1932

Abstract

Magnetic fields have the potential to noninvasively direct and focus therapy to disease targets. External magnets can apply forces on drug-coated magnetic nanoparticles, or on living cells that contain particles, and can be used to manipulate them in vivo. Significant progress has been made in developing and testing safe and therapeutic magnetic constructs that can be manipulated by magnetic fields. However, we do not yet have the magnet systems that can then direct those constructs to the right places, in vivo, over human patient distances. We do not yet know where to put the external magnets, how to shape them, or when to turn them on and off to direct particles or magnetized cells—in blood, through tissue, and across barriers—to disease locations. In this article, we consider ear and eye disease targets. Ear and eye targets are too deep and complex to be targeted by a single external magnet, but they are shallow enough that a combination of magnets may be able to direct therapy to them. We focus on how magnetic fields should be shaped (in space and time) to direct magnetic constructs to ear and eye targets.

Associated Article

There are media items related to this article:
Shaping Magnetic Fields to Direct Therapy to Ears and Eyes: Video 4

Associated Article

There are media items related to this article:
Shaping Magnetic Fields to Direct Therapy to Ears and Eyes: Video 1

Associated Article

There are media items related to this article:
Shaping Magnetic Fields to Direct Therapy to Ears and Eyes: Video 2

Associated Article

There are media items related to this article:
Shaping Magnetic Fields to Direct Therapy to Ears and Eyes: Video 3
Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071813-105206
2014-07-11
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/16/1/annurev-bioeng-071813-105206.html?itemId=/content/journals/10.1146/annurev-bioeng-071813-105206&mimeType=html&fmt=ahah

