1932

Abstract

Kidney disease is a global health crisis affecting more than 850 million people worldwide. In the United States, annual Medicare expenditures for kidney disease and organ failure exceed $81 billion. Efforts to develop targeted therapeutics are limited by a poor understanding of the molecular mechanisms underlying human kidney disease onset and progression. Additionally, 90% of drug candidates fail in human clinical trials, often due to toxicity and efficacy not accurately predicted in animal models. The advent of ex vivo kidney models, such as those engineered from induced pluripotent stem (iPS) cells and organ-on-a-chip (organ-chip) systems, has garnered considerable interest owing to their ability to more accurately model tissue development and patient-specific responses and drug toxicity. This review describes recent advances in developing kidney organoids and organ-chips by harnessing iPS cell biology to model human-specific kidney functions and disease states. We also discuss challenges that must be overcome to realize the potential of organoids and organ-chips as dynamic and functional conduits of the human kidney. Achieving these technological advances could revolutionize personalized medicine applications and therapeutic discovery for kidney disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-072623-044010
2024-07-03
2025-02-17
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/26/1/annurev-bioeng-072623-044010.html?itemId=/content/journals/10.1146/annurev-bioeng-072623-044010&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Schnell J, Achieng M, Lindström NO. 2022.. Principles of human and mouse nephron development. . Nat. Rev. Nephrol. 18:(10):62842
    [Crossref] [Google Scholar]
  2. 2.
    Bonner MG, Gudapati H, Mou X, Musah S. 2022.. Microfluidic systems for modeling human development. . Development 149:(3):dev199463
    [Crossref] [Google Scholar]
  3. 3.
    Serra AL, Poster D, Kistler AD, Krauer F, Raina S, et al. 2010.. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. . N. Engl. J. Med. 363:(9):82029
    [Crossref] [Google Scholar]
  4. 4.
    Jansen J, Reimer KC, Nagai JS, Varghese FS, Overheul GJ, et al. 2022.. SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. . Cell Stem Cell 29:(2):21731.e8
    [Crossref] [Google Scholar]
  5. 5.
    Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, et al. 2020.. Multiorgan and renal tropism of SARS-CoV-2. . N. Engl. J. Med. 383:(6):59092
    [Crossref] [Google Scholar]
  6. 6.
    Nugent J, Aklilu A, Yamamoto Y, Simonov M, Li F, et al. 2021.. Assessment of acute kidney injury and longitudinal kidney function after hospital discharge among patients with and without COVID-19. . JAMA Netw. Open 4:(3):e211095
    [Crossref] [Google Scholar]
  7. 7.
    Kalejaiye TD, Bhattacharya R, Burt MA, Travieso T, Okafor AE, et al. 2022.. SARS-CoV-2 employ BSG/CD147 and ACE2 receptors to directly infect human induced pluripotent stem cell–derived kidney podocytes. . Front. Cell Dev. Biol. 10::855340
    [Crossref] [Google Scholar]
  8. 8.
    Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT, et al. 2020.. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. . Nat. Immunol. 21:(11):132735
    [Crossref] [Google Scholar]
  9. 9.
    Bao L, Deng W, Huang B, Gao H, Liu J, et al. 2020.. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. . Nature 583:(7818):83033
    [Crossref] [Google Scholar]
  10. 10.
    Fored CM, Ejerblad E, Lindblad P, Fryzek JP, Dickman PW, et al. 2001.. Acetaminophen, aspirin, and chronic renal failure. . N. Engl. J. Med. 345:(25):18018
    [Crossref] [Google Scholar]
  11. 11.
    Cockwell P, Fisher L-A. 2020.. The global burden of chronic kidney disease. . Lancet 395:(10225):66264
    [Crossref] [Google Scholar]
  12. 12.
    Esch EW, Bahinski A, Huh D. 2015.. Organs-on-chips at the frontiers of drug discovery. . Nat. Rev. Drug Discov. 14:(4):24860
    [Crossref] [Google Scholar]
  13. 13.
    Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, et al. 2008.. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. . Cell Stem Cell 3:(5):51932
    [Crossref] [Google Scholar]
  14. 14.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, et al. 2007.. Induced pluripotent stem cell lines derived from human somatic cells. . Science 318:(5858):191720
    [Crossref] [Google Scholar]
  15. 15.
    Takahashi K, Yamanaka S. 2006.. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. . Cell 126:(4):66376
    [Crossref] [Google Scholar]
  16. 16.
    Mae S-I, Shono A, Shiota F, Yasuno T, Kajiwara M, et al. 2013.. Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. . Nat. Commun. 4::1367
    [Crossref] [Google Scholar]
  17. 17.
    Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, et al. 2014.. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. . Cell Stem Cell 14:(1):5367
    [Crossref] [Google Scholar]
  18. 18.
    Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV. 2015.. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. . Nat. Biotechnol. 33:(11):1193200
    [Crossref] [Google Scholar]
  19. 19.
    Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, et al. 2015.. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. . Nature 526:(7574):56468
    [Crossref] [Google Scholar]
  20. 20.
    Sheng X, Guan Y, Ma Z, Wu J, Liu H, et al. 2021.. Mapping the genetic architecture of human traits to cell types in the kidney identifies mechanisms of disease and potential treatments. . Nat. Genet. 53:(9):132233
    [Crossref] [Google Scholar]
  21. 21.
