar]
  56. Mease PJ, Hobbs K, Chalmers A, El-Gabalawy H, Bookman A. 56.  et al. 2009. Local delivery of a recombinant adenoassociated vector containing a tumour necrosis factor α antagonist gene in inflammatory arthritis: a phase 1 dose-escalation safety and tolerability study. Ann. Rheum. Dis. 68:81247–54 [Google Scholar]
  57. Moss RB, Milla C, Colombo J, Accurso F, Zeitlin PL. 57.  et al. 2007. Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial. Hum. Gene Ther. 18:8726–32 [Google Scholar]
  58. Kotin RM. 58.  2011. Large-scale recombinant adeno-associated virus production. Hum. Mol. Genet. 20:R1R2–6 [Google Scholar]
  59. Xiao X, Li J, Samulski RJ. 59.  1996. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J. Virol. 70:118098–108 [Google Scholar]
  60. Nakai H, Storm TA, Kay MA. 60.  2000. Recruitment of single-stranded recombinant adeno-associated virus vector genomes and intermolecular recombination are responsible for stable transduction of liver in vivo. J. Virol. 74:209451–63 [Google Scholar]
  61. McCarty DM, Young SM, Samulski RJ. 61.  2004. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu. Rev. Genet. 38:819–45 [Google Scholar]
  62. Kaeppel C, Beattie SG, Fronza R, van Logtenstein R, Salmon F. 62.  et al. 2013. A largely random AAV integration profile after LPLD gene therapy. Nat. Med. 19:7889–91 [Google Scholar]
  63. Tatsis N, Ertl HCJ. 63.  2004. Adenoviruses as vaccine vectors. Mol. Ther. 10:4616–29 [Google Scholar]
  64. Alba R, Bosch A, Chillon M. 64.  2005. Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther. 12:Suppl. 1S18–27 [Google Scholar]
  65. Stilwell JL, Samulski RJ. 65.  2004. Role of viral vectors and virion shells in cellular gene expression. Mol. Ther. 9:3337–46 [Google Scholar]
  66. Manservigi R, Argnani R, Marconi P. 66.  2010. HSV recombinant vectors for gene therapy. Open Virol. J. 4:123–56 [Google Scholar]
  67. Smith GL, Law M. 67.  2004. The exit of vaccinia virus from infected cells. Virus Res. 106:2189–97 [Google Scholar]
  68. Gnant MFX, Noll LA, Irvine KR, Puhlmann M, Terrill RE. 68.  et al. 1999. Tumor-specific gene delivery using recombinant vaccinia virus in a rabbit model of liver metastases. J. Natl. Cancer Inst. 91:201744–50 [Google Scholar]
  69. Breitbach CJ, Burke J, Jonker D, Stephenson J, Haas AR. 69.  et al. 2011. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 477:736299–102 [Google Scholar]
  70. Heo J, Reid T, Ruo L, Breitbach CJ, Rose S. 70.  et al. 2013. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat. Med. 19:3329–36 [Google Scholar]
  71. Park B-H, Hwang T, Liu T-C, Sze DY, Kim J-S. 71.  et al. 2008. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 9:6533–42 [Google Scholar]
  72. Cartier N, Aubourg P. 72.  2010. Hematopoietic stem cell transplantation and hematopoietic stem cell gene therapy in X-linked adrenoleukodystrophy. Brain Pathol. 20:4857–62 [Google Scholar]
  73. Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP. 73.  et al. 2013. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott–Aldrich syndrome. Science 341:61481233151 [Google Scholar]
  74. Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F. 74.  et al. 2013. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341:61481233158 [Google Scholar]
  75. Porter DL, Levine BL, Kalos M, Bagg A, June CH. 75.  2011. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365:8725–33 [Google Scholar]
  76. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA. 76.  et al. 2011. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3:9595ra73 [Google Scholar]
  77. Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X. 77.  et al. 2011. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118:184817–28 [Google Scholar]