Literature Cited

  1. Reszka R, Beck P, Fichtner I, Hentschel M, Richter J, Kreuter J. 1.  1997. Body distribution of free, liposomal and nanoparticle-associated mitoxantrone in B16-melanoma-bearing mice. J. Pharmacol. Exp. Ther. 280:1232–37 [Google Scholar]
  2. Davies NM. 2.  2000. Biopharmaceutical considerations in topical ocular drug delivery. Clin. Exp. Pharmacol. Physiol. 27:7558–62 [Google Scholar]
  3. Parnes LS, Sun A-H, Freeman DJ. 3.  1999. Corticosteroid pharmacokinetics in the inner ear fluids: an animal study followed by clinical application. Laryngoscope 109:S911–17 [Google Scholar]
  4. Juhn SK, Hunter BA, Odland RM. 4.  2001. Blood-labyrinth barrier and fluid dynamics of the inner ear. Int. Tinnitus J. 7:272–83 [Google Scholar]
  5. Inamura N, Salt AN. 5.  1992. Permeability changes of the blood-labyrinth barrier measured in vivo during experimental treatments. Hear. Res. 61:1–212–18 [Google Scholar]
  6. Orekhova NM, Akchurin RS, Belyaev AA, Smirnov MD, Ragimov SE, Orekhov AN. 6.  1990. Local prevention of thrombosis in animal arteries by means of magnetic targeting of aspirin-loaded red cells. Thromb. Res. 57:4611–16 [Google Scholar]
  7. Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P. 7.  et al. 1996. Clinical experiences with magnetic drug targeting: a Phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 56:204686–93 [Google Scholar]
  8. Shinkai M. 8.  2002. Functional magnetic particles for medical application. J. Biosci. Bioeng. 94:6606–13 [Google Scholar]
  9. Alexiou C, Jurgons R, Schmid RJ, Bergemann C, Henke J. 9.  et al. 2003. Magnetic drug targeting—biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J. Drug Target. 11:3139–49 [Google Scholar]
  10. Wilson MW, Kerlan RK, Fidelman NA, Venook AP, LaBerge JM. 10.  et al. 2004. Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/conventional angiography suite—initial experience with four patients. Radiology 230:1287–93 [Google Scholar]
  11. Koda J, Venook A, Walser E, Goodwin S. 11.  2002. A multicenter, phase I/II trial of hepatic intra-arterial delivery of doxorubicin hydrochloride adsorbed to magnetic targeted carriers in patients with hepatocellular carcinoma. Eur. J. Cancer 38:Suppl. 7S18 [Google Scholar]
  12. Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldöfner N. 12.  et al. 2005. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int. J. Hyperthermia 21:7637–47 [Google Scholar]
  13. Dobson J. 13.  2006. Magnetic micro- and nano-particle-based targeting for drug and gene delivery. Nanomedicine 1:131–37 [Google Scholar]
  14. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P. 14.  et al. 2010. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neuro-Oncol. 103:2317–24 [Google Scholar]
  15. Morishita N, Nakagami H, Morishita R, Takeda S, Mishima F. 15.  2005. Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector. Biochem. Biophys. Res. Commun. 334:41121–26 [Google Scholar]
  16. Mah C, Fraites TJ, Zolotukhin I, Song S, Flotte TR. 16.  et al. 2002. Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol. Ther. 6:1106–12 [Google Scholar]
  17. Lu J, Ma S, Sun J, Xia C, Liu C. 17.  et al. 2009. Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Biomaterials 30:152919–28 [Google Scholar]
  18. Kubo T, Sugita T, Shimose S, Nitta Y, Ikuta Y, Murakami T. 18.  2001. Targeted systemic chemotherapy using magnetic liposomes with incorporated adriamycin for osteosarcoma in hamsters. Int. J. Oncol. 18:1121–26 [Google Scholar]
  19. Wu J, Leong-Poi H, Bin J, Yang L, Liao Y. 19.  et al. 2011. Efficacy of contrast-enhanced US and magnetic microbubbles targeted to vascular cell adhesion molecule-1 for molecular imaging of atherosclerosis. Radiology 260:2463–71 [Google Scholar]
  20. Kong SD, Lee J, Ramachandran S, Eliceiri BP, Shubayev VI. 20.  et al. 2012. Magnetic targeting of nanoparticles across the intact blood–brain barrier. J. Control. Release 164:149–57 [Google Scholar]
  21. Mihaiescu DE, Buteică AS, Neamţu J, Istrati D, Mîndrilă I. 21.  2013. Fe3O4/Salicylic acid nanoparticles behavior on chick CAM vasculature. J. Nanopart. Res. 15:1857 [Google Scholar]
  22. Stanley SA, Gagner JE, Damanpour S, Yoshida M, Dordick JS, Friedman JM. 22.  2012. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 336:6081604–8 [Google Scholar]
  23. Cho MH, Lee EJ, Son M, Lee J-H, Yoo D. 23.  et al. 2012. A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nat. Mater. 11:1038–43 [Google Scholar]
  24. Gao F, Kar S, Zhang J, Qiu B, Walczak P. 24.  et al. 2007. MRI of intravenously injected bone marrow cells homing to the site of injured arteries. NMR Biomed. 20:7673–81 [Google Scholar]
  25. Pislaru SV, Harbuzariu A, Gulati R, Witt T, Sandhu NP. 25.  et al. 2006. Magnetically targeted endothelial cell localization in stented vessels. J. Am. Coll. Cardiol. 48:91839–45 [Google Scholar]
  26. Gazeau F, Wilhelm C. 26.  2010. Magnetic labeling, imaging and manipulation of endothelial progenitor cells using iron oxide nanoparticles. Future Med. Chem. 2:3397–408 [Google Scholar]
  27. Pawelczyk E, Jordan EK, Balakumaran A, Chaudhry A, Gormley N. 27.  et al. 2009. In vivo transfer of intracellular labels from locally implanted bone marrow stromal cells to resident tissue macrophages. PLoS ONE 4:8e6712 [Google Scholar]
  28. Arbab AS, Jordan EK, Wilson LB, Yocum GT, Lewis BK, Frank JA. 28.  2004. In vivo trafficking and targeted delivery of magnetically labeled stem cells. Hum. Gene Ther. 15:4351–60 [Google Scholar]
  29. Chen J, Jia Z-Y, Ma Z-L, Wang Y-Y, Teng G-J. 29.  2011. In vivo serial MR imaging of magnetically labeled endothelial progenitor cells homing to the endothelium injured artery in mice. PLoS ONE 6:6e20790 [Google Scholar]
  30. Qiu B, Gao F, Walczak P, Zhang J, Kar S. 30.  et al. 2007. In vivo MR imaging of bone marrow cells trafficking to atherosclerotic plaques. J. Magn. Reson. Imaging 26:2339–43 [Google Scholar]
  31. Polyak B, Fishbein I, Chorny M, Alferiev I, Williams D. 31.  et al. 2008. High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc. Natl. Acad. Sci. USA 105:2698–703 [Google Scholar]
  32. Yanai A, Häfeli UO, Metcalfe AL, Soema P, Addo L. 32.  et al. 2012. Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell Transplant. 21:61137–48 [Google Scholar]
  33. Hofmann A, Wenzel D, Becher UM, Freitag DF, Klein AM. 33.  et al. 2009. Combined targeting of lentiviral vectors and positioning of transduced cells by magnetic nanoparticles. Proc. Natl. Acad. Sci. USA 106:144–49 [Google Scholar]