    Qiu C, Huang S, Park J, Park Y, Ko Y-A, et al. 2018.. Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. . Nat. Med. 24:(11):172131
    [Crossref] [Google Scholar]
  22. 22.
    Liu H, Doke T, Guo D, Sheng X, Ma Z, et al. 2022.. Epigenomic and transcriptomic analyses define core cell types, genes and targetable mechanisms for kidney disease. . Nat. Genet. 54:(7):95062
    [Crossref] [Google Scholar]
  23. 23.
    Ingber DE. 2022.. Human organs-on-chips for disease modelling, drug development and personalized medicine. . Nat. Rev. Genet. 23:(8):46791
    [Crossref] [Google Scholar]
  24. 24.
    Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. 2010.. Reconstituting organ-level lung functions on a chip. . Science 328:(5986):166268
    [Crossref] [Google Scholar]
  25. 25.
    Weber EJ, Chapron A, Chapron BD, Voellinger JL, Lidberg KA, et al. 2016.. Development of a microphysiological model of human kidney proximal tubule function. . Kidney Int. 90:(3):62737
    [Crossref] [Google Scholar]
  26. 26.
    Jang K-J, Mehr AP, Hamilton GA, McPartlin LA, Chung S, et al. 2013.. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. . Integr. Biol. 5:(9):111929
    [Crossref] [Google Scholar]
  27. 27.
    Musah S, Dimitrakakis N, Camacho DM, Church GM, Ingber DE. 2018.. Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a glomerulus chip. . Nat. Protoc. 13:(7):166285
    [Crossref] [Google Scholar]
  28. 28.
    Musah S, Mammoto A, Ferrante TC, Jeanty SSF, Hirano-Kobayashi M, et al. 2017.. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. . Nat. Biomed. Eng. 1:(5):0069
    [Crossref] [Google Scholar]
  29. 29.
    Adler M, Ramm S, Hafner M, Muhlich JL, Gottwald EM, et al. 2016.. A quantitative approach to screen for nephrotoxic compounds in vitro. . J. Am. Soc. Nephrol. 27:(4):101528
    [Crossref] [Google Scholar]
  30. 30.
    Chang S-Y, Weber EJ, Sidorenko VS, Chapron A, Yeung CK, et al. 2017.. Human liver-kidney model elucidates the mechanisms of aristolochic acid nephrotoxicity. . JCI Insight 2:(22):e95978
    [Crossref] [Google Scholar]
  31. 31.
    Roye Y, Bhattacharya R, Mou X, Zhou Y, Burt MA, Musah S. 2021.. A personalized glomerulus chip engineered from stem cell–derived epithelium and vascular endothelium. . Micromachines 12:(8):967
    [Crossref] [Google Scholar]
  32. 32.
    Novak R, Ingram M, Marquez S, Das D, Delahanty A, et al. 2020.. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. . Nat. Biomed. Eng. 4:(4):40720
    [Crossref] [Google Scholar]
  33. 33.
    Vernetti L, Gough A, Baetz N, Blutt S, Broughman JR, et al. 2017.. Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle. . Sci. Rep. 7::42296
    [Crossref] [Google Scholar]
  34. 34.
    Herland A, Maoz BM, Das D, Somayaji MR, Prantil-Baun R, et al. 2020.. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. . Nat. Biomed. Eng. 4:(4):42136
    [Crossref] [Google Scholar]
  35. 35.
    Kang HM, Lim JH, Noh KH, Park D, Cho H-S, et al. 2019.. Effective reconstruction of functional organotypic kidney spheroid for in vitro nephrotoxicity studies. . Sci. Rep. 9::17610
    [Crossref] [Google Scholar]
  36. 36.
    Jansen J, Fedecostante M, Wilmer MJ, Peters JG, Kreuser UM, et al. 2016.. Bioengineered kidney tubules efficiently excrete uremic toxins. . Sci. Rep. 6::26715
    [Crossref] [Google Scholar]
  37. 37.
    Masters JR, Stacey GN. 2007.. Changing medium and passaging cell lines. . Nat. Protoc. 2:(9):227684
    [Crossref] [Google Scholar]
  38. 38.
    Nestor CE, Ottaviano R, Reinhardt D, Cruickshanks HA, Mjoseng HK, et al. 2015.. Rapid reprogramming of epigenetic and transcriptional profiles in mammalian culture systems. . Genome Biol. 16::11
    [Crossref] [Google Scholar]
  39. 39.
    Wilmer MJ, Saleem MA, Masereeuw R, Ni L, van der Velden TJ, et al. 2010.. Novel conditionally immortalized human proximal tubule cell line expressing functional influx and efflux transporters. . Cell Tissue Res. 339:(2):44957
    [Crossref] [Google Scholar]
  40. 40.
    Jenkinson SE, Chung GW, van Loon E, Bakar NS, Dalzell AM, Brown CDA. 2012.. The limitations of renal epithelial cell line HK-2 as a model of drug transporter expression and function in the proximal tubule. . Pflüg. Arch. 464:(6):60111
    [Crossref] [Google Scholar]
  41. 41.
