1932

Abstract

Hemolysis (i.e., red blood cell lysis) can increase circulatory levels of cell-free hemoglobin (Hb) and its degradation by-products, namely heme (h) and iron (Fe). Under homeostasis, minor increases in these three hemolytic by-products (Hb/h/Fe) are rapidly scavenged and cleared by natural plasma proteins. Under certain pathophysiological conditions, scavenging systems become overwhelmed, leading to the accumulation of Hb/h/Fe in the circulation. Unfortunately, these species cause various side effects such as vasoconstriction, hypertension, and oxidative organ damage. Therefore, various therapeutics strategies are in development, ranging from supplementation with depleted plasma scavenger proteins to engineered biomimetic protein constructs capable of scavenging multiple hemolytic species. In this review, we briefly describe hemolysis and the characteristics of the major plasma-derived protein scavengers of Hb/h/Fe. Finally, we present novel engineering approaches designed to address the toxicity of these hemolytic by-products.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-081622-031203
2023-06-08
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/25/1/annurev-bioeng-081622-031203.html?itemId=/content/journals/10.1146/annurev-bioeng-081622-031203&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Am. Soc. Hematol 2010. Blood basics. italicAmerican Society of Hematology https://www.hematology.org/education/patients/blood-basics
  2. 2.
    Lew VL, Tiffert T. 2017. On the mechanism of human red blood cell longevity: roles of calcium, the sodium pump, PIEZO1, and Gardos channels. Front. Physiol. 8:977
    [Google Scholar]
  3. 3.
    Smith A, McCulloh RJ. 2015. Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders. Front. Physiol. 6:187
    [Google Scholar]
  4. 4.
    Pires IS, Belcher DA, Palmer AF. 2017. Quantification of active apohemoglobin heme-binding sites via dicyanohemin incorporation. Biochemistry 56:405245–59
    [Google Scholar]
  5. 5.
    Bellelli A. 2010. Hemoglobin and cooperativity: experiments and theories. Curr. Protein Pept. Sci. 11:12–36
    [Google Scholar]
  6. 6.
    Pittman RN. 2011. Oxygen transport. Regulation of Tissue Oxygenation San Rafael: Morgan & Claypool Life Sciences
    [Google Scholar]
  7. 7.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM et al. 2004. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25:131605–12
    [Google Scholar]
  8. 8.
    Atha DH, Riggs A. 1976. Tetramer-dimer dissociation in hemoglobin and the Bohr effect. J. Biol. Chem. 251:185537–43
    [Google Scholar]
  9. 9.
    Porter JB, Garbowski M. 2014. The pathophysiology of transfusional iron overload. Hematol. Oncol. Clin. North Am. 28:4683–701
    [Google Scholar]
  10. 10.
    Buehler PW, Humar R, Schaer DJ. 2020. Haptoglobin therapeutics and compartmentalization of cell-free hemoglobin toxicity. Trends Mol. Med. 26:7683–97
    [Google Scholar]
  11. 11.
    Schaer DJ, Buehler PW, Alayash AI, Belcher JD, Vercellotti GM. 2013. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 121:81276–84
    [Google Scholar]
  12. 12.
    Van Avondt K, Nur E, Zeerleder S 2019. Mechanisms of haemolysis-induced kidney injury. Nat. Rev. Nephrol. 15:11671–92
    [Google Scholar]
  13. 13.
    Hatcher HC, Singh RN, Torti FM, Torti SV. 2009. Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Med. Chem. 1:91643–70
    [Google Scholar]
  14. 14.
    Korolnek T, Hamza I. 2014. Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism. Front. Pharmacol. 5:126
    [Google Scholar]
  15. 15.
    Light WR, Olson JS. 1990. Transmembrane movement of heme. J. Biol. Chem. 265:2615623–31
    [Google Scholar]
  16. 16.
    Morris CR, Kuypers FA, Kato GJ, Lavrisha L, Larkin S et al. 2005. Hemolysis-associated pulmonary hypertension in thalassemia. Ann. N. Y. Acad. Sci. 1054:481–85
    [Google Scholar]
  17. 17.
    Rifkind JM, Mohanty JG, Nagababu E. 2015. The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions. Front. Physiol. 5:500
    [Google Scholar]
  18. 18.
    Cowman AF, Healer J, Marapana D, Marsh K. 2016. Malaria: biology and disease. Cell 167:610–25
    [Google Scholar]
  19. 19.
