Biomolecular motors, in particular motor proteins from the kinesin and myosin families, can be used to explore engineering applications of molecular motors in general. Their outstanding performance enables the experimental study of hybrid systems, where bio-inspired functions such as sensing, actuation, and transport rely on the nanoscale generation of mechanical force. Scaling laws and theoretical studies demonstrate the optimality of biomolecular motor designs and inform the development of synthetic molecular motors.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Drexler KE.1.  1981. Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc. Natl. Acad. Sci. USA 78:5275–78 [Google Scholar]
  2. Schwille P, Diez S. 2.  2009. Synthetic biology of minimal systems. Crit. Rev. Biochem. Mol. Biol. 44:223–42 [Google Scholar]
  3. Goodsell DS.3.  2000. Biomolecules and nanotechnology. Am. Sci. 88:230 [Google Scholar]
  4. Zhang SG.4.  2003. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21:1171–78 [Google Scholar]
  5. Seeman NC.5.  2003. DNA in a material world. Nature 421:427–31 [Google Scholar]
  6. Chworos A, Severcan I, Koyfman AY, Weinkam P, Oroudjev E. 6.  et al. 2004. Building programmable jigsaw puzzles with RNA. Science 306:2068–72 [Google Scholar]
  7. Schnur JM.7.  1993. Lipid tubules—a paradigm for molecularly engineered structures. Science 262:1669–76 [Google Scholar]
  8. Howard J.8.  2001. Mechanics of Motor Proteins and the Cytoskeleton. Sunderland, MA: Sinauer367 [Google Scholar]
  9. Kay ER, Leigh DA, Zerbetto F. 9.  2007. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46:72–191 [Google Scholar]
  10. Aridor M, Hannan LA. 10.  2002. Traffic jams II: an update of diseases of intracellular transport. Traffic 3:781–90 [Google Scholar]
  11. Block SM.11.  2007. Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys. J. 92:2986–95 [Google Scholar]
  12. Sweeney HL, Houdusse A. 12.  2010. Structural and functional insights into the myosin motor mechanism. Annu. Rev. Biophys. 39:539–57 [Google Scholar]
  13. Newman MEJ.13.  2005. Power laws, Pareto distributions and Zipf's law. Contemp. Phys. 46:323–51 [Google Scholar]
  14. Bakewell DJG, Nicolau DV. 14.  2007. Protein linear molecular motor-powered nanodevices. Aust. J. Chem. 60:314–32 [Google Scholar]
  15. van den Heuvel MGL, Dekker C. 15.  2007. Motor proteins at work for nanotechnology. Science 317:333–36 [Google Scholar]
  16. Goel A, Vogel V. 16.  2008. Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nat. Nanotechnol. 3:465–75 [Google Scholar]
  17. Agarwal A, Hess H. 17.  2010. Biomolecular motors at the intersection of nanotechnology and polymer science. Prog. Polym. Sci. 35:252–77 [Google Scholar]
  18. Korten T, Mansson A, Diez S. 18.  2010. Towards the application of cytoskeletal motor proteins in molecular detection and diagnostic devices. Curr. Opin. Biotechnol. 21:4477–88 [Google Scholar]
  19. Vale RD, Milligan RA. 19.  2000. The way things move: looking under the hood of molecular motor proteins. Science 288:88–95 [Google Scholar]
  20. Boyer PD.20.  1997. The ATP synthase—a splendid molecular machine. Annu. Rev. Biochem. 66:717–49 [Google Scholar]
  21. Mickler M, Schleiff E, Hugel T. 21.  2008. From biological towards artificial molecular motors. ChemPhysChem 9:1503–9 [Google Scholar]
  22. Marden JH, Allen LR. 22.  2002. Molecules, muscles, and machines: universal performance characteristics of motors. Proc. Natl. Acad. Sci. USA 99:4161–66 [Google Scholar]
  23. Liu Y, Flood AH, Bonvallett PA, Vignon SA, Northrop BH. 23.  et al. 2005. Linear artificial molecular muscles. J. Am. Chem. Soc. 127:9745–59 [Google Scholar]