    Petrosyan A, Cravedi P, Villani V, Angeletti A, Manrique J, et al. 2019.. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. . Nat. Commun. 10::3656
    [Crossref] [Google Scholar]
  42. 42.
    Sakairi T, Abe Y, Kajiyama H, Bartlett LD, Howard LV, et al. 2010.. Conditionally immortalized human podocyte cell lines established from urine. . Am. J. Physiol. Ren. Physiol. 298:(3):F55767
    [Crossref] [Google Scholar]
  43. 43.
    Shi Y, Inoue H, Wu JC, Yamanaka S. 2017.. Induced pluripotent stem cell technology: a decade of progress. . Nat. Rev. Drug Discov. 16:(2):11530
    [Crossref] [Google Scholar]
  44. 44.
    Jansen J, van den Berge BT, van den Broek M, Maas RJ, Daviran D, et al. 2022.. Human pluripotent stem cell–derived kidney organoids for personalized congenital and idiopathic nephrotic syndrome modeling. . Development 149:(9):dev200198
    [Crossref] [Google Scholar]
  45. 45.
    Lam AQ, Freedman BS, Morizane R, Lerou PH, Valerius MT, Bonventre JV. 2014.. Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. . J. Am. Soc. Nephrol. 25:(6):121125
    [Crossref] [Google Scholar]
  46. 46.
    Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, et al. 2015.. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. . Nat. Commun. 6::8715
    [Crossref] [Google Scholar]
  47. 47.
    Howden SE, Wilson SB, Groenewegen E, Starks L, Forbes TA, et al. 2021.. Plasticity of distal nephron epithelia from human kidney organoids enables the induction of ureteric tip and stalk. . Cell Stem Cell 28:(4):67184.e6
    [Crossref] [Google Scholar]
  48. 48.
    Wu H, Uchimura K, Donnelly EL, Kirita Y, Morris SA, Humphreys BD. 2018.. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. . Cell Stem Cell 23:(6):86981.e8
    [Crossref] [Google Scholar]
  49. 49.
    Peti-Peterdi J, Harris RC. 2010.. Macula densa sensing and signaling mechanisms of renin release. . J. Am. Soc. Nephrol. 21:(7):109396
    [Crossref] [Google Scholar]
  50. 50.
    Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, Munoz-Lopez M, Real PJ, et al. 2010.. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. . Stem Cells 28:(9):156870
    [Crossref] [Google Scholar]
  51. 51.
    Hendry CE, Vanslambrouck JM, Ineson J, Suhaimi N, Takasato M, et al. 2013.. Direct transcriptional reprogramming of adult cells to embryonic nephron progenitors. . J. Am. Soc. Nephrol. 24:(9):142434
    [Crossref] [Google Scholar]
  52. 52.
    Kaminski MM, Tosic J, Kresbach C, Engel H, Klockenbusch J, et al. 2016.. Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors. . Nat. Cell Biol. 18:(12):126980
    [Crossref] [Google Scholar]
  53. 53.
    Vanslambrouck JM, Woodard LE, Suhaimi N, Williams FM, Howden SE, et al. 2019.. Direct reprogramming to human nephron progenitor-like cells using inducible piggyBac transposon expression of SNAI2-EYA1-SIX1. . Kidney Int. 95:(5):115366
    [Crossref] [Google Scholar]
  54. 54.
    Anzalone AV, Koblan LW, Liu DR. 2020.. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. . Nat. Biotechnol. 38:(7):82444
    [Crossref] [Google Scholar]
  55. 55.
    Dorison A, Ghobrial I, Graham A, Peiris T, Forbes TA, et al. 2023.. Kidney organoids generated using an allelic series of NPHS2 point variants reveal distinct intracellular podocin mistrafficking. . J. Am. Soc. Nephrol. 34:(1):88109
    [Crossref] [Google Scholar]
  56. 56.
    Cruz NM, Song X, Czerniecki SM, Gulieva RE, Churchill AJ, et al. 2017.. Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. . Nat. Mater. 16:(11):111219
    [Crossref] [Google Scholar]
  57. 57.
    Liu E, Radmanesh B, Chung BH, Donnan MD, Yi D, et al. 2020.. Profiling APOL1 nephropathy risk variants in genome-edited kidney organoids with single-cell transcriptomics. . Kidney360 1:(3):20315
    [Crossref] [Google Scholar]
  58. 58.
    Tanigawa S, Islam M, Sharmin S, Naganuma H, Yoshimura Y, et al. 2018.. Organoids from nephrotic disease-derived iPSCs identify impaired NEPHRIN localization and slit diaphragm formation in kidney podocytes. . Stem Cell Rep. 11:(3):72740
    [Crossref] [Google Scholar]
  59. 59.
    Digby JLM, Vanichapol T, Przepiorski A, Davidson AJ, Sander V. 2020.. Evaluation of cisplatin-induced injury in human kidney organoids. . Am. J. Physiol. Ren. Physiol. 318:(4):F97178
    [Crossref] [Google Scholar]
  60. 60.
    Przepiorski A, Sander V, Tran T, Hollywood JA, Sorrenson B, et al. 2018.. A simple bioreactor-based method to generate kidney organoids from pluripotent stem cells. . Stem Cell Rep. 11:(2):47084
    [Crossref] [Google Scholar]
  61. 61.