    Effenberger-Neidnicht K, Hartmann M. 2018. Mechanisms of hemolysis during sepsis. Inflammation 41:51569–81
    [Google Scholar]
  20. 20.
    Hod EA, Brittenham GM, Billote GB, Francis RO, Ginzburg YZ et al. 2011. Transfusion of human volunteers with older, stored red blood cells produces extravascular hemolysis and circulating non-transferrin-bound iron. Blood 118:256675–82
    [Google Scholar]
  21. 21.
    Rapido F, Bandyopadhyay S, Francis RO, Soffing M, Divgi CR et al. 2015. Longer duration of red blood cell storage induces progressively increased markers of extravascular hemolysis and hepcidin in autologously transfused healthy volunteers. Blood 126:23657
    [Google Scholar]
  22. 22.
    Sawant RB, Jathar SK, Rajadhyaksha SB, Kadam PT. 2007. Red cell hemolysis during processing and storage. Asian J. Transfus. Sci. 1:247–51
    [Google Scholar]
  23. 23.
    Buehler PW, Karnaukhova E. 2018. When might transferrin, hemopexin or haptoglobin administration be of benefit following the transfusion of red blood cells?. Curr. Opin. Hematol. 25:6452–58
    [Google Scholar]
  24. 24.
    Carter K, Worwood M. 2007. Haptoglobin: a review of the major allele frequencies worldwide and their association with diseases. Int. J. Lab. Hematol. 29:292–110
    [Google Scholar]
  25. 25.
    Santiago RP, Guarda CC, Figueiredo CVB, Fiuza LM, Aleluia MM et al. 2018. Serum haptoglobin and hemopexin levels are depleted in pediatric sickle cell disease patients. Blood Cells Mol. Dis. 72:34–36
    [Google Scholar]
  26. 26.
    Smith A 2013. Protection against heme toxicity: Hemopexin rules, OK?. Handbook of Porphyrin Science with Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine, Vol. 30 GC Ferreira, KM Kadish, KM Smith, R Guilard 311–38. Singapore: World Sci.
    [Google Scholar]
  27. 27.
    Cassat JE, Skaar EP. 2013. Iron in infection and immunity. Cell Host Microbe 13:5509–19
    [Google Scholar]
  28. 28.
    Pogoutse AK, Moraes TF. 2017. Iron acquisition through the bacterial transferrin receptor. Crit. Rev. Biochem. Mol. Biol. 52:3314–26
    [Google Scholar]
  29. 29.
    Hare SA. 2017. Diverse structural approaches to haem appropriation by pathogenic bacteria. Biochim. Biophys. Acta Proteins Proteom. 1865:4422–33
    [Google Scholar]
  30. 30.
    Klei TRL, Dalimot JJ, Nota B, Veldthuis M, Mul E et al. 2020. Hemolysis in the spleen drives erythrocyte turnover. Blood 136:1579–89
    [Google Scholar]
  31. 31.
    Andersen CBF, Stødkilde K, Sæderup KL, Kuhlee A, Raunser S et al. 2017. Haptoglobin. Antioxid. Redox Signal. 26:14814–31
    [Google Scholar]
  32. 32.
    Muranjan M, Nussenzweig V, Tomlinson S. 1998. Characterization of the human serum trypanosome toxin, haptoglobin-related protein. J. Biol. Chem. 273:73884–87
    [Google Scholar]
  33. 33.
    Yerbury JJ, Rybchyn MS, Easterbrook-Smith SB, Henriques C, Wilson MR. 2005. The acute phase protein haptoglobin is a mammalian extracellular chaperone with an action similar to clusterin. Biochemistry 44:3210914–25
    [Google Scholar]
  34. 34.
    Nagel RL, Gibson QH. 1971. The binding of hemoglobin to haptoglobin and its relation to subunit dissociation of hemoglobin. J. Bioloqical Chem. 246:169–73
    [Google Scholar]
  35. 35.
    Laurell C-B, Nyman M. 1957. Studies on the serum haptoglobin level in hemoglobinemia and its influence on renal excretion of hemoglobin. Blood 12:6493–506
    [Google Scholar]
  36. 36.
    Faulstick DA, Lowenstein J, Yiengst MJ. 1962. Clearance kinetics of haptoglobin-hemoglobin complex in the human. Blood 20:165–71
    [Google Scholar]
  37. 37.