  24. Lee SJ, Lu W. 24.  2009. Effect of mechanical load on the shuttling operation of molecular muscles. Appl. Phys. Lett. 94:233114 [Google Scholar]
  25. Ashby M.25.  2005. Materials Selection in Mechanical Design. Burlington, MA: Butterworth-Heinemann619 [Google Scholar]
  26. Wang HY, Oster G. 26.  1998. Energy transduction in the F-1 motor of ATP synthase. Nature 396:279–82 [Google Scholar]
  27. Kinosita K, Yasuda R, Noji H, Adachi K. 27.  2000. A rotary molecular motor that can work at near 100% efficiency. Philos. Trans. R. Soc. B 355:473–89 [Google Scholar]
  28. Visscher K, Schnitzer MJ, Block SM. 28.  1999. Single kinesin molecules studied with a molecular force clamp. Nature 400:184–89 [Google Scholar]
  29. Coy DL, Wagenbach M, Howard J. 29.  1999. Kinesin takes one 8-nm step for each ATP that it hydrolyzes. J. Biol. Chem. 274:3667–71 [Google Scholar]
  30. Uchino K, Cagatay S, Koc B, Dong S, Bouchilloux P, Strauss M. 30.  2004. Micro piezoelectric ultrasonic motors. J. Electroceram. 13:393–401 [Google Scholar]
  31. Yeghiazarian L, Mahajan S, Montemagno C, Cohen C, Wiesner U. 31.  2005. Directed motion and cargo transport through propagation of polymer-gel volume phase transitions. Adv. Mater. 17:1869–73 [Google Scholar]
  32. Parmeggiani A, Julicher F, Ajdari A, Prost J. 32.  1999. Energy transduction of isothermal ratchets: generic aspects and specific examples close to and far from equilibrium. Phys. Rev. E 60:2127–40 [Google Scholar]
  33. Van den Broeck C. 33.  2005. Thermodynamic efficiency at maximum power. Phys. Rev. Lett. 95:190602 [Google Scholar]
  34. Howard J.34.  2006. Protein power strokes. Curr. Biol. 16:R517–R9 [Google Scholar]
  35. Schmiedl T, Seifert U. 35.  2008. Efficiency of molecular motors at maximum power. EPL-Europhys. Lett. 83:30005 [Google Scholar]
  36. Schneider TD.36.  1991. Theory of molecular machines. II. Energy-dissipation from molecular machines. J. Theor. Biol. 148:125–37 [Google Scholar]
  37. Schneider TD.37.  2010. 70% efficiency of bistate molecular machines explained by information theory, high dimensional geometry and evolutionary convergence. Nucleic Acids Res. 38:5995–6006 [Google Scholar]
  38. Yin P, Yan H, Daniell XG, Turberfield AJ, Reif JH. 38.  2004. A unidirectional DNA walker that moves autonomously along a track. Angew. Chem. Int. Ed. 43:4906–11 [Google Scholar]
  39. Bromley EHC, Kuwada NJ, Zuckermann MJ, Donadini R, Samii L. 39.  et al. 2009. The Tumbleweed: towards a synthetic protein motor. HFSP J. 3:204–12 [Google Scholar]
  40. Smith NP, Barclay CJ, Loiselle DS. 40.  2005. The efficiency of muscle contraction. Prog. Biophys. Mol. Biol. 88:1–58 [Google Scholar]
  41. Barclay CJ, Woledge RC, Curtin NA. 41.  2010. Inferring crossbridge properties from skeletal muscle energetics. Prog. Biophys. Mol. Biol. 102:53–71 [Google Scholar]
  42. Howard J.42.  1997. Molecular motors: structural adaptations to cellular functions. Nature 389:561–67 [Google Scholar]
  43. Hirokawa N.43.  1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–26 [Google Scholar]
  44. Kamiya N.44.  1981. Physical and chemical basis of cytoplasmic streaming. Annu. Rev. Plant Physiol. 32:205–36 [Google Scholar]
  45. Li S, Guan JL, Chien S. 45.  2005. Biochemistry and biomechanics of cell motility. Annu. Rev. Biomed. Eng. 7:105–50 [Google Scholar]
  46. Wilson CA, Tsuchida MA, Allen GM, Barnhart EL, Applegate KT. 46.  et al. 2010. Myosin II contributes to cell-scale actin network treadmilling through network disassembly. Nature 465:373–77 [Google Scholar]
  47. Cramer LP, Mitchison TJ. 47.  1995. Myosin is involved in postmitotic cell spreading. J. Cell Biol. 131:179–89 [Google Scholar]
  48. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 48.  2002. Molecular Biology of the Cell New York: Garland, 4th.