    Lawrence ML, Elhendawi M, Morlock M, Liu W, Liu S, et al. 2022.. Human iPSC-derived renal organoids engineered to report oxidative stress can predict drug-induced toxicity. . iScience 25:(3):103884
    [Crossref] [Google Scholar]
  62. 62.
    Jang K-J, Cho HS, Kang DH, Bae WG, Kwon T-H, Suh K-Y. 2011.. Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. . Integr. Biol. 3:(2):13441
    [Crossref] [Google Scholar]
  63. 63.
    Rein JL, Heja S, Flores D, Carrisoza-Gaytán R, Lin NYC, et al. 2020.. Effect of luminal flow on doming of mpkCCD cells in a 3D perfusable kidney cortical collecting duct model. . Am. J. Physiol. Cell Physiol. 319:(1):C13647
    [Crossref] [Google Scholar]
  64. 64.
    Baudoin R, Griscom L, Monge M, Legallais C, Leclerc E. 2007.. Development of a renal microchip for in vitro distal tubule models. . Biotechnol. Prog. 23:(5):124553
    [Google Scholar]
  65. 65.
    Wang J, Wang C, Xu N, Liu Z-F, Pang D-W, Zhang Z-L. 2019.. A virus-induced kidney disease model based on organ-on-a-chip: pathogenesis exploration of virus-related renal dysfunctions. . Biomaterials 219::119367
    [Crossref] [Google Scholar]
  66. 66.
    Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, et al. 2014.. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. . Nat. Cell Biol. 16:(1):11826
    [Crossref] [Google Scholar]
  67. 67.
    Costantini F, Kopan R. 2010.. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. . Dev. Cell 18:(5):698712
    [Crossref] [Google Scholar]
  68. 68.
    Kalejaiye TD, Barreto AD, Musah S. 2022.. Translating organoids into artificial kidneys. . Curr. Transpl. Rep. 9:(4):27686
    [Crossref] [Google Scholar]
  69. 69.
    Barreto AD, Burt MA, Musah S. 2023.. Advancing drug discovery for glomerulopathies using stem-cell-derived kidney models. . Trends Pharmacol. Sci. 44:(4):2047
    [Crossref] [Google Scholar]
  70. 70.
    Cable J, Lutolf MP, Fu J, Park SE, Apostolou A, et al. 2022.. Organoids as tools for fundamental discovery and translation—a Keystone Symposia report. . Ann. N. Y. Acad. Sci. 1518:(1):196208
    [Crossref] [Google Scholar]
  71. 71.
    Sharmin S, Taguchi A, Kaku Y, Yoshimura Y, Ohmori T, et al. 2016.. Human induced pluripotent stem cell–derived podocytes mature into vascularized glomeruli upon experimental transplantation. . J. Am. Soc. Nephrol. 27:(6):177891
    [Crossref] [Google Scholar]
  72. 72.
    Subramanian A, Sidhom E-H, Emani M, Vernon K, Sahakian N, et al. 2019.. Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. . Nat. Commun. 10::5462
    [Crossref] [Google Scholar]
  73. 73.
    Garreta E, Prado P, Tarantino C, Oria R, Fanlo L, et al. 2019.. Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells. . Nat. Mater. 18:(4):397405
    [Crossref] [Google Scholar]
  74. 74.
    Czerniecki SM, Cruz NM, Harder JL, Menon R, Annis J, et al. 2018.. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. . Cell Stem Cell 22:(6):92940.e4
    [Crossref] [Google Scholar]
  75. 75.
    Low JH, Li P, Chew EGY, Zhou B, Suzuki K, et al. 2019.. Generation of human PSC-derived kidney organoids with patterned nephron segments and a de novo vascular network. . Cell Stem Cell 25:(3):37387.e9
    [Crossref] [Google Scholar]
  76. 76.
    Homan KA, Gupta N, Kroll KT, Kolesky DB, Skylar-Scott M, et al. 2019.. Flow-enhanced vascularization and maturation of kidney organoids in vitro. . Nat. Methods 16:(3):25562
    [Crossref] [Google Scholar]
  77. 77.
    Garreta E, Kamm RD, Chuva de Sousa Lopes SM, Lancaster MA, Weiss R, et al. 2021.. Rethinking organoid technology through bioengineering. . Nat. Mater. 20:(2):14555
    [Crossref] [Google Scholar]
  78. 78.
    Wang L, Tao T, Su W, Yu H, Yu Y, Qin J. 2017.. A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice. . Lab Chip 17:(10):174960
    [Crossref] [Google Scholar]
  79. 79.
    Ng CP, Zhuang Y, Lin AWH, Teo JCM. 2013.. A fibrin-based tissue-engineered renal proximal tubule for bioartificial kidney devices: development, characterization and in vitro transport study. . Int. J. Tissue Eng. 2013::319476
    [Crossref] [Google Scholar]
  80. 80.
    Sciancalepore AG, Sallustio F, Girardo S, Gioia Passione L, Camposeo A, et al. 2014.. A bioartificial renal tubule device embedding human renal stem/progenitor cells. . PLOS ONE 9:(1):e87496
    [Crossref] [Google Scholar]
  81. 81.