  34. Chaudeurge A, Wilhelm C, Chen-Tournoux A, Farahmand P, Bellamy V. 34.  et al. 2012. Can magnetic targeting of magnetically labeled circulating cells optimize intramyocardial cell retention?. Cell Transplant. 21:4679–91 [Google Scholar]
  35. Dougherty TJ, Gomer CJ, Jori G, Kessel D, Korbelik M. 35.  et al. 1998. Photodynamic therapy. J. Natl. Cancer Inst. 90:12889–905 [Google Scholar]
  36. Barry BW. 36.  2001. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci. 14:2101–14 [Google Scholar]
  37. Denet AR, Vanbever R, Preat V. 37.  2004. Skin electroporation for transdermal and topical delivery. Adv. Drug Deliv. Rev. 56:5659–74 [Google Scholar]
  38. Pitt WG, Husseini GA, Staples BJ. 38.  2004. Ultrasonic drug delivery—a general review. Expert Opin. Drug Deliv. 1:137–56 [Google Scholar]
  39. Gao Z-G, Fain HD, Rapoport N. 39.  2005. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J. Control. Release 102:1203–22 [Google Scholar]
  40. Allen ED, Burdette JH. 40.  2001. Questions and Answers in MRI St. Louis, MO: Mosby, 2nd. ed. [Google Scholar]
  41. Schenck JF. 41.  2000. Safety of strong, static magnetic fields. J. Magn. Reson. Imaging 12:12–19 [Google Scholar]
  42. Schaefer DJ, Bourland JD, Nyenhuis JA. 42.  2000. Review of patient safety in time-varying gradient fields. J. Magn. Reson. Imaging 12:120–29 [Google Scholar]
  43. Andersen E. 43.  2007. Magnetic resonance imaging—safety and health issues. AAOHN J. 55:4137–39 [Google Scholar]
  44. Kirui DK, Khalidov I, Wang Y, Batt CA. 44.  2013. Targeted near-IR hybrid magnetic nanoparticles for in vivo cancer therapy and imaging. Nanomed.: Nanotechnol. Biol. Med. 9:5702–11 [Google Scholar]
  45. Lemke A, Sander B, Luebbe A, Riess H, Hosten N, Felix R. 45.  1996. MR imaging after magnetic drug targeting in patients with soft-tissue tumors. Radiology 201:1421 [Google Scholar]
  46. Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH. 46.  et al. 2007. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur. Urol. 52:61653–61 [Google Scholar]
  47. Lemke AJ, Von Pilsach MIS, Lübbe A, Bergemann C, Riess H, Felix R. 47.  2004. MRI after magnetic drug targeting in patients with advanced solid malignant tumors. Eur. Radiol. 14:111949–55 [Google Scholar]
  48. Widder KJ, Morris RM, Poore G, Howard DP, Senyei AE. 48.  1981. Tumor remission in Yoshida sarcoma-bearing rats by selective targeting of magnetic albumin microspheres containing doxorubicin. Proc. Natl. Acad. Sci. USA 78:1579–81 [Google Scholar]
  49. Pulfer SK, Gallo JM. 49.  1998. Enhanced brain tumor selectivity of cationic magnetic polysaccharide microspheres. J. Drug Target. 6:3215–27 [Google Scholar]
  50. Krukemeyer MG, Krenn V, Jakobs M, Wagner W. 50.  2012. Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen, and liver—magnetic nanoparticles in cancer treatment. J. Surg. Res. 175:135–43 [Google Scholar]
  51. Pouponneau P, Leroux J-C, Soulez G, Gaboury L, Martel S. 51.  2011. Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials 32:133481–86 [Google Scholar]
  52. Raut SL, Kirthivasan B, Bommana MM, Squillante E, Sadoqi M. 52.  2010. The formulation, characterization and in vivo evaluation of a magnetic carrier for brain delivery of NIR dye. Nanotechnology 21:39395102 [Google Scholar]
  53. Pouponneau P, Leroux J-C, Martel S. 53.  2009. Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization. Biomaterials 30:316327–32 [Google Scholar]
  54. Liu H-L, Hua M-Y, Yang H-W, Huang C-Y, Chu P-C. 54.  et al. 2010. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc. Natl. Acad. Sci. USA 107:3415205–10 [Google Scholar]
  55. Tietze R, Jurgons R, Lyer S, Schreiber E, Wiekhorst F. 55.  et al. 2009. Quantification of drug-loaded magnetic nanoparticles in rabbit liver and tumor after in vivo administration. J. Magn. Magn. Mater. 321:101465–68 [Google Scholar]
  56. Alexiou C, Jurgons R, Schmid R, Hilpert A, Bergemann C. 56.  et al. 2005. In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles. J. Magn. Magn. Mater. 293:1389–93 [Google Scholar]
  57. Schulze K, Koch A, Schopf B, Petri A, Steitz B. 57.  et al. 2005. Intraarticular application of superparamagnetic nanoparticles and their uptake by synovial membrane—an experimental study in sheep. J. Magn. Magn. Mater. 293:1419–32 [Google Scholar]
  58. Forbes ZG, Yellen BB, Halverson DS, Fridman G, Barbee KA, Friedman G. 58.  2008. Validation of high gradient magnetic field based drug delivery to magnetizable implants under flow. IEEE Trans. Biomed. Eng. 55:2643–49 [Google Scholar]
  59. Chertok B, Moffat BA, David AE, Yu F, Bergemann C. 59.  et al. 2008. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29:4487–96 [Google Scholar]
  60. Dames P, Gleich B, Flemmer A, Hajek K, Seidl N. 60.  et al. 2007. Targeted delivery of magnetic aerosol droplets to the lung. Nat. Nano 2:8495–99 [Google Scholar]
  61. Lee J-H, Huh Y-M, Jun Y, Seo J, Jang J. 61.  et al. 2006. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13:195–99 [Google Scholar]
  62. Yang L, Mao H, Wang YA, Cao Z, Peng X. 62.  et al. 2008. Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 5:2235–43 [Google Scholar]
  63. Chung HJ, Castro CM, Im H, Lee H, Weissleder R. 63.  2013. A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria. Nat. Nanotechnol. 8:5369–75 [Google Scholar]
  64. Perez JM, Josephson L, O'Loughlin T, Högemann D, Weissleder R. 64.  2002. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20:8816–20 [Google Scholar]
  65. Takeda S, Mishima F, Fujimoto S, Izumi Y, Nishijima S. 65.  2007. Development of magnetically targeted drug delivery system using superconducting magnet. J. Magn. Magn. Mater. 311:1367–71 [Google Scholar]
  66. Rotariu O, Strachan NJC. 66.  2005. Modelling magnetic carrier particle targeting in the tumor microvasculature for cancer treatment. J. Magn. Magn. Mater. 293:1639–46 [Google Scholar]
  67. Feynman RP. 67.  1970. Feynman Lectures on Physics Boston: Addison Wesley Longman [Google Scholar]
  68. Georgakilas V, Tzitzios V, Gournis D, Petridis D. 68.  2005. Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives. Chem. Mater. 17:71613–17 [Google Scholar]
  69. Kim D-H, Rozhkova EA, Ulasov IV, Bader SD, Rajh T. 69.  et al. 2010. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 9:2165–71 [Google Scholar]