  49. Bull JL, Hunt AJ, Meyhofer E. 49.  2005. A theoretical model of a molecular-motor-powered pump. Biomed. Microdevices 7:21–33 [Google Scholar]
  50. Kim T, Cheng LJ, Kao MT, Hasselbrink EF, Guo LJ, Meyhofer E. 50.  2009. Biomolecular motor-driven molecular sorter. Lab Chip 9:1282–85 [Google Scholar]
  51. Eigler DM, Schweizer EK. 51.  1990. Positioning single atoms with a scanning tunnelling microscope. Nature 344:524–26 [Google Scholar]
  52. Yin YD, Lu Y, Gates B, Xia YN. 52.  2001. Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J. Am. Chem. Soc. 123:8718–29 [Google Scholar]
  53. Hess H, Vogel V. 53.  2001. Molecular shuttles based on motor proteins: active transport in synthetic environments. Rev. Mol. Biotechnol. 82:67–85 [Google Scholar]
  54. Katira P, Hess H. 54.  2010. Two-stage capture employing active transport enables sensitive and fast biosensors. Nano Lett. 10:567–72 [Google Scholar]
  55. Suzuki H, Yamada A, Oiwa K, Nakayama H, Mashiko S. 55.  1997. Control of actin moving trajectory by patterned poly(methylmethacrylate) tracks. Biophys. J. 72:1997–2001 [Google Scholar]
  56. Hiratsuka Y, Tada T, Oiwa K, Kanayama T, Uyeda TQ. 56.  2001. Controlling the direction of kinesin-driven microtubule movements along microlithographic tracks. Biophys. J. 81:1555–61 [Google Scholar]
  57. Clemmens J, Hess H, Lipscomb R, Hanein Y, Boehringer KF. 57.  et al. 2003. Principles of microtubule guiding on microfabricated kinesin-coated surfaces: chemical and topographic surface patterns. Langmuir 19:10967–74 [Google Scholar]
  58. Huang YM, Uppalapati M, Hancock WO, Jackson TN. 58.  2005. Microfabricated capped channels for biomolecular motor-based transport. IEEE Trans. Adv. Packag. 28:564–70 [Google Scholar]
  59. Riveline D, Ott A, Julicher F, Winkelmann DA, Cardoso O. 59.  et al. 1998. Acting on actin: the electric motility assay. Eur. Biophys. J. 27:403–8 [Google Scholar]
  60. van den Heuvel MGL, De Graaff MP, Dekker C. 60.  2006. Molecular sorting by electrical steering of microtubules in kinesin-coated channels. Science 312:910–14 [Google Scholar]
  61. Hutchins BM, Platt M, Hancock WO, Williams ME. 61.  2007. Directing transport of CoFe2O4-functionalized microtubules with magnetic fields. Small 3:126–31 [Google Scholar]
  62. Kim T, Kao MT, Meyhöfer E, Hasselbrink EF. 62.  2007. Biomolecular motor-driven microtubule translocation in the presence of shear flow: analysis of redirection behaviours. Nanotechnology 18:025101 [Google Scholar]
  63. Nitta T, Hess H. 63.  2005. Dispersion in active transport by kinesin-powered molecular shuttles. Nano Lett. 5:1337–42 [Google Scholar]
  64. Vikhorev PG, Vikhoreva NN, Mansson A. 64.  2008. Bending flexibility of actin filaments during motor-induced sliding. Biophys. J. 95:5809–19 [Google Scholar]
  65. Duke T, Holy TE, Leibler S. 65.  1995. “Gliding assays” for motor proteins: a theoretical analysis. Phys. Rev. Lett. 74:330–33 [Google Scholar]
  66. Pampaloni F, Lattanzi G, Jonas A, Surrey T, Frey E, Florin E-L. 66.  2006. Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. Proc. Natl. Acad. Sci. USA 103:10248–53 [Google Scholar]
  67. van den Heuvel MGL, Bolhuis S, Dekker C. 67.  2007. Persistence length measurements from stochastic single-microtubule trajectories. Nano Lett. 7:3138–44 [Google Scholar]
  68. Nitta T, Tanahashi A, Obara Y, Hirano M, Razumova M. 68.  et al. 2008. Comparing guiding track requirements for myosin- and kinesin-powered molecular shuttles. Nano Lett. 8:2305–9 [Google Scholar]