    Homan KA, Kolesky DB, Skylar-Scott MA, Herrmann J, Obuobi H, et al. 2016.. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. . Sci. Rep. 6::34845
    [Crossref] [Google Scholar]
  82. 82.
    Naik S, Wood AR, Ongenaert M, Saidiyan P, Elstak ED, et al. 2021.. A 3D renal proximal tubule on chip model phenocopies Lowe syndrome and dent II disease tubulopathy. . Int. J. Mol. Sci. 22:(10):5361
    [Crossref] [Google Scholar]
  83. 83.
    Balzer MS, Rohacs T, Susztak K. 2022.. How many cell types are in the kidney and what do they do?. Annu. Rev. Physiol. 84::50731
    [Crossref] [Google Scholar]
  84. 84.
    Nagao RJ, Xu J, Luo P, Xue J, Wang Y, et al. 2016.. Decellularized human kidney cortex hydrogels enhance kidney microvascular endothelial cell maturation and quiescence. . Tissue Eng. A 22:(19/20):114050
    [Crossref] [Google Scholar]
  85. 85.
    Imaoka T, Huang W, Shum S, Hailey DW, Chang S-Y, et al. 2021.. Bridging the gap between in silico and in vivo by modeling opioid disposition in a kidney proximal tubule microphysiological system. . Sci. Rep. 11::21356
    [Crossref] [Google Scholar]
  86. 86.
    Butt L, Unnersjö-Jess D, Höhne M, Edwards A, Binz-Lotter J, et al. 2020.. A molecular mechanism explaining albuminuria in kidney disease. . Nat. Metab. 2:(5):46174
    [Crossref] [Google Scholar]
  87. 87.
    Ronconi E, Sagrinati C, Angelotti ML, Lazzeri E, Mazzinghi B, et al. 2009.. Regeneration of glomerular podocytes by human renal progenitors. . J. Am. Soc. Nephrol. 20:(2):32232
    [Crossref] [Google Scholar]
  88. 88.
    Bell PD, Lapointe JY, Peti-Peterdi J. 2003.. Macula densa cell signaling. . Annu. Rev. Physiol. 65::481500
    [Crossref] [Google Scholar]
  89. 89.
    Okafor AE, Bhattacharya R, Musah S. 2021.. Models of kidney glomerulus derived from human-induced pluripotent stem cells. . In iPSCs in Tissue Engineering, ed. A Birbrair , pp. 32970. London:: Academic
    [Google Scholar]
  90. 90.
    Kalejaiye TD, Holmes JA, Bhattacharya R, Musah S. 2022.. Reconstitution of the kidney glomerular capillary wall. . In Regenerative Nephrology, ed. MS Goligorsky , pp. 33151. London:: Academic
    [Google Scholar]
  91. 91.
    Gomez RA, Sequeira-Lopez MLS. 2018.. Renin cells in homeostasis, regeneration and immune defence mechanisms. . Nat. Rev. Nephrol. 14:(4):23145
    [Crossref] [Google Scholar]
  92. 92.
    Daehn IS, Duffield JS. 2021.. The glomerular filtration barrier: a structural target for novel kidney therapies. . Nat. Rev. Drug Discov. 20:(10):77088
    [Crossref] [Google Scholar]
  93. 93.
    Haraldsson B, Nyström J, Deen WM. 2008.. Properties of the glomerular barrier and mechanisms of proteinuria. . Physiol. Rev. 88:(2):45187
    [Crossref] [Google Scholar]
  94. 94.
    Perico L, Conti S, Benigni A, Remuzzi G. 2016.. Podocyte-actin dynamics in health and disease. . Nat. Rev. Nephrol. 12:(11):692710
    [Crossref] [Google Scholar]
  95. 95.
    Curthoys NP, Moe OW. 2014.. Proximal tubule function and response to acidosis. . Clin. J. Am. Soc. Nephrol. 9:(9):162738
    [Crossref] [Google Scholar]
  96. 96.
    Nielsen S, Frøkiær J, Marples D, Kwon T-H, Agre P, Knepper MA. 2002.. Aquaporins in the kidney: from molecules to medicine. . Physiol. Rev. 82:(1):20544
    [Crossref] [Google Scholar]
  97. 97.
    Murer H, Hernando N, Forster I, Biber J. 2000.. Proximal tubular phosphate reabsorption: molecular mechanisms. . Physiol. Rev. 80:(4):1373409
    [Crossref] [Google Scholar]
  98. 98.
    Lin NYC, Homan KA, Robinson SS, Kolesky DB, Duarte N, et al. 2019.. Renal reabsorption in 3D vascularized proximal tubule models. . PNAS 116:(12):5399404
    [Crossref] [Google Scholar]
  99. 99.
    Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC. 2013.. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. . Nat. Med. 19:(5):64651
    [Crossref] [Google Scholar]
  100. 100.
    Hariharan K, Stachelscheid H, Rossbach B, Oh S-J, Mah N, et al. 2019.. Parallel generation of easily selectable multiple nephronal cell types from human pluripotent stem cells. . Cell. Mol. Life Sci. 76:(1):17992
    [Crossref] [Google Scholar]
  101. 101.
    van den Berg CW, Ritsma L, Avramut MC, Wiersma LE, van den Berg BM, et al. 2018.. Renal subcapsular transplantation of PSC-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo. . Stem Cell Rep. 10:(3):75165
    [Crossref] [Google Scholar]
  102. 102.