  70. Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP. 70.  et al. 2012. Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41:114306–34 [Google Scholar]
  71. Puntes VF, Krishnan KM, Alivisatos AP. 71.  2001. Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:55112115–17 [Google Scholar]
  72. Cozzoli PD, Snoeck E, Garcia MA, Giannini C, Guagliardi A. 72.  et al. 2006. Colloidal synthesis and characterization of tetrapod-shaped magnetic nanocrystals. Nano Lett. 6:91966–72 [Google Scholar]
  73. Guardia P, Pérez N, Labarta A, Batlle X. 73.  2010. Controlled synthesis of iron oxide nanoparticles over a wide size range. Langmuir 26:85843–47 [Google Scholar]
  74. Wang Z, Wu L, Chen M, Zhou S. 74.  2009. Facile synthesis of superparamagnetic fluorescent Fe3O4/ZnS hollow nanospheres. J. Am. Chem. Soc. 131:3211276–77 [Google Scholar]
  75. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM. 75.  et al. 2004. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126:1273–79 [Google Scholar]
  76. Gao J, Gu H, Xu B. 76.  2009. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 42:81097–107 [Google Scholar]
  77. Lattuada M, Hatton TA. 77.  2007. Preparation and controlled self-assembly of Janus magnetic nanoparticles. J. Am. Chem. Soc. 129:4212878–89 [Google Scholar]
  78. Taboada E, Rodríguez E, Roig A, Oró J, Roch A, Muller RN. 78.  2007. Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir 23:84583–88 [Google Scholar]
  79. Cheon J, Kang N-J, Lee S-M, Lee J-H, Yoon J-H, Oh SJ. 79.  2004. Shape evolution of single-crystalline iron oxide nanocrystals. J. Am. Chem. Soc. 126:71950–51 [Google Scholar]
  80. Park S, Kim S, Lee S, Khim ZG, Char K, Hyeon T. 80.  2000. Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc. 122:358581–82 [Google Scholar]
  81. Kim D, Lee N, Park M, Kim BH, An K, Hyeon T. 81.  2009. Synthesis of uniform ferrimagnetic magnetite nanocubes. J. Am. Chem. Soc. 131:2454–55 [Google Scholar]
  82. An K, Kwon SG, Park M, Na HB, Baik S-I. 82.  et al. 2008. Synthesis of uniform hollow oxide nanoparticles through nanoscale acid etching. Nano Lett. 8:124252–58 [Google Scholar]
  83. Cabot A, Puntes VF, Shevchenko E, Yin Y, Balcells L. 83.  et al. 2007. Vacancy coalescence during oxidation of iron nanoparticles. J. Am. Chem. Soc. 129:3410358–60 [Google Scholar]
  84. Han Q, Liu Z, Xu Y, Zhang H. 84.  2007. Synthesis and magnetic properties of single-crystalline magnetite nanowires. J. Cryst. Growth 307:2483–89 [Google Scholar]
  85. Lübbe AS, Alexiou C, Bergemann C. 85.  2001. Clinical applications of magnetic drug targeting. J. Surg. Res. 95:2200–6 [Google Scholar]
  86. Pankhurst QA, Connolly J, Jones SK, Dobson J. 86.  2003. Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 36:13R167–81 [Google Scholar]
  87. Pankhurst QA, Thanh NTK, Jones SK, Dobson J. 87.  2009. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 42:22224001 [Google Scholar]
  88. Nacev A, Komaee A, Sarwar A, Probst R, Kim SH. 88.  et al. 2012. Towards control of magnetic fluids in patients: directing therapeutic nanoparticles to disease locations. IEEE Control Syst. 32:332–74 [Google Scholar]
  89. Polyak B, Friedman G. 89.  2009. Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin. Drug Deliv. 6:153–70 [Google Scholar]
  90. Bawa R. 90.  2008. Nanoparticle-based therapeutics in humans: a survey. Nanotech. Law Bus. 5:135–55 [Google Scholar]
  91. Schuknecht HF, Merchant SN, Nadol JB Jr. 91.  2010. Schuknecht's Pathology of the Ear. Shelton, CT: PMPH, 3rd. ed. [Google Scholar]
  92. Stachler RJ, Chandrasekhar SS, Archer SM, Rosenfeld RM, Schwartz SR. 92.  et al. 2012. Clinical practice guideline: sudden hearing loss. Otolaryngol. Head Neck Surg. 146:Suppl. 3S1–35 [Google Scholar]
  93. Natl. Inst. Deaf. Other Commun. Disord. (NIDCD) Epidemiol. Stat. Program 2012. Prevalence of chronic tinnitus. Chart, NIDCD, updated May. http://www.nidcd.nih.gov/health/statistics/Pages/prevalence.aspx [Google Scholar]
  94. Natl. Inst. Deaf. Other Commun. Disord 2010. Ménière's disease. NIH Publ. No. 10-3404, NIDCD, Bethesda, MD, updated July. http://www.nidcd.nih.gov/health/balance/pages/meniere.aspx [Google Scholar]
  95. Salt AN, Plontke SK. 95.  2005. Local inner-ear drug delivery and pharmacokinetics. Drug Discov. Today 10:191299–306 [Google Scholar]
  96. Radeloff A, Unkelbach MH, Tillein J, Braun S, Helbig S. 96.  et al. 2007. Impact of intrascalar blood on hearing. Laryngoscope 117:158–62 [Google Scholar]
  97. Juhn SK, Hunter BA, Odland RM. 97.  2000. Blood-labyrinth barrier and fluid dynamics of the inner ear. Int. Tinnitus J. 7:272–83 [Google Scholar]
  98. Swan EEL, Mescher MJ, Sewell WF, Tao SL, Borenstein JT. 98.  2008. Inner ear drug delivery for auditory applications. Adv. Drug Deliv. Rev. 60:151583–99 [Google Scholar]
  99. Li P, Zeng XL, Ye J, Yang QT, Zhang GH, Li Y. 99.  2011. Intratympanic methylprednisolone improves hearing function in refractory sudden sensorineural hearing loss: a control study. Audiol. Neurotol. 16:3198–202 [Google Scholar]
  100. Plaza G, Herráiz C. 100.  2007. Intratympanic steroids for treatment of sudden hearing loss after failure of intravenous therapy. Otolaryngol. Head Neck Surg. 137:174–78 [Google Scholar]
  101. Haynes DS, O'Malley M, Cohen S, Watford K, Labadie RF. 101.  2007. Intratympanic dexamethasone for sudden sensorineural hearing loss after failure of systemic therapy. Laryngoscope 117:13–15 [Google Scholar]
  102. Rauch SD, Halpin CF, Antonelli PJ, Babu S, Carey JP. 102.  et al. 2011. Oral versus intratympanic cortico-steroid therapy for idiopathic sudden sensorineural hearing loss: a randomized trial. JAMA 305:202071–79 [Google Scholar]
  103. Chandrasekhar SS, Rubinstein RY, Kwartler JA, Gatz M, Connelly PE. 103.  et al. 2000. Dexamethasone pharmacokinetics in the inner ear: comparison of route of administration and use of facilitating agents. Otolaryngol. Head Neck Surg. 122:4521–28 [Google Scholar]
  104. Sorrells SF, Sapolsky RM. 104.  2007. An inflammatory review of glucocorticoid actions in the CNS. Brain Behav. Immun. 21:3259–72 [Google Scholar]
  105. Sholter DE, Armstrong PW. 105.  2000. Adverse effects of corticosteroids on the cardiovascular system. Can. J. Cardiol. 16:4505–11 [Google Scholar]
  106. Pisu M, James N, Sampsel S, Saag KG. 106.  2005. The cost of glucocorticoid-associated adverse events in rheumatoid arthritis. Rheumatology (Oxford) 44:6781–88 [Google Scholar]