    Bertolini J, Goss N, Curling J. 2012. Production of Plasma Proteins for Therapeutic Use New York: John Wiley & Sons
  38. 38.
    Lipiski M, Deuel JW, Baek JH, Engelsberger WR, Buehler PW, Schaer DJ. 2013. Human Hp1–1 and Hp2–2 phenotype-specific haptoglobin therapeutics are both effective in vitro and in guinea pigs to attenuate hemoglobin toxicity. Antioxid. Redox Signal. 19:141619–33
    [Google Scholar]
  39. 39.
    Pimenova T, Pereira CP, Schaer DJ, Zenobi R. 2009. Characterization of high molecular weight multimeric states of human haptoglobin and hemoglobin-based oxygen carriers by high-mass MALDI MS. J. Sep. Sci. 32:81224–30
    [Google Scholar]
  40. 40.
    Larsson M, Cheng T-M, Chen C-Y, J S 2013. Unique assembly structure of human haptoglobin phenotypes 1–1, 2–1, and 2–2 and a predominant Hp 1 allele hypothesis. Acute Phase Proteins, ed. S Janciauskiene163–77. Rijeka, Croatia: InTech
    [Google Scholar]
  41. 41.
    Schaer CA, Owczarek C, Deuel JW, Schauer S, Baek JH et al. 2018. Phenotype-specific recombinant haptoglobin polymers co-expressed with C1r-like protein as optimized hemoglobin-binding therapeutics. BMC Biotechnol 18:115
    [Google Scholar]
  42. 42.
    Hwang PK, Greer J. 1980. Interaction between hemoglobin subunits in the hemoglobin-haptoglobin complex. J. Biol. Chem. 255:73038–41
    [Google Scholar]
  43. 43.
    Polticelli F, Bocedi A, Minervini G, Ascenzi P. 2008. Human haptoglobin structure and function—a molecular modelling study. FEBS J 275:225648–56
    [Google Scholar]
  44. 44.
    Alayash AI, Andersen CBF, Moestrup SK, Bülow L. 2013. Haptoglobin: the hemoglobin detoxifier in plasma. Trends Biotechnol 31:12–3
    [Google Scholar]
  45. 45.
    Etzerodt A, Kjolby M, Nielsen MJ, Maniecki M, Svendsen P, Moestrup SK. 2013. Plasma clearance of hemoglobin and haptoglobin in mice and effect of CD163 gene targeting disruption. Antioxid. Redox Signal. 18:172254–63
    [Google Scholar]
  46. 46.
    Boretti FS, Buehler PW, D'Agnillo F, Kluge K, Glaus T et al. 2009. Sequestration of extracellular hemoglobin within a haptoglobin complex decreases its hypertensive and oxidative effects in dogs and guinea pigs. J. Clin. Investig. 119:82271–80
    [Google Scholar]
  47. 47.
    Belcher JD, Chen C, Nguyen J, Abdulla F, Zhang P et al. 2018. Haptoglobin and hemopexin inhibit vaso-occlusion and inflammation in murine sickle cell disease: role of heme oxygenase-1 induction. PLOS ONE 13:4e0196455
    [Google Scholar]
  48. 48.
    Schaer CA, Deuel JW, Schildknecht D, Mahmoudi L, Garcia-Rubio I et al. 2016. Haptoglobin preserves vascular nitric oxide signaling during hemolysis. Am. J. Respir. Crit. Care Med. 193:101111–22
    [Google Scholar]
  49. 49.
    Lim S-K, Ferraro B, Moore K, Halliwell B 2001. Role of haptoglobin in free hemoglobin metabolism. Redox Rep 6:4219–27
    [Google Scholar]
  50. 50.
    Tseng CF, Lin CC, Huang HY, Liu HC, Mao SJT. 2004. Antioxidant role of human haptoglobin. Proteomics 4:82221–28
    [Google Scholar]
  51. 51.
    Sultan A, Raman B, Rao CM, Tangirala R. 2013. The extracellular chaperone haptoglobin prevents serum fatty acid-promoted amyloid fibril formation of β2-microglobulin, resistance to lysosomal degradation, and cytotoxicity. J. Biol. Chem. 288:4532326–42
    [Google Scholar]
  52. 52.
    Gupta K. 2014. HMGB1 takes a “Toll” in sickle cell disease. Blood 124:263837–38
    [Google Scholar]
  53. 53.