  78. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X. 78.  et al. 2013. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5:177177ra38 [Google Scholar]
  79. Stroes ES, Nierman MC, Meulenberg JJ, Franssen R, Twisk J. 79.  et al. 2008. Intramuscular administration of AAV1-lipoprotein lipaseS447x lowers triglycerides in lipoprotein lipase-deficient patients. Arterioscler. Thromb. Vasc. Biol. 28:122303–4 [Google Scholar]
  80. Gaudet D, de Wal J, Tremblay K, Déry S, van Deventer S. 80.  et al. 2010. Review of the clinical development of alipogene tiparvovec gene therapy for lipoprotein lipase deficiency. Atheroscler. Suppl. 11:155–60 [Google Scholar]
  81. Carpentier AC, Frisch F, Labbé SM, Gagnon R, de Wal J. 81.  et al. 2012. Effect of alipogene tiparvovec (AAV1-LPLS447X) on postprandial chylomicron metabolism in lipoprotein lipase-deficient patients. J. Clin. Endocrinol. Metab. 97:51635–44 [Google Scholar]
  82. Maguire A, Simonelli F. 82.  2008. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N. Engl. J. Med. 358:212240–48 [Google Scholar]
  83. Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA. 83.  et al. 2009. Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial. Lancet 374:97011597–605 [Google Scholar]
  84. Bainbridge JWB, Smith AJ, Barker SS, Robbie S, Henderson R. 84.  et al. 2008. Effect of gene therapy on visual function in Leber's congenital amaurosis. N. Engl. J. Med. 358:212231–39 [Google Scholar]
  85. Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB. 85.  et al. 2012. Gene therapy for Leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch. Ophthalmol. 130:19–24 [Google Scholar]
  86. Bennett J, Ashtari M, Wellman J, Marshall KA, Cyckowski LL. 86.  et al. 2012. AAV2 gene therapy readministration in three adults with congenital blindness. Sci. Transl. Med. 4:120120ra15 [Google Scholar]
  87. MacLaren RE, Groppe M, Barnard AR, Cottriall CL, Tolmachova T. 87.  et al. 2014. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 6736:132117–20 [Google Scholar]
  88. Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW. 88.  et al. 2003. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 101:82963–72 [Google Scholar]
  89. Nathwani AC, Tuddenham EGD, Rangarajan S, Rosales C, McIntosh J. 89.  et al. 2011. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N. Engl. J. Med. 365:252357–65 [Google Scholar]
  90. Bowles DE, McPhee SWJ, Li C, Gray SJ, Samulski JJ. 90.  et al. 2012. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol. Ther. 20:2443–55 [Google Scholar]
  91. McPhee SWJ, Janson CG, Li C, Samulski RJ, Camp AS. 91.  et al. 2006. Immune responses to AAV in a phase I study for Canavan disease. J. Gene Med. 8:5577–88 [Google Scholar]
  92. Brantly ML, Spencer LT, Humphries M, Conlon TJ, Spencer CT. 92.  et al. 2006. Phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 αl-antitrypsin (AAT) vector in AAT-deficient adults. Hum. Gene Ther. 17:121177–86 [Google Scholar]
  93. Flotte TR, Trapnell BC, Humphries M, Carey B, Calcedo R. 93.  et al. 2011. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing α1-antitrypsin: interim results. Hum. Gene Ther. 22:101239–47 [Google Scholar]
  94. Mendell JR, Rodino-Klapac LR, Rosales XQ, Coley BD, Galloway G. 94.  et al. 2010. Sustained α-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann. Neurol. 68:5629–38 [Google Scholar]
  95. Mendell JR, Rodino-Klapac LR, Rosales-Quintero X, Kota J, Coley BD. 95.  et al. 2009. Limb-girdle muscular dystrophy type 2D gene therapy restores α-sarcoglycan and associated proteins. Ann. Neurol. 66:3290–97 [Google Scholar]
  96. Jaski BE, Jessup ML, Mancini DM, Cappola TP, Pauly DF. 96.  et al. 2009. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID trial), a first-in-human phase 1/2 clinical trial. J. Card. Fail. 15:3171–81 [Google Scholar]