  69. Nitta T, Tanahashi A, Hirano M, Hess H. 69.  2006. Simulating molecular shuttle movements: towards computer-aided design of nanoscale transport systems. Lab Chip 6:881–85 [Google Scholar]
  70. Nitta T, Tanahashi A, Hirano M. 70.  2010. In silico design and testing of guiding tracks for molecular shuttles powered by kinesin motors. Lab Chip 10:1447–53 [Google Scholar]
  71. Hiyama S, Moritani Y, Gojo R, Takeuchi S, Sutoh K. 71.  2010. Biomolecular-motor-based autonomous delivery of lipid vesicles as nano- or microscale reactors on a chip. Lab Chip 10:2741–48 [Google Scholar]
  72. Schmidt C, Vogel V. 72.  2010. Molecular shuttles powered by motor proteins: loading and unloading stations for nanocargo integrated into one device. Lab Chip 10:2195–98 [Google Scholar]
  73. Fischer T, Agarwal A, Hess H. 73.  2009. A smart dust biosensor powered by kinesin motors. Nat. Nanotechnol. 4:162–66 [Google Scholar]
  74. Bachand GD, Hess H, Ratna B, Satir P, Vogel V. 74.  2009. “Smart dust” biosensors powered by biomolecular motors. Lab Chip 9:1661–66 [Google Scholar]
  75. Paxton WF, Baker PT, Kline TR, Wang Y, Mallouk TE, Sen A. 75.  2006. Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 128:14881–88 [Google Scholar]
  76. Burdick J, Laocharoensuk R, Wheat PM, Posner JD, Wang J. 76.  2008. Synthetic nanomotors in microchannel networks: directional microchip motion and controlled manipulation of cargo. J. Am. Chem. Soc. 130:8164–65 [Google Scholar]
  77. Adam G, Delbrueck M. 77.  1968. Reduction of dimensionality in biological diffusion processes. Structural Chemistry and Molecular Biology A Rich, N Davidson 198–215 New York: W.H. Freeman [Google Scholar]
  78. Lin CT, Kao MT, Kurabayashi K, Meyhofer E. 78.  2008. Self-contained biomolecular motor-driven protein sorting and concentrating in an ultrasensitive microfluidic chip. Nano Lett. 8:1041–46 [Google Scholar]
  79. Stern E, Klemic JF, Routenberg DA, Wyrembak PN, Turner-Evans DB. 79.  et al. 2007. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445:519–22 [Google Scholar]
  80. Morris CJ, Stauth SA, Parviz BA. 80.  2005. Self-assembly for microscale and nanoscale packaging: steps toward self-packaging. IEEE Trans. Adv. Packag. 28:600–11 [Google Scholar]
  81. Hess H.81.  2006. Self-assembly driven by molecular motors. Soft Matter 2:669–77 [Google Scholar]
  82. Hess H, Clemmens J, Brunner C, Doot R, Luna S. 82.  et al. 2005. Molecular self-assembly of “nanowires” and “nanospools” using active transport. Nano Lett. 5:629–33 [Google Scholar]
  83. Liu HQ, Spoerke ED, Bachand M, Koch SJ, Bunker BC, Bachand GD. 83.  2008. Biomolecular motor-powered self-assembly of dissipative nanocomposite rings. Adv. Mater. 20:4476–81 [Google Scholar]
  84. Kawamura R, Kakugo A, Osada Y, Gong JP. 84.  2010. Microtubule bundle formation driven by ATP: the effect of concentrations of kinesin, streptavidin and microtubules. Nanotechnology 21:145603 [Google Scholar]
  85. Surrey T, Nedelec F, Leibler S, Karsenti E. 85.  2001. Physical properties determining self-organization of motors and microtubules. Science 292:1167–71 [Google Scholar]
  86. He Y, Liu DR. 86.  2010. Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat. Nanotechnol. 5:778–82 [Google Scholar]
  87. Miller MJ, Wei SH, Cahalan MD, Parker I. 87.  2003. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc. Natl. Acad. Sci. USA 100:2604–9 [Google Scholar]