    Xia S, Wu M, Chen S, Zhang T, Ye L, et al. 2020.. Long term culture of human kidney proximal tubule epithelial cells maintains lineage functions and serves as an ex vivo model for coronavirus associated kidney injury. . Virol. Sin. 35:(3):31120
    [Crossref] [Google Scholar]
  103. 103.
    Rayner SG, Phong KT, Xue J, Lih D, Shankland SJ, et al. 2018.. Reconstructing the human renal vascular-tubular unit in vitro. . Adv. Healthc. Mater. 7:(23):1801120
    [Crossref] [Google Scholar]
  104. 104.
    Bröer S. 2008.. Amino acid transport across mammalian intestinal and renal epithelia. . Physiol. Rev. 88:(1):24986
    [Crossref] [Google Scholar]
  105. 105.
    Piwon N, Günther W, Schwake M, Bösl MR, Jentsch TJ. 2000.. ClC-5 Cl-channel disruption impairs endocytosis in a mouse model for Dent's disease. . Nature 408:(6810):36973
    [Crossref] [Google Scholar]
  106. 106.
    Birn H, Fyfe JC, Jacobsen C, Mounier F, Verroust PJ, et al. 2000.. Cubilin is an albumin binding protein important for renal tubular albumin reabsorption. . J. Clin. Investig. 105:(10):135361
    [Crossref] [Google Scholar]
  107. 107.
    Li Z, Araoka T, Wu J, Liao H-K, Li M, et al. 2016.. 3D culture supports long-term expansion of mouse and human nephrogenic progenitors. . Cell Stem Cell 19:(4):51629
    [Crossref] [Google Scholar]
  108. 108.
    Kurosaki Y, Imoto A, Kawakami F, Yokoba M, Takenaka T, et al. 2018.. Oxidative stress increases megalin expression in the renal proximal tubules during the normoalbuminuric stage of diabetes mellitus. . Am. J. Physiol. Ren. Physiol. 314:(3):F46270
    [Crossref] [Google Scholar]
  109. 109.
    Briffa JF, Grinfeld E, Mathai ML, Poronnik P, McAinch AJ, Hryciw DH. 2015.. Acute leptin exposure reduces megalin expression and upregulates TGFβ1 in cultured renal proximal tubule cells. . Mol. Cell. Endocrinol. 401::2534
    [Crossref] [Google Scholar]
  110. 110.
    Omdahl JL, Morris HA, May BK. 2002.. Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation. . Annu. Rev. Nutr. 22::13966
    [Crossref] [Google Scholar]
  111. 111.
    Bland R, Walker EA, Hughes SV, Stewart PM, Hewison M. 1999.. Constitutive expression of 25-hydroxyvitamin D3-1α-hydroxylase in a transformed human proximal tubule cell line: evidence for direct regulation of vitamin D metabolism by calcium. . Endocrinology 140:(5):202734
    [Crossref] [Google Scholar]
  112. 112.
    Aceves JO, Heja S, Kobayashi K, Robinson SS, Miyoshi T, et al. 2022.. 3D proximal tubule-on-chip model derived from kidney organoids with improved drug uptake. . Sci. Rep. 12::14997
    [Crossref] [Google Scholar]
  113. 113.
    Schutgens F, Rookmaaker MB, Margaritis T, Rios A, Ammerlaan C, et al. 2019.. Tubuloids derived from human adult kidney and urine for personalized disease modeling. . Nat. Biotechnol. 37:(3):30313
    [Crossref] [Google Scholar]
  114. 114.
    Subramanian B, Rudym D, Cannizzaro C, Perrone R, Zhou J, Kaplan DL. 2010.. Tissue-engineered three-dimensional in vitro models for normal and diseased kidney. . Tissue Eng. A 16:(9):282131
    [Crossref] [Google Scholar]
  115. 115.
    Ingraham L, Li M, Renfro JL, Parker S, Vapurcuyan A, et al. 2014.. A plasma concentration of α-ketoglutarate influences the kinetic interaction of ligands with organic anion transporter 1. . Mol. Pharmacol. 86:(1):8695
    [Crossref] [Google Scholar]
  116. 116.
    Budiman T, Bamberg E, Koepsell H, Nagel G. 2000.. Mechanism of electrogenic cation transport by the cloned organic cation transporter 2 from rat. . J. Biol. Chem. 275:(38):2941320
    [Crossref] [Google Scholar]
  117. 117.
    Lake BB, Chen S, Hoshi M, Plongthongkum N, Salamon D, et al. 2019.. A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys. . Nat. Commun. 10::2832
    [Crossref] [Google Scholar]
  118. 118.
    Wu H, Chen L, Zhou Q, Zhang X, Berger S, et al. 2013.. Aqp2-expressing cells give rise to renal intercalated cells. . J. Am. Soc. Nephrol. 24:(2):24352
    [Crossref] [Google Scholar]
  119. 119.
    Saxena V, Gao H, Arregui S, Zollman A, Kamocka MM, et al. 2021.. Kidney intercalated cells are phagocytic and acidify internalized uropathogenic Escherichia coli. . Nat. Commun. 12::2405
    [Crossref] [Google Scholar]
  120. 120.