    Lin T, Sammy F, Yang H, Thundivalappil S, Hellman J et al. 2012. Identification of hemopexin as an anti-inflammatory factor that inhibits synergy of hemoglobin with HMGB1 in sterile and infectious inflammation. J. Immunol. 189:42017–22
    [Google Scholar]
  54. 54.
    Mendonça R, Silveira AAA, Conran N. 2016. Red cell DAMPs and inflammation. Inflamm. Res. 65:9665–78
    [Google Scholar]
  55. 55.
    Belcher JD, Chen C, Nguyen J, Milbauer L, Abdulla F et al. 2014. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 123:3377–90
    [Google Scholar]
  56. 56.
    Krzyszczyk P, Kang HJ, Kumar S, Meng Y, O'Reggio MD et al. 2020. Anti-inflammatory effects of haptoglobin on lps-stimulated macrophages: role of hmgb1 signaling and implications in chronic wound healing. Wound Repair Regen 28:4493–505
    [Google Scholar]
  57. 57.
    Tolosano E, Altruda F. 2002. Hemopexin: structure, function, and regulation. DNA Cell Biol 21:4297–306
    [Google Scholar]
  58. 58.
    Karnaukhova E, Owczarek C, Schmidt P, Schaer DJ, Buehler PW. 2021. Human plasma and recombinant hemopexins: heme binding revisited. Int. J. Mol. Sci. 22:31199
    [Google Scholar]
  59. 59.
    Delanghe JR, Langlois MR. 2001. Hemopexin: a review of biological aspects and the role in laboratory medicine. Clin. Chim. Acta 312:1–213–23
    [Google Scholar]
  60. 60.
    Smith A, Morgan WT. 1979. Haem transport to the liver by haemopexin. Receptor-mediated uptake with recycling of the protein. Biochem. J. 182:147–54
    [Google Scholar]
  61. 61.
    Smith A 2011. Mechanisms of cytoprotection by hemopexin. Handbook of Porphyrin Science with Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine, Vol. 15 KM Kadish, KM Smith, R Guilard 217–355. Singapore: World Sci.
    [Google Scholar]
  62. 62.
    Smith A, Morgan WT. 1981. Hemopexin-mediated transport of heme into isolated rat hepatocytes. J. Biol. Chem. 256:2110902–9
    [Google Scholar]
  63. 63.
    Ascenzi P, Bocedi A, Visca P, Altruda F, Tolosano E et al. 2005. Hemoglobin and heme scavenging. IUBMB Life 57:11749–59
    [Google Scholar]
  64. 64.
    Theret L, Jeanne A, Langlois B, Hachet C, David M et al. 2017. Identification of LRP-1 as an endocytosis and recycling receptor for β1-integrin in thyroid cancer cells. Oncotarget 8:4578614–32
    [Google Scholar]
  65. 65.
    Smith A, Hunt RC. 1990. Hemopexin joins transferrin as representative members of a distinct class of receptor-mediated endocytic transport systems. Eur. J. Cell Biol. 53:2234–45
    [Google Scholar]
  66. 66.
    Vinchi F, Gastaldi S, Silengo L, Altruda F, Tolosano E. 2008. Hemopexin prevents endothelial damage and liver congestion in a mouse model of heme overload. Am. J. Pathol. 173:1289–99
    [Google Scholar]
  67. 67.
    Wagener FADTG, Scharstuhl A, Tyrrell RM, Von den Hoff JW, Jozkowicz A et al. 2010. The heme-heme oxygenase system in wound healing; implications for scar formation. Curr. Drug Targets 11:1571–85
    [Google Scholar]
  68. 68.
    Candelaria PV, Leoh LS, Penichet ML, Daniels-Wells TR. 2021. Antibodies targeting the transferrin receptor 1 (TfR1) as direct anti-cancer agents. Front. Immunol.12:12:607692
    [Google Scholar]
  69. 69.
    Steere AN, Byrne SL, Chasteen ND, Mason AB. 2012. Kinetics of iron release from transferrin bound to the transferrin receptor at endosomal pH. Biochim. Biophys. Acta Gen. Subj. 1820:3326–33
    [Google Scholar]
  70. 70.
    Aisen P, Leibman A, Zweier J. 1978. Stoichiometric and site characteristics of the binding of iron to human transferrin. J. Biol. Chem. 253:61930–37
    [Google Scholar]
  71. 71.