  107. Juhn SK. 107.  1988. Barrier systems in the inner ear. Acta Otolaryngol. 105:S45879–83 [Google Scholar]
  108. Labadie RF, Majdani O, Fitzpatrick JM. 108.  2007. Image-guided technique in neurotology. Otolaryngol. Clin. North Am. 40:3611–24 [Google Scholar]
  109. Kratchman LB, Schurzig D, McRackan TR, Balachandran R, Noble JH. 109.  et al. 2012. A manually operated, advance off-stylet insertion tool for minimally invasive cochlear implantation surgery. IEEE Trans. Biomed. Eng. 59:102792–800 [Google Scholar]
  110. Wang H, Northrop C, Liberman MC, Merchant SN. 110.  2006. 3-D virtual model of a human temporal bone. 3D Virtual Model, Eaton-Peabody Lab., Mass. Eye Ear Infirm., Boston http://www.masseyeandear.org/research/ent/eaton-peabody/epl-imaging-resources/3-d-model-of-human-temporal-bone/ [Google Scholar]
  111. Wang H, Northrop C, Burgess B, Liberman MC, Merchant SN. 111.  2006. Three-dimensional virtual model of the human temporal bone: a stand-alone, downloadable teaching tool. Otol. Neurotol. 27:4452–57 [Google Scholar]
  112. Hu A, Parnes LS. 112.  2009. Intratympanic steroids for inner ear disorders: a review. Audiol. Neurotol. 14:6373–82 [Google Scholar]
  113. Rivera T, Sanz L, Camarero G, Varela-Nieto I. 113.  2012. Drug delivery to the inner ear: strategies and their therapeutic implications for sensorineural hearing loss. Curr. Drug Deliv. 9:3231–42 [Google Scholar]
  114. Salt AN, Plontke SK. 114.  2009. Principles of local drug delivery to the inner ear. Audiol. Neurotol. 14:6350–60 [Google Scholar]
  115. Slattery WH, Fisher LM, Iqbal Z, Friedman RA, Liu N. 115.  2005. Intratympanic steroid injection for treatment of idiopathic sudden hearing loss. Otolaryngol. Head Neck Surg. 133:2251–59 [Google Scholar]
  116. McCall AA, Swan EEL, Borenstein JT, Sewell WF, Kujawa SG, McKenna MJ. 116.  2010. Drug delivery for treatment of inner ear disease: current state of knowledge. Ear Hear. 31:2156–65 [Google Scholar]
  117. Piu F, Wang X, Fernandez R, Dellamary L, Harrop A. 117.  et al. 2011. OTO-104: a sustained-release dexamethasone hydrogel for the treatment of otic disorders. Otol. Neurotol. 32:1171–79 [Google Scholar]
  118. Salt AN, Hartsock J, Plontke S, LeBel C, Piu F. 118.  2011. Distribution of dexamethasone and preservation of inner ear function following intratympanic delivery of a gel-based formulation. Audiol. Neurotol. 16:5323–35 [Google Scholar]
  119. Rarey KE, Lohuis PJ, Ten Cate WJ. 119.  1991. Response of the stria vascularis to corticosteroids. Laryngoscope 101:101081–84 [Google Scholar]
  120. Silverstein H. 120.  1999. Use of a new device, the MicroWick, to deliver medication to the inner ear. Ear Nose Throat J. 78:8595–98600 [Google Scholar]
  121. Suryanarayanan R, Srinivasan VR, O'Sullivan G. 121.  2009. Transtympanic gentamicin treatment using Silverstein MicroWick in Ménière's disease patients: long term outcome. J. Laryngol. Otol. 123:145–49 [Google Scholar]
  122. Weisskopf P, Hoffer ME, Kopke RD, Gottshall K, Allen K, Wester D. 122.  2001. Microdose gentamicin delivered via the round window microcatheter: a therapeutic option in Menière's disease. Oper. Tech. Otolaryngol. Head Neck Surg. 12:3154–56 [Google Scholar]
  123. Plontke SK, Zimmermann R, Zenner H-P, Löwenheim H. 123.  2006. Technical note on microcatheter implantation for local inner ear drug delivery: surgical technique and safety aspects. Otol. Neurotol. 27:7912–17 [Google Scholar]
  124. Lee KY, Nakagawa T, Okano T, Hori R, Ono K. 124.  et al. 2007. Novel therapy for hearing loss: delivery of insulin-like growth factor 1 to the cochlea using gelatin hydrogel. Otol. Neurotol. 28:7976–81 [Google Scholar]
  125. Paulson DP, Abuzeid W, Jiang H, Oe T, O'Malley BW, Li D. 125.  2008. A novel controlled local drug delivery system for inner ear disease. Laryngoscope 118:4706–11 [Google Scholar]
  126. Endo T, Nakagawa T, Kita T, Iguchi F, Kim T-S. 126.  et al. 2005. Novel strategy for treatment of inner ears using a biodegradable gel. Laryngoscope 115:112016–20 [Google Scholar]
  127. Kopke RD, Wassel RA, Mondalek F, Grady B, Chen K. 127.  et al. 2006. Magnetic nanoparticles: inner ear targeted molecule delivery and middle ear implant. Audiol. Neurotol. 11:2123–33 [Google Scholar]
  128. Shellock FG. 128.  2001. Magnetic Resonance Procedures: Health Effects and Safety Boca Raton, FL: CRC478 [Google Scholar]
  129. Schenck JF. 129.  1996. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med. Phys. 23:6815–50 [Google Scholar]
  130. Vignaud A, Maître X, Guillot G, Durand E, de Rochefort L. 130.  et al. 2005. Magnetic susceptibility matching at the air–tissue interface in rat lung by using a superparamagnetic intravascular contrast agent: influence on transverse relaxation time of hyperpolarized helium-3. Magn. Reson. Med. 54:128–33 [Google Scholar]
  131. Skumryev V, Blythe HJ, Cullen J, Coey JMD. 131.  1999. AC susceptibility of a magnetite crystal. J. Magn. Magn. Mater. 196:515–17 [Google Scholar]
  132. Heider F, Zitzelsberger A, Fabian K. 132.  1996. Magnetic susceptibility and remanent coercive force in grown magnetite crystals from 0.1 μm to 6 mm. Phys. Earth Planet. Inter. 93:3–4239–56 [Google Scholar]
  133. Dunlop DJ. 133.  1984. A method of determining demagnetizing factor from multidomain hysteresis. J. Geophys. Res.: Solid Earth 89:B1553–58 [Google Scholar]
  134. Grief AD, Richardson G. 134.  2005. Mathematical modelling of magnetically targeted drug delivery. J. Magn. Magn. Mater. 293:1455–63 [Google Scholar]
  135. Mikkelsen CI. 135.  2005. Magnetic separation and hydrodynamic interactions in microfluidic systems PhD Thesis, Dep. Micro Nanotechnol., Tech. Univ. Denmark, Kongens Lyngby [Google Scholar]
  136. Sarwar A, Nemirovski A, Shapiro B. 136.  2012. Optimal Halbach permanent magnet designs for maximally pulling and pushing nanoparticles. J. Magn. Magn. Mater. 324:5742–54 [Google Scholar]
  137. Shapiro B, Dormer K, Rutel IB. 137.  2010. A two-magnet system to push therapeutic nanoparticles. AIP Conf. Proc. 1311177–88 [Google Scholar]
  138. Sarwar A, Lee R, Depireux DA, Shapiro B. 138.  2013. Magnetic injection of nanoparticles into rat inner ears at a human head working distance. IEEE Trans. Magn. 49:1440–52 [Google Scholar]
  139. Depireux D, Lee R, Sarwar A, Shapiro B. 139.  2012. Drug delivery to the inner ear of rats using magnetically steered nanoparticles Presented at Mid-Winter Meet. Assoc. Res. Otolaryngol., Feb. 25–29, San Diego, CA [Google Scholar]