  97. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF. 97.  et al. 2011. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 124:3304–13 [Google Scholar]
  98. Pleger ST, Shan C, Ksienzyk J, Bekeredjian R, Boekstegers P. 98.  et al. 2011. Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci. Transl. Med. 3:9292ra64 [Google Scholar]
  99. Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P. 99.  et al. 2007. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 369:95792097–105 [Google Scholar]
  100. LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW. 100.  et al. 2011. AAV2-GAD gene therapy for advanced Parkinson's disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 10:4309–19 [Google Scholar]
  101. Marks WJ, Ostrem JL, Verhagen L, Starr PA, Larson PS. 101.  et al. 2008. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson's disease: an open-label, phase I trial. Lancet Neurol. 7:5400–8 [Google Scholar]
  102. Christine CW, Starr PA, Larson PS, Vanbrocklin HF, Bankiewicz KS, Aminoff MJ. 102.  2009. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73:201662–69 [Google Scholar]
  103. Muramatsu S, Fujimoto K, Kato S, Mizukami H, Asari S. 103.  et al. 2010. A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson's disease. Mol. Ther. 18:91731–35 [Google Scholar]
  104. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A. 104.  et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 80:1–2148–58 [Google Scholar]
  105. Smaill F, Jeyanathan M, Smieja M, Medina MF, Thanthrige-Don N. 105.  et al. 2013. A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci. Transl. Med. 5:205205ra134 [Google Scholar]
  106. Hill AVS, Reyes-Sandoval A, O'Hara G, Ewer K, Lawrie A. 106.  et al. 2010. Prime-boost vectored malaria vaccines: progress and prospects. Hum. Vaccines 6:178–83 [Google Scholar]
  107. McElrath MJ, De Rosa SC, Moodie Z, Dubey S, Kierstead L. 107.  et al. 2008. HIV-1 vaccine-induced immunity in the test-of-concept step study: a case-cohort analysis. Lancet 372:96531894–905 [Google Scholar]
  108. Harro C, Sun X, Stek JE, Leavitt RY, Mehrotra DV. 108.  et al. 2009. Safety and immunogenicity of the Merck adenovirus serotype 5 (MRKAd5) and MRKAd6 human immunodeficiency virus type 1 trigene vaccines alone and in combination in healthy adults. Clin. Vaccine Immunol. 16:91285–92 [Google Scholar]
  109. Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R. 109.  et al. 2008. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372:96531881–93 [Google Scholar]
  110. Scallan CD, Tingley DW, Lindbloom JD, Toomey JS, Tucker SN. 110.  2013. An adenovirus-based vaccine with a double-stranded RNA adjuvant protects mice and ferrets against H5N1 avian influenza in oral delivery models. Clin. Vaccine Immunol. 20:185–94 [Google Scholar]
  111. Peters W, Brandl JR, Lindbloom JD, Martinez CJ, Scallan CD. 111.  et al. 2013. Oral administration of an adenovirus vector encoding both an avian influenza A hemagglutinin and a TLR3 ligand induces antigen specific granzyme B and IFN-γ T cell responses in humans. Vaccine 31:131752–58 [Google Scholar]
  112. Aguilar LK, Guzik BW, Aguilar-Cordova E. 112.  2011. Cytotoxic immunotherapy strategies for cancer: mechanisms and clinical development. J. Cell. Biochem. 112:81969–77 [Google Scholar]
  113. Nemunaitis J, Ganly I, Khuri F, Arseneau J, Kuhn J. 113.  et al. 2000. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res. 60:226359–66 [Google Scholar]
  114. Mastrangelo MJ, Maguire HC, Eisenlohr LC, Laughlin CE, Monken CE. 114.  et al. 1998. Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther. 6:5409–22 [Google Scholar]
  115. 115. J. Gene Med 2013. Gene Therapy Clinical Trials Worldwide 2013, retrieved September 14, 2014. http://www.abedia.com/wiley/