  88. Metropolis N, Ulam S. 88.  1949. The Monte Carlo method. J. Am. Stat. Assoc. 44:335–41 [Google Scholar]
  89. Hess H, Clemmens J, Howard J, Vogel V. 89.  2002. Surface imaging by self-propelled nanoscale probes. Nano Lett. 2:113–16 [Google Scholar]
  90. Kerssemakers J, Ionov L, Queitsch U, Luna S, Hess H, Diez S. 90.  2009. 3D nanometer tracking of motile microtubules on reflective surfaces. Small 5:1732–37 [Google Scholar]
  91. Diez S, Reuther C, Dinu C, Seidel R, Mertig M. 91.  et al. 2003. Stretching and transporting DNA molecules using motor proteins. Nano Lett. 3:1251–54 [Google Scholar]
  92. Dinu CZ, Opitz J, Pompe W, Howard J, Mertig M, Diez S. 92.  2006. Parallel manipulation of bifunctional DNA molecules on structured surfaces using kinesin-driven microtubules. Small 2:1090–98 [Google Scholar]
  93. Zhang L, Peyer KE, Nelson BJ. 93.  2010. Artificial bacterial flagella for micromanipulation. Lab Chip 10:2203–15 [Google Scholar]
  94. Huo FW, Zheng ZJ, Zheng GF, Giam LR, Zhang H, Mirkin CA. 94.  2008. Polymer pen lithography. Science 321:1658–60 [Google Scholar]
  95. Lund K, Manzo AJ, Dabby N, Michelotti N, Johnson-Buck A. 95.  et al. 2010. Molecular robots guided by prescriptive landscapes. Nature 465:206–10 [Google Scholar]
  96. Yin P, Choi HMT, Calvert CR, Pierce NA. 96.  2008. Programming biomolecular self-assembly pathways. Nature 451:318–22 [Google Scholar]
  97. Clemmens J, Hess H, Doot R, Matzke CM, Bachand GD, Vogel V. 97.  2004. Motor-protein “roundabouts”: microtubules moving on kinesin-coated tracks through engineered networks. Lab Chip 4:83–86 [Google Scholar]
  98. Hess H, Howard J, Vogel V. 98.  2002. A piconewton forcemeter assembled from microtubules and kinesins. Nano Lett. 2:1113–15 [Google Scholar]
  99. Kerssemakers JWJ, Munteanu EL, Laan L, Noetzel TL, Janson ME, Dogterom M. 99.  2006. Assembly dynamics of microtubules at molecular resolution. Nature 442:709–12 [Google Scholar]
  100. Gao YW, Lei FM. 100.  2009. Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory. Biochem. Biophys. Res. Commun. 387:467–71 [Google Scholar]
  101. Gao YW, Wang JZ, Gao HJ. 101.  2010. Persistence length of microtubules based on a continuum anisotropic shell model. J. Comput. Theor. Nanosci. 7:1227–37 [Google Scholar]
  102. Leach J, Mushfique H, di Leonardo R, Padgett M, Cooper J. 102.  2006. An optically driven pump for microfluidics. Lab Chip 6:735–39 [Google Scholar]
  103. Kim MJ, Breuer KS. 103.  2008. Microfluidic pump powered by self-organizing bacteria. Small 4:111–18 [Google Scholar]
  104. Jun IK, Hess H. 104.  2010. A biomimetic, self-pumping membrane. Adv. Mater. 22:4823–25 [Google Scholar]
  105. Coti KK, Belowich ME, Liong M, Ambrogio MW, Lau YA. 105.  et al. 2009. Mechanised nanoparticles for drug delivery. Nanoscale 1:16–39 [Google Scholar]
  106. Soong RK, Bachand GD, Neves HP, Olkhovets AG, Craighead HG, Montemagno CD. 106.  2000. Powering an inorganic nanodevice with a biomolecular motor. Science 290:1555–58 [Google Scholar]
  107. Lee TJ, Schwartz C, Guo PX. 107.  2009. Construction of bacteriophage Phi29 DNA packaging motor and its applications in nanotechnology and therapy. Ann. Biomed. Eng. 37:2064–81 [Google Scholar]
  108. Julicher F, Ajdari A, Prost J. 108.  1997. Modeling molecular motors. Rev. Mod. Phys. 69:1269–82 [Google Scholar]