  140. Cherry DK, Woodwell DA. 140.  2002. National ambulatory medical care survey: 2000 summary. Adv. Data3281–32 [Google Scholar]
  141. Rosenfeld RM, Casselbrant ML, Hannley MT. 141.  2001. Implications of the AHRQ evidence report on acute otitis media. Otolaryngol. Head Neck Surg. 125:5439–48 [Google Scholar]
  142. Cent. Dis. Control. Prev. (CDC) 2014. NAMCS and NHAMCS web tables Ambul. Health Care Data, CDC, Atlanta, updated Feb. 24. http://www.cdc.gov/nchs/ahcd/web_tables.htm#2010 [Google Scholar]
  143. Rovers MM. 143.  2008. The burden of otitis media. Vaccine 26:Suppl. 7G2–4 [Google Scholar]
  144. Kenna MA. 144.  2005. Otitis media and the new guidelines. J. Otolaryngol. 34:Suppl. 1S24–32 [Google Scholar]
  145. Grubb MS, Spaugh DC. 145.  2010. Treatment failure, recurrence, and antibiotic prescription rates for different acute otitis media treatment methods. Clin. Pediatr. 49:10970–75 [Google Scholar]
  146. Ryan AF, Jung TTK, Juhn SK, Li J-D, Andalibi A. 146.  et al. 2005. Recent advances in otitis media. 4A. Molecular biology. Ann. Otol. Rhinol. Laryngol. Suppl. 194:42–49 [Google Scholar]
  147. Lim DJ, Birck H. 147.  1971. Ultrastructural pathology of the middle ear mucosa in serous otitis media. Ann. Otol. Rhinol. Laryngol. 80:6838–53 [Google Scholar]
  148. Tos M, Bak-Pedersen K. 148.  1976. Goblet cell population in the pathological middle ear and eustachian tube of children and adults. Ann. Otol. Rhinol. Laryngol. 86:2 Pt. 1209–18 [Google Scholar]
  149. Klein JO. 149.  2000. The burden of otitis media. Vaccine 19:Suppl. 1S2–8 [Google Scholar]
  150. Teele DW, Klein JO, Rosner BA. 150.  1984. Otitis media with effusion during the first three years of life and development of speech and language. Pediatrics 74:2282–87 [Google Scholar]
  151. Subcomm. Manag. Acute Otitis Media 2004. Diagnosis and management of acute otitis media. Pediatrics 113:51451–65 [Google Scholar]
  152. Shehab N, Patel PR, Srinivasan A, Budnitz DS. 152.  2008. Emergency department visits for antibiotic-associated adverse events. Clin. Infect. Dis. 47:6735–43 [Google Scholar]
  153. Hoberman A, Paradise JL, Rockette HE, Shaikh N, Wald ER. 153.  et al. 2011. Treatment of acute otitis media in children under 2 years of age. N. Engl. J. Med. 364:2105–15 [Google Scholar]
  154. Tähtinen PA, Laine MK, Huovinen P, Jalava J, Ruuskanen O, Ruohola A. 154.  2011. A placebo-controlled trial of antimicrobial treatment for acute otitis media. N. Engl. J. Med. 364:2116–26 [Google Scholar]
  155. Kogan MD, Overpeck MD, Hoffman HJ, Casselbrant ML. 155.  2000. Factors associated with tympanostomy tube insertion among preschool-aged children in the United States. Am. J. Public Health 90:2245–50 [Google Scholar]
  156. Hoskison E, Daniel M, Al-Zahid S, Shakesheff K, Bayston R, Birchall J. 156.  2013. Drug delivery to the ear. Ther. Deliv. 4:1115–24 [Google Scholar]
  157. Khoo X, Simons EJ, Chiang HH, Hickey JM, Sabharwal V. 157.  et al. 2013. Formulations for trans-tympanic antibiotic delivery. Biomaterials 34:41281–88 [Google Scholar]
  158. Campbell WR, Johnson RH, Paulsen NE. 158.  2008. Methods for treatment and prevention of otitis media using chemical penetration enhancers to facilitate transmembrane drug delivery into the middle ear. US Patent No. 20080269187 A1
  159. Friedman DS, O'Colmain BJ, Muñoz B, Tomany SC, McCarty C. 159.  et al. 2004. Prevalence of age-related macular degeneration in the United States. Arch. Ophthalmol. 122:4564–72 [Google Scholar]
  160. Lee PP, Feldman ZW, Ostermann J, Brown DS, Sloan FA. 160.  2003. Longitudinal prevalence of major eye diseases. Arch. Ophthalmol. 121:91303–10 [Google Scholar]
  161. Eye Dis. Preval. Res. Group 2004. Causes and prevalence of visual impairment among adults in the United States. Arch. Ophthalmol. 122:4477–85 [Google Scholar]
  162. Natl. Eye Inst. (NEI) 2013. Facts about age-related macular degeneration Fact Sheet, NEI, Bethesda, MD, reviewed July. http://www.nei.nih.gov/health/maculardegen/armd_facts.asp#10 [Google Scholar]
  163. Green WR, Enger C. 163.  2005. Age-related macular degeneration histopathologic studies: the 1992 Lorenz E. Zimmerman Lecture. Retina 25:5 Suppl.1519–35 [Google Scholar]
  164. Michels S, Schmidt-Erfurth U, Rosenfeld PJ. 164.  2006. Promising new treatments for neovascular age-related macular degeneration. Expert Opin. Investig. Drugs 15:7779–93 [Google Scholar]
  165. Peyman GA, Herbst R. 165.  1974. Bacterial endophthalmitis: treatment with intraocular injection of gentamicin and dexamethasone. Arch. Ophthalmol. 91:5416–18 [Google Scholar]
  166. Husain D, Kramer M, Kenny AG, Michaud N, Flotte TJ. 166.  et al. 1999. Effects of photodynamic therapy using verteporfin on experimental choroidal neovascularization and normal retina and choroid up to 7 weeks after treatment. Investig. Ophthalmol. Vis. Sci. 40:102322–31 [Google Scholar]
  167. Dorin G. 167.  2004. Evolution of retinal laser therapy: minimum intensity photocoagulation (MIP). Can the laser heal the retina without harming it?. Semin. Ophthalmol. 19:1–262–68 [Google Scholar]
  168. McMeel JW, Trempe CL, Franks EB. 168.  1977. Diabetic maculopathy. Trans. Sect. Ophthalmol. Am. Acad. Ophthalmol. Otolaryngol. 83:3 Pt. 1OP476–87 [Google Scholar]
  169. Gillies MC, Sutter FKP, Simpson JM, Larsson J, Ali H, Zhu M. 169.  2006. Intravitreal triamcinolone for refractory diabetic macular edema: two-year results of a double-masked, placebo-controlled, randomized clinical trial. Ophthalmology 113:91533–38 [Google Scholar]
  170. Berson EL. 170.  1993. Retinitis pigmentosa: the Friedenwald Lecture. Investig. Ophthalmol. Vis. Sci. 34:51659–76 [Google Scholar]
  171. Hartong DT, Berson EL, Dryja TP. 171.  2006. Retinitis pigmentosa. Lancet 368:95491795–809 [Google Scholar]
  172. Berson EL, Rosner B, Sandberg MA, Hayes KC, Nicholson BW. 172.  et al. 1993. A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch. Ophthalmol. 111:6761–72 [Google Scholar]
  173. Sieving PA, Caruso RC, Tao W, Coleman HR, Thompson DJS. 173.  et al. 2006. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: Phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc. Natl. Acad. Sci. USA 103:103896–901 [Google Scholar]
  174. Shantha TR, Shantha J. 174.  2011. Retinitis pigmentosa treatment. US Patent No. 20120101033 A1