  116. Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O. 116.  et al. 2010. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum. Gene Ther. 21:6704–12 [Google Scholar]
  117. Liu Q, Huang W, Zhang H, Wang Y, Zhao J. 117.  et al. 2014. Neutralizing antibodies against AAV2, AAV5 AND AAV8 in healthy and HIV-1-infected subjects in China: implications for gene therapy using AAV vectors. Gene Ther. 21:8732–38 [Google Scholar]
  118. Cottard V, Valvason C, Falgarone G, Lutomski D, Boissier M-C, Bessis N. 118.  2004. Immune response against gene therapy vectors: influence of synovial fluid on adeno-associated virus mediated gene transfer to chondrocytes. J. Clin. Immunol. 24:2162–69 [Google Scholar]
  119. Boissier M-C, Lemeiter D, Clavel C, Valvason C, Laroche L. 119.  et al. 2007. Synoviocyte infection with adeno-associated virus (AAV) is neutralized by human synovial fluid from arthritis patients and depends on AAV serotype. Hum. Gene Ther. 18:6525–35 [Google Scholar]
  120. Samaranch L, Salegio EA, San Sebastian W, Kells AP, Bringas JR. 120.  et al. 2013. Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum. Gene Ther. 24:5526–32 [Google Scholar]
  121. Kotterman MA, Yin L, Strazzeri JM, Flannery JG, Merigan WH, Schaffer DV. 121.  2015. Antibody neutralization poses a barrier to intravitreal adeno-associated viral vector gene delivery to non-human primates. Gene Ther. 22:2116–26 [Google Scholar]
  122. Lim K, Klimczak R, Yu JH, Schaffer DV. 122.  2010. Specific insertions of zinc finger domains into Gag-Pol yield engineered retroviral vectors with selective integration properties. PNAS 107:2812475–80 [Google Scholar]
  123. Yáñez-Muñoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M. 123.  et al. 2006. Effective gene therapy with nonintegrating lentiviral vectors. Nat. Med. 12:3348–53 [Google Scholar]
  124. Kotterman MA, Schaffer DV. 124.  2014. Engineering adeno-associated viruses for clinical gene therapy. Nat. Rev. Genet. 15:445–51 [Google Scholar]
  125. Bartel M, Schaffer D, Büning H. 125.  2011. Enhancing the clinical potential of AAV vectors by capsid engineering to evade pre-existing immunity. Front. Microbiol. 2:204 [Google Scholar]
  126. Moskalenko M, Chen L, van Roey M, Donahue BA, Snyder RO. 126.  et al. 2000. Epitope mapping of human anti-adeno-associated virus type 2 neutralizing antibodies: implications for gene therapy and virus structure. J. Virol. 74:41761–66 [Google Scholar]
  127. Wobus CE, Hügle-Dörr B, Girod A, Petersen G, Hallek M, Kleinschmidt JA. 127.  2000. Monoclonal antibodies against the adeno-associated virus type 2 (AAV-2) capsid: epitope mapping and identification of capsid domains involved in AAV-2-cell interaction and neutralization of AAV-2 infection. J. Virol. 74:199281–93 [Google Scholar]
  128. Lochrie MA, Tatsuno GP, Christie B, McDonnell JW, Zhou S. 128.  et al. 2006. Mutations on the external surfaces of adeno-associated virus type 2 capsids that affect transduction and neutralization. J. Virol. 80:2821–34 [Google Scholar]
  129. Mingozzi F, Anguela XM, Pavani G, Chen Y, Davidson RJ. 129.  et al. 2013. Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci. Transl. Med. 5:194194ra92 [Google Scholar]
  130. Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M. 130.  et al. 2008. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. PNAS 105:227827–32 [Google Scholar]
  131. Zhong L, Li B, Jayandharan G, Mah CS, Govindasamy L. 131.  et al. 2008. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology 381:2194–202 [Google Scholar]
  132. Shen S, Horowitz ED, Troupes AN, Brown SM, Pulicherla N. 132.  et al. 2013. Engraftment of a galactose receptor footprint onto adeno-associated viral capsids improves transduction efficiency. J. Biol. Chem. 288:4028814–23 [Google Scholar]
  133. Perabo L, Endell J, King S, Lux K, Goldnau D. 133.  et al. 2006. Combinatorial engineering of a gene therapy vector: directed evolution of adeno-associated virus. J. Gene Med. 8:2155–62 [Google Scholar]