    Roy A, Al-bataineh MM, Pastor-Soler NM. 2015.. Collecting duct intercalated cell function and regulation. . Clin. J. Am. Soc. Nephrol. 10:(2):30524
    [Crossref] [Google Scholar]
  121. 121.
    Shi M, McCracken KW, Patel AB, Zhang W, Ester L, et al. 2022.. Human ureteric bud organoids recapitulate branching morphogenesis and differentiate into functional collecting duct cell types. . Nat. Biotechnol. 41::25261
    [Crossref] [Google Scholar]
  122. 122.
    Paueksakon P, Fogo AB. 2017.. Drug-induced nephropathies. . Histopathology 70:(1):94108
    [Crossref] [Google Scholar]
  123. 123.
    Perazella MA, Rosner MH. 2022.. Drug-induced acute kidney injury. . Clin. J. Am. Soc. Nephrol. 17:(8):122033
    [Crossref] [Google Scholar]
  124. 124.
    Kumar SV, Er PX, Lawlor KT, Motazedian A, Scurr M, et al. 2019.. Kidney micro-organoids in suspension culture as a scalable source of human pluripotent stem cell-derived kidney cells. . Development 146:(5):dev172361
    [Crossref] [Google Scholar]
  125. 125.
    Hale LJ, Howden SE, Phipson B, Lonsdale A, Er PX, et al. 2018.. 3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening. . Nat. Commun. 9::5167
    [Crossref] [Google Scholar]
  126. 126.
    Radhakrishnan J, Perazella MA. 2015.. Drug-induced glomerular disease: attention required!. Clin. J. Am. Soc. Nephrol. 10:(7):128790
    [Crossref] [Google Scholar]
  127. 127.
    Perazella MA, Markowitz GS. 2008.. Bisphosphonate nephrotoxicity. . Kidney Int. 74:(11):138593
    [Crossref] [Google Scholar]
  128. 128.
    Uetrecht J, ed. 2010.. Adverse Drug Reactions. Handb. Exp. Pharm. Ser. 196 . Berlin/Heidelberg, Ger.:: Springer
    [Google Scholar]
  129. 129.
    Zhang P, Gandhi H, Kassis N. 2022.. Lithium-induced nephropathy; one medication with multiple side effects: a case report. . BMC Nephrol. 23::309
    [Crossref] [Google Scholar]
  130. 130.
    Izzedine H, Launay-Vacher V, Deray G. 2005.. Antiviral drug-induced nephrotoxicity. . Am. J. Kidney Dis. 45:(5):80417
    [Crossref] [Google Scholar]
  131. 131.
    Hahn K, Ejaz AA, Kanbay M, Lanaspa MA, Johnson RJ. 2016.. Acute kidney injury from SGLT2 inhibitors: potential mechanisms. . Nat. Rev. Nephrol. 12:(12):71112
    [Crossref] [Google Scholar]
  132. 132.
    Astashkina AI, Mann BK, Prestwich GD, Grainger DW. 2012.. A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays. . Biomaterials 33:(18):470011
    [Crossref] [Google Scholar]
  133. 133.
    DesRochers TM, Suter L, Roth A, Kaplan DL. 2013.. Bioengineered 3D human kidney tissue, a platform for the determination of nephrotoxicity. . PLOS ONE 8:(3):e59219
    [Crossref] [Google Scholar]
  134. 134.
    Bajaj P, Rodrigues AD, Steppan CM, Engle SJ, Mathialagan S, Schroeter T. 2018.. Human pluripotent stem cell–derived kidney model for nephrotoxicity studies. . Drug Metab. Dispos. 46:(11):170311
    [Crossref] [Google Scholar]
  135. 135.
    Lawlor KT, Vanslambrouck JM, Higgins JW, Chambon A, Bishard K, et al. 2021.. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. . Nat. Mater. 20:(2):26071
    [Crossref] [Google Scholar]
  136. 136.
    Fliedl L. 2014.. Controversial role of γ-glutamyl transferase activity in cisplatin nephrotoxicity. . ALTEX 31:(3):26978
    [Crossref] [Google Scholar]
  137. 137.
    Marras D, Bruggeman LA, Gao F, Tanji N, Mansukhani MM, et al. 2002.. Replication and compartmentalization of HIV-1 in kidney epithelium of patients with HIV-associated nephropathy. . Nat. Med. 8:(5):52226
    [Crossref] [Google Scholar]
  138. 138.
    Estrella MM, Wyatt CM, Pearce CL, Li M, Shlipak MG, et al. 2013.. Host APOL1 genotype is independently associated with proteinuria in HIV infection. . Kidney Int. 84:(4):83440
    [Crossref] [Google Scholar]
  139. 139.
    Chen P, Chen BK, Mosoian A, Hays T, Ross MJ, et al. 2011.. Virological synapses allow HIV-1 uptake and gene expression in renal tubular epithelial cells. . J. Am. Soc. Nephrol. 22:(3):496507
    [Crossref] [Google Scholar]
  140. 140.
    Blasi M, Balakumaran B, Chen P, Negri DRM, Cara A, et al. 2014.. Renal epithelial cells produce and spread HIV-1 via T-cell contact. . AIDS 28:(16):234553
    [Crossref] [Google Scholar]
  141. 141.