  175. Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S. 175.  et al. 2008. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc. Natl. Acad. Sci. USA 105:3915112–17 [Google Scholar]
  176. Narfström K, Katz ML, Ford M, Redmond TM, Rakoczy E, Bragadóttir R. 176.  2003. In vivo gene therapy in young and adult RPE65−/− dogs produces long-term visual improvement. J. Hered. 94:131–37 [Google Scholar]
  177. Mello CC, Kramer JM, Stinchcomb D, Ambros V. 177.  1991. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10:123959–70 [Google Scholar]
  178. Green M, Thorburn A, Kern R, Loewenstein PM. 178.  2007. The use of cell microinjection for the in vivo analysis of viral transcriptional regulatory protein domains. Methods Mol. Med. 131:157–86 [Google Scholar]
  179. Williamson TH. 179.  1997. Central retinal vein occlusion: What's the story?. Br. J. Ophthalmol. 81:8698–704 [Google Scholar]
  180. Soubrane G. 180.  1999. Macular edema in retinal vein occlusion: up-date from the central retinal vein occlusion study. Doc. Ophthalmol. 97:3–4279–82 [Google Scholar]
  181. Haller JA, Bandello F, Belfort R Jr, Blumenkranz MS, Gillies M. 181.  et al. 2010. Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion. Ophthalmology 117:61134–46.e3 [Google Scholar]
  182. Haller JA, Bandello F, Belfort R Jr, Blumenkranz MS, Gillies M. 182.  et al. 2011. Dexamethasone intravitreal implant in patients with macular edema related to branch or central retinal vein occlusion: twelve-month study results. Ophthalmology 118:122453–60 [Google Scholar]
  183. Jonas JB, Kreissig I, Degenring RF. 183.  2002. Intravitreal triamcinolone acetonide as treatment of macular edema in central retinal vein occlusion. Graefe's Arch. Clin. Exp. Ophthalmol. 240:9782–83 [Google Scholar]
  184. Laatikainen L, Kohner EM, Khoury D, Blach RK. 184.  1977. Panretinal photocoagulation in central retinal vein occlusion: a randomised controlled clinical study. Br. J. Ophthalmol. 61:12741–53 [Google Scholar]
  185. Hayreh SS, Klugman MR, Podhajsky P, Servais GE, Perkins ES. 185.  1990. Argon laser panretinal photo-coagulation in ischemic central retinal vein occlusion. Graefe's Arch. Clin. Exp. Ophthalmol. 228:4281–96 [Google Scholar]
  186. Moshfeghi DM, Kaiser PK, Scott IU, Sears JE, Benz M. 186.  et al. 2003. Acute endophthalmitis following intravitreal triamcinolone acetonide injection. Am. J. Ophthalmol. 136:5791–96 [Google Scholar]
  187. Ciulla TA, Starr MB, Masket S. 187.  2002. Bacterial endophthalmitis prophylaxis for cataract surgery: an evidence-based update. Ophthalmology 109:113–24 [Google Scholar]
  188. Taban M, Behrens A, Newcomb RL, Nobe MY, Saedi G. 188.  et al. 2005. Acute endophthalmitis following cataract surgery: a systematic review of the literature. Arch. Ophthalmol. 123:5613–20 [Google Scholar]
  189. West ES, Behrens A, McDonnell PJ, Tielsch JM, Schein OD. 189.  2005. The incidence of endophthalmitis after cataract surgery among the U.S. Medicare population increased between 1994 and 2001. Ophthalmology 112:81388–94 [Google Scholar]
  190. Olson JC, Flynn HW Jr, Forster RK, Culbertson WW. 190.  1983. Results in the treatment of postoperative endophthalmitis. Ophthalmology 90:6692–99 [Google Scholar]
  191. Winward KE, Pflugfelder SC, Flynn HW Jr, Roussel TJ, Davis JL. 191.  1993. Postoperative Propionibacterium endophthalmitis: treatment strategies and long-term results. Ophthalmology 100:4447–51 [Google Scholar]
  192. Gaudana R, Ananthula HK, Parenky A, Mitra AK. 192.  2010. Ocular drug delivery. AAPS J. 12:3348–60 [Google Scholar]
  193. Barar J, Javadzadeh AR, Omidi Y. 193.  2008. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin. Drug Deliv. 5:5567–81 [Google Scholar]
  194. Xu Q, Kambhampati SP, Kannan RM. 194.  2013. Nanotechnology approaches for ocular drug delivery. Middle East Afr. J. Ophthalmol. 20:126–37 [Google Scholar]
  195. Edelhauser HF, Rowe-Rendleman CL, Robinson MR, Dawson DG, Chader GJ. 195.  et al. 2010. Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications. Investig. Ophthalmol. Vis. Sci. 51:115403–20 [Google Scholar]
  196. Al-Saikhan FI. 196.  2013. The gene therapy revolution in ophthalmology. Saudi J. Ophthalmol. 27:2107–11 [Google Scholar]
  197. Jager RD, Aiello LP, Patel SC, Cunningham ET. 197.  2004. Risks of intravitreous injection: a comprehensive review. Retina 24:5676–98 [Google Scholar]
  198. Kalam MA, Sultana Y, Samad A, Ali A, Aqil M. 198.  et al. 2008. Gelrite-based in vitro gelation ophthalmic drug delivery system of gatifloxacin. J. Dispers. Sci. Technol. 29:189–96 [Google Scholar]
  199. Alonso MJ, Sánchez A. 199.  2003. The potential of chitosan in ocular drug delivery. J. Pharm. Pharmacol. 55:111451–63 [Google Scholar]
  200. Callanan D, Williams P. 200.  2008. Topical nepafenac in the treatment of diabetic macular edema. Clin. Ophthalmol. 2:4689–92 [Google Scholar]
  201. Weiner AL, Gilger BC. 201.  2010. Advancements in ocular drug delivery. Vet. Ophthalmol. 13:6395–406 [Google Scholar]
  202. Prow T, Grebe R, Merges C, Smith JN, McLeod DS. 202.  et al. 2006. Nanoparticle tethered antioxidant response element as a biosensor for oxygen induced toxicity in retinal endothelial cells. Mol. Vis. 12:616–25 [Google Scholar]
  203. Prow TW, Bhutto I, Kim SY, Grebe R, Merges C. 203.  et al. 2008. Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomed.: Nanotechnol. Biol. Med. 4:4340–49 [Google Scholar]
  204. Dengler M, Saatchi K, Dailey JP, Matsubara J, Mikelberg FS. 204.  et al. 2010. Targeted delivery of magnetic cobalt nanoparticles to the eye following systemic administration. AIP Conf. Proc. 1311:1329–36 [Google Scholar]
  205. Raju HB, Hu Y, Vedula A, Dubovy SR, Goldberg JL. 205.  2011. Evaluation of magnetic micro- and nanoparticle toxicity to ocular tissues. PLoS ONE 6:5e17452 [Google Scholar]
  206. Winkler BS, Boulton ME, Gottsch JD, Sternberg P. 206.  1999. Oxidative damage and age-related macular degeneration. Mol. Vis. 5:32 [Google Scholar]
  207. Beatty S, Koh H-H, Phil M, Henson D, Boulton M. 207.  2000. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv. Ophthalmol. 45:2115–34 [Google Scholar]
  208. Humayun MS, Prince M, de Juan E Jr, Barron Y, Moskowitz M. 208.  et al. 1999. Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 40:1143–48 [Google Scholar]