  134. Maheshri N, Koerber JT, Kaspar BK, Schaffer DV. 134.  2006. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat. Biotechnol. 24:2198–204 [Google Scholar]
  135. Bartel MA, Hwang B-Y, Stone D, Koerber JT, Couto L. 135.  et al. 2012. Directed evolution of AAV for enhanced evasion of human neutralizing antibodies. Mol. Ther. 20:Suppl. 1S140 (Abstr.) [Google Scholar]
  136. Klimczak RR, Koerber JT, Dalkara D, Flannery JG, Schaffer DV. 136.  2009. A novel adeno-associated viral variant for efficient and selective intravitreal transduction of rat Müller cells. PLOS ONE 4:10e7467 [Google Scholar]
  137. Koerber JT, Klimczak R, Jang J-H, Dalkara D, Flannery JG, Schaffer DV. 137.  2009. Molecular evolution of adeno-associated virus for enhanced glial gene delivery. Mol. Ther. 17:122088–95 [Google Scholar]
  138. Excoffon KJD, Koerber JT, Dickey DD, Murtha M, Keshavjee S. 138.  et al. 2009. Directed evolution of adeno-associated virus to an infectious respiratory virus. PNAS 106:103865–70 [Google Scholar]
  139. Yang L, Jiang J, Drouin LM, Agbandje-McKenna M, Chen C. 139.  et al. 2009. A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. PNAS 106:103946–51 [Google Scholar]
  140. Asokan A, Conway JC, Phillips JL, Li C, Hegge J. 140.  et al. 2010. Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat. Biotechnol. 28:179–82 [Google Scholar]
  141. Jang J-H, Koerber JT, Kim J-S, Asuri P, Vazin T. 141.  et al. 2011. An evolved adeno-associated viral variant enhances gene delivery and gene targeting in neural stem cells. Mol. Ther. 19:4667–75 [Google Scholar]
  142. Asuri P, Bartel MA, Vazin T, Jang J-H, Wong TB, Schaffer DV. 142.  2012. Directed evolution of adeno-associated virus for enhanced gene delivery and gene targeting in human pluripotent stem cells. Mol. Ther. 20:2329–38 [Google Scholar]
  143. Gray SJ, Blake BL, Criswell HE, Nicolson SC, Samulski RJ. 143.  et al. 2010. Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood-brain barrier (BBB). Mol. Ther. 18:3570–78 [Google Scholar]
  144. Lisowski L, Dane AP, Chu K, Zhang Y, Cunningham SC. 144.  et al. 2013. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 506:382–86 [Google Scholar]
  145. Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L. 145.  et al. 2013. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci. Transl. Med. 5:189189ra76 [Google Scholar]
  146. Brown BD, Naldini L. 146.  2009. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat. Rev. Genet. 10:8578–85 [Google Scholar]
  147. Holt N, Wang J, Kim K, Friedman G, Wang X. 147.  et al. 2010. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat. Biotechnol. 28:8839–47 [Google Scholar]
  148. Tang W, Lalezari J, June C, Tebas P, Lee G. 148.  et al. 2012. Increases in CD4 counts and effects on HIV in aviremic HIV-infected subjects infused with zinc finger nuclease (ZFN) CCR5 modified autologous CD4 T-cells (SB-728-T). Mol. Ther. 20:Suppl. 1S21–22 (Abstr.) [Google Scholar]
  149. Lee GK, Zeidan J, Lalezari J, Mitsuyasu R, Wang S. 149.  et al. 2013. Long term CD4 reconstitution in HIV subjects receiving ZFN CCR5 modified CD4 T-cells (SB-728-T) may be attributed to the sustained durability of the central memory T-cell subset. Mol. Ther. 21:Suppl. 1S24 (Abstr.) [Google Scholar]
  150. Russell DW, Hirata RK. 150.  1998. Human gene targeting by viral vectors. Nat. Genet. 18:4325–30 [Google Scholar]
  151. Li H, Haurigot V, Doyon Y, Li T, Wong SY. 151.  et al. 2011. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475:7355217–21 [Google Scholar]
  152. Gaj T, Gersbach CA, Barbas CF. 152.  2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31:7397–405 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error