  109. Lipowsky R, Chai Y, Klumpp S, Liepelt S, Muller MJI. 109.  2006. Molecular motor traffic: from biological nanomachines to macroscopic transport. Physica A 372:34–51 [Google Scholar]
  110. Leduc C, Ruhnow F, Howard J, Diez S. 110.  2007. Detection of fractional steps in cargo movement by the collective operation of kinesin-1 motors. Proc. Natl. Acad. Sci. USA 104:10847–52 [Google Scholar]
  111. Böhm KJ, Stracke R, Mühlig P, Unger E. 111.  2001. Motor protein-driven unidirectional transport of micrometer-sized cargoes across isopolar microtubule arrays. Nanotechnology 12:238–44 [Google Scholar]
  112. Nicolau DV, Nicolau DV, Solana G, Hanson KL, Filipponi L. 112.  et al. 2006. Molecular motors-based micro- and nano-biocomputation devices. Microelectron. Eng. 83:1582–88 [Google Scholar]
  113. Hiyama S, Moritani Y. 113.  2010. Molecular communication: harnessing biochemical materials to engineer biomimetic communication systems. Nano Commun. Netw. 1:20–30 [Google Scholar]
  114. Campbell EM, Hope TJ. 114.  2003. Role of the cytoskeleton in nuclear import. Adv. Drug Deliv. Rev. 55:761–71 [Google Scholar]
  115. Haimo LT, Thaler CD. 115.  1994. Regulation of organelle transport: lessons from color-change in fish. BioEssays 16:727–33 [Google Scholar]
  116. van Delden RA, Koumura N, Harada N, Feringa BL. 116.  2002. Unidirectional rotary motion in a liquid crystalline environment: color tuning by a molecular motor. Proc. Natl. Acad. Sci. USA 99:4945–49 [Google Scholar]
  117. Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M. 117.  2002. Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–32 [Google Scholar]
  118. Koenderink GH, Dogic Z, Nakamura F, Bendix PM, MacKintosh FC. 118.  et al. 2009. An active biopolymer network controlled by molecular motors. Proc. Natl. Acad. Sci. USA 106:15192–97 [Google Scholar]
  119. Yoshida R.119.  2010. Self-oscillating gels driven by the Belousov-Zhabotinsky reaction as novel smart materials. Adv. Mater. 22:3463–83 [Google Scholar]
  120. Howse JR, Topham P, Crook CJ, Gleeson AJ, Bras W. 120.  et al. 2005. Reciprocating power generation in a chemically driven synthetic muscle. Nano Lett. 6:73–77 [Google Scholar]
  121. Vale RD, Reese TS, Sheetz MP. 121.  1985. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50 [Google Scholar]
  122. Katira P, Agarwal A, Fischer T, Chen H-Y, Jiang X. 122.  et al. 2007. Quantifying the performance of protein-resisting surfaces at ultra-low protein coverages using kinesin motor proteins as probes. Adv. Mater. 19:3171–76 [Google Scholar]
  123. Katira P, Agarwal A, Hess H. 123.  2009. A random sequential adsorption model for protein adsorption to surfaces functionalized with poly(ethylene oxide). Adv. Mater. 21:1599–604 [Google Scholar]
  124. Ionov L, Synytska A, Kaul E, Diez S. 124.  2010. Protein-resistant polymer coatings based on surface-adsorbed poly(aminoethyl methacrylate)/poly(ethylene glycol) copolymers. Biomacromolecules 11:233–37 [Google Scholar]
  125. Agarwal A, Katira P, Hess H. 125.  2009. Millisecond curing time of a molecular adhesive causes velocity-dependent cargo-loading of molecular shuttles. Nano Lett. 9:1170–75 [Google Scholar]
  126. Cohen RN, Rashkin MJ, Wen X, Szoka JFC. 126.  2005. Molecular motors as drug delivery vehicles. Drug Discov. Today: Technol. 2:111–18 [Google Scholar]
  127. Stokin GB, Goldstein LSB. 127.  2006. Axonal transport and Alzheimer's disease. Annu. Rev. Biochem. 75:607–27 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error