  209. Shen Z, Nacev A, Sarwar A, Lee R, Depireux D, Shapiro B. 209.  2013. Automated fluorescence and reflectance coregistered 3-D tissue imaging system. IEEE Trans. Magn. 49:1279–84 [Google Scholar]
  210. Shen Z, Nacev A, Shapiro B. 210.  2012. Fluorescence and reflectance co-registered 3D tissue imaging system based on a cryostat Presented at Int. Conf. Sci. Clin. Appl. Magn. Carriers, 9th, Minneapolis, MN [Google Scholar]
  211. Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ. 211.  2010. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans. Robot. 26:61006–17 [Google Scholar]
  212. Ergeneman O, Chatzipirpiridis G, Pokki J, Marin-Suárez M, Sotiriou GA. 212.  et al. 2012. In vitro oxygen sensing using intraocular microrobots. IEEE Trans. Biomed. Eng. 59:113104–9 [Google Scholar]
  213. Ullrich F, Bergeles C, Pokki J, Ergeneman O, Erni S. 213.  et al. 2013. Mobility experiments with microrobots for minimally invasive intraocular surgery. Investig. Ophthalmol. Vis. Sci. 54:42853–63 [Google Scholar]
  214. Bergeles C, Kummer MP, Kratochvil BE, Framme C, Nelson BJ. 214.  2011. Steerable intravitreal inserts for drug delivery: in vitro and ex vivo mobility experiments. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2011 G Fichtinger, A Martel, T Peters 33–40 Berlin: Springer [Google Scholar]
  215. Gupta PK, Jensen PS Jr, de Juan E Jr. 215.  1999. Surgical forces and tactile perception during retinal microsurgery. Medical Image Computing and Computer-Assisted Intervention—MICCAI 1999 C Taylor, A Colchester 1218–25 Berlin: Springer [Google Scholar]
  216. Singhy SPN, Riviere CN. 216.  2002. Physiological tremor amplitude during retinal microsurgery. Proc. IEEE 28th Annu. Northeast Bioeng. Conf., Philadelphia171–72 New York: IEEE [Google Scholar]
  217. Jagtap AD, Riviere CN. 217.  2004. Applied force during vitreoretinal microsurgery with handheld instruments. Proc. 26th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (IEMBS '04) 12771–73 New York: IEEE [Google Scholar]
  218. Mathieu JB, Martel S. 218.  2009. IMP-aggregation of magnetic microparticles in the context of targeted therapies actuated by a magnetic resonance imaging system. J. Appl. Phys. 106:4044904 [Google Scholar]
  219. Evans BA, Shields AR, Carroll RL, Washburn S, Falvo MR, Superfine R. 219.  2007. Magnetically actuated nanorod arrays as biomimetic cilia. Nano Lett. 7:51428–34 [Google Scholar]
  220. Cordente N, Respaud M, Senocq F, Casanove M-J, Amiens C, Chaudret B. 220.  2001. Synthesis and magnetic properties of nickel nanorods. Nano Lett. 1:10565–68 [Google Scholar]
  221. Nacev A, Beni C, Bruno O, Shapiro B. 221.  2011. The behaviors of ferro-magnetic nano-particles in and around blood vessels under applied magnetic fields. J. Magn. Magn. Mater. 323:6651–68 [Google Scholar]
  222. Nacev A, Beni C, Bruno O, Shapiro B. 222.  2010. Magnetic nanoparticle transport within flowing blood and into surrounding tissue. Nanomedicine 5:91459–66 [Google Scholar]
  223. Nacev A, Kim SH, Rodriguez-Canales J, Tangrea MA, Shapiro B, Emmert-Buck MR. 223.  2011. A dynamic magnetic shift method to increase nanoparticle concentration in cancer metastases: a feasibility study using simulations on autopsy specimens. Int. J. Nanomed. 6:12907–23 [Google Scholar]
  224. Renkin EM. 224.  1954. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J. Gen. Physiol. 38:2225–43 [Google Scholar]
  225. Ogston AG, Preston BN, Wells JD. 225.  1973. On the transport of compact particles through solutions of chain-polymers. Proc. R. Soc. Lond. A Math. Phys. Sci. 333:1594297–316 [Google Scholar]
  226. Kulkarni S, Nacev A, Ramaswamy B, Depireux D, Shapiro B. 226.  2013. Understanding motion of magnetic nanoparticles in tissue Presented at Front. Biomagn. Nanopart. III, June 2–5, Telluride, CO [Google Scholar]
  227. Salt AN, Ohyama K, Thalmann R. 227.  1991. Radial communication between the perilymphatic scalae of the cochlea. II: Estimation by bolus injection of tracer into the sealed cochlea. Hear. Res. 56:1–237–43 [Google Scholar]
  228. Hiemenz PC, Rajagopalan R. 228.  1997. Principles of Colloid and Surface Chemistry Boca Raton, FL: CRC676, 3rd. ed. [Google Scholar]
  229. Saltzman WM. 229.  2001. Drug Delivery: Engineering Principles for Drug Therapy New York: Oxford Univ. Press [Google Scholar]
  230. Fournier RL. 230.  2007. Basic Transport Phenomena in Biomedical Engineering New York: Taylor & Francis [Google Scholar]
  231. Lai SK, O'Hanlon DE, Harrold S, Man ST, Wang Y-Y. 231.  et al. 2007. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl. Acad. Sci. USA 104:51482–87 [Google Scholar]
  232. Lai SK, Wang Y-Y, Hanes J. 232.  2009. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61:2158–71 [Google Scholar]
  233. Sun C, Lee J, Zhang M. 233.  2008. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 60:111252–65 [Google Scholar]
  234. Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J. 234.  2009. Three-dimensional real-time in vivo magnetic particle imaging. Phys. Med. Biol. 54:5L1–10 [Google Scholar]
  235. Kim BH, Lee N, Kim H, An K, Park YI. 235.  et al. 2011. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J. Am. Chem. Soc. 133:3212624–31 [Google Scholar]
  236. Weinberg IN, Stepanov PY, Fricke ST, Probst R, Urdaneta M. 236.  et al. 2012. Increasing the oscillation frequency of strong magnetic fields above 101 kHz significantly raises peripheral nerve excitation thresholds. Med. Phys. 39:52578–83 [Google Scholar]
  237. Gleich B, Weizenecker J. 237.  2005. Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:70461214–17 [Google Scholar]
  238. Rahmer J, Antonelli A, Sfara C, Tiemann B, Gleich B. 238.  et al. 2013. Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection. Phys. Med. Biol. 58:123965–77 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071813-105206
Loading
/content/journals/10.1146/annurev-bioeng-071813-105206
Loading

Data & Media loading...

    Three-dimensional visualization of the human ear anatomy achieved by surface rendering of archival sections of the temporal bone of a 14-year-old male.

    The anatomy of the human eye.

    Three-dimensional distribution of the fluorescent MNPs within a single rat eye, shown in red for particles that were found inside the eye.

    Three-dimensional distribution of the fluorescent MNPs within a single rat eye, shown in green for particles that remained outside the eye.

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error