    Mocroft A, Kirk O, Reiss P, De Wit S, Sedlacek D, et al. 2010.. Estimated glomerular filtration rate, chronic kidney disease and antiretroviral drug use in HIV-positive patients. . AIDS 24:(11):166778
    [Crossref] [Google Scholar]
  142. 142.
    Scherzer R, Estrella M, Li Y, Choi AI, Deeks SG, et al. 2012.. Association of tenofovir exposure with kidney disease risk in HIV infection. . AIDS 26:(7):86775
    [Crossref] [Google Scholar]
  143. 143.
    Case BC, Yerasi C, Forrestal BJ, Chezar-Azerrad C, Shea C, et al. 2021.. The impact of COVID-19 patients with troponin elevation on renal impairment and clinical outcome. . Cardiovasc. Revasc. Med. 33::4548
    [Crossref] [Google Scholar]
  144. 144.
    Helms L, Marchiano S, Stanaway IB, Hsiang T-Y, Juliar BA, et al. 2021.. Cross-validation of SARS-CoV-2 responses in kidney organoids and clinical populations. . JCI Insight 6:(24):e154882
    [Crossref] [Google Scholar]
  145. 145.
    Garreta E, Prado P, Stanifer ML, Monteil V, Marco A, et al. 2022.. A diabetic milieu increases ACE2 expression and cellular susceptibility to SARS-CoV-2 infections in human kidney organoids and patient cells. . Cell Metab. 34:(6):85773.e9
    [Crossref] [Google Scholar]
  146. 146.
    Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, et al. 2021.. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. . Cell 184:(1):14968.e17
    [Crossref] [Google Scholar]
  147. 147.
    Diao B, Wang C, Wang R, Feng Z, Zhang J, et al. 2021.. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection. . Nat. Commun. 12::2506
    [Crossref] [Google Scholar]
  148. 148.
    Huang C, Wang Y, Li X, Ren L, Zhao J, et al. 2020.. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. . Lancet 395:(10223):497506
    [Crossref] [Google Scholar]
  149. 149.
    Gabarre P, Dumas G, Dupont T, Darmon M, Azoulay E, Zafrani L. 2020.. Acute kidney injury in critically ill patients with COVID-19. . Intensive Care Med. 46:(7):133948
    [Crossref] [Google Scholar]
  150. 150.
    Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, et al. 2020.. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. . Cell 181:(4):90513.e7
    [Crossref] [Google Scholar]
  151. 151.
    Kuppe C, Ibrahim MM, Kranz J, Zhang X, Ziegler S, et al. 2021.. Decoding myofibroblast origins in human kidney fibrosis. . Nature 589:(7841):28186
    [Crossref] [Google Scholar]
  152. 152.
    Singh A, Bhattacharya R, Shakeel A, Sharma AK, Jeevanandham S, et al. 2019.. Hydrogel nanotubes with ice helices as exotic nanostructures for diabetic wound healing. . Mater. Horiz. 6:(2):27484
    [Crossref] [Google Scholar]
  153. 153.
    Musah S, Wrighton PJ, Zaltsman Y, Zhong X, Zorn S, et al. 2014.. Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. . PNAS 111:(38):1380510
    [Crossref] [Google Scholar]
  154. 154.
    Treacy NJ, Clerkin S, Davis JL, Kennedy C, Miller AF, et al. 2023.. Growth and differentiation of human induced pluripotent stem cell (hiPSC)-derived kidney organoids using fully synthetic peptide hydrogels. . Bioact. Mater. 21::14256
    [Google Scholar]
  155. 155.
    Majood M, Shakeel A, Agarwal A, Jeevanandham S, Bhattacharya R, et al. 2022.. Hydrogel nanosheets confined 2D rhombic ice: a new platform enhancing chondrogenesis. . Biomed. Mater. 17::065004
    [Crossref] [Google Scholar]
  156. 156.
    Ransick A, Lindström NO, Liu J, Zhu Q, Guo J-J, et al. 2019.. Single-cell profiling reveals sex, lineage, and regional diversity in the mouse kidney. . Dev. Cell 51:(3):399413.e7
    [Crossref] [Google Scholar]
  157. 157.
    Collister D, Saad N, Christie E, Ahmed S. 2021.. Providing care for transgender persons with kidney disease: a narrative review. . Can. J. Kidney Health Dis. 8:. https://doi.org/10.1177/2054358120985379
    [Google Scholar]
  158. 158.
    Lindström NO, Tran T, Guo J, Rutledge E, Parvez RK, et al. 2018.. Conserved and divergent molecular and anatomic features of human and mouse nephron patterning. . J. Am. Soc. Nephrol. 29:(3):82540
    [Crossref] [Google Scholar]
  159. 159.
    Buzhor E, Harari-Steinberg O, Omer D, Metsuyanim S, Jacob-Hirsch J, et al. 2011.. Kidney spheroids recapitulate tubular organoids leading to enhanced tubulogenic potency of human kidney-derived cells. . Tissue Eng. A 17:(17/18):230519
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-072623-044010
Loading
/content/journals/10.1146/annurev-bioeng-072623-044010
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error