    Mayle KM, Le AM, Kamei DT. 2012. The intracellular trafficking pathway of transferrin. Biochim. Biophys. Acta Gen. Subj. 1820:3264–81
    [Google Scholar]
  72. 72.
    Chen-Roetling J, Regan RF. 2016. Haptoglobin increases the vulnerability of CD163-expressing neurons to hemoglobin. J. Neurochem. 139:4586
    [Google Scholar]
  73. 73.
    Chen-Roetling J, Ma S-K, Cao Y, Shah A, Regan RF. 2018. Hemopexin increases the neurotoxicity of hemoglobin when haptoglobin is absent. J. Neurochem. 145:6464–73
    [Google Scholar]
  74. 74.
    Li H, Rybicki AC, Suzuka SM, von Bonsdorff L, Breuer W et al. 2010. Transferrin therapy ameliorates disease in β-thalassemic mice. Nat. Med. 16:2177–82
    [Google Scholar]
  75. 75.
    van Straaten S, Biemond BJ, Kerkhoffs J-L, Gitz-Francois J, van Wijk R, van Beers EJ. 2018. Iron overload in patients with rare hereditary hemolytic anemia: evidence-based suggestion on whom and how to screen. Am. J. Hematol. 93:11E374–76
    [Google Scholar]
  76. 76.
    Baek JH, Yalamanoglu A, Gao Y, Guenster R, Spahn DR et al. 2017. Iron accelerates hemoglobin oxidation increasing mortality in vascular diseased guinea pigs following transfusion of stored blood. JCI Insight 2:9e93577
    [Google Scholar]
  77. 77.
    Ascenzi P, di Masi A, Fanali G, Fasano M. 2015. Heme-based catalytic properties of human serum albumin. Cell Death Discov 1:15025
    [Google Scholar]
  78. 78.
    Taverna M, Marie A-L, Mira J-P, Guidet B 2013. Specific antioxidant properties of human serum albumin. Ann. Intensive Care 3:14
    [Google Scholar]
  79. 79.
    Loban A, Kime R, Powers H. 1997. Iron-binding antioxidant potential of plasma albumin. Clin. Sci. 93:5445–51
    [Google Scholar]
  80. 80.
    Miller YI, Felikman Y, Shaklai N. 1995. The involvement of low-density lipoprotein in hemin transport potentiates peroxidative damage. Biochim. Biophys. Acta Mol. Basis Dis. 1272:2119–27
    [Google Scholar]
  81. 81.
    Neuzil J, Stocker R. 1994. Free and albumin-bound bilirubin are efficient co-antioxidants for α-tocopherol, inhibiting plasma and low density lipoprotein lipid peroxidation. J. Biol. Chem. 269:2416712–19
    [Google Scholar]
  82. 82.
    Liumbruno G, Bennardello F, Lattanzio A, Piccoli P, Rossettias G. 2009. Recommendations for the use of albumin and immunoglobulins. Blood Transfus. 7:3216
    [Google Scholar]
  83. 83.
    Vermeulen Windsant IC, de Wit NCJ, Sertorio JTC, van Bijnen AA, Ganushchak YM et al. 2014. Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and intestinal tissue damage. Front. Physiol. 5:340
    [Google Scholar]
  84. 84.
    Achkar R, Chiba AK, Zampieri-Filho JP, Pestana JOM, Bordin JO. 2011. Hemolytic anemia after kidney transplantation: a prospective analysis. Transfusion 51:112495–99
    [Google Scholar]
  85. 85.
    Petz LD. 2005. Immune hemolysis associated with transplantation. Semin. Hematol. 42:3145–55
    [Google Scholar]
  86. 86.
    Norman TE, Chaffin MK, Johnson MC, Spangler EA, Weeks BR, Knight R. 2005. Intravascular hemolysis associated with severe cutaneous burn injuries in five horses. J. Am. Vet. Med. Assoc. 226:122039–43
    [Google Scholar]
  87. 87.
    Endoh Y, Kawakami M, Orringer EP, Peterson HD, Meyer AA. 1992. Causes and time course of acute hemolysis after burn injury in the rat. J. Burn Care Rehabil. 13:2 Part 1 203–9
    [Google Scholar]
  88. 88.
    Taketani S. 2005. Aquisition, mobilization and utilization of cellular iron and heme: endless findings and growing evidence of tight regulation. Tohoku J. Exp. Med. 205:4297–318
    [Google Scholar]
  89. 89.
    Worthington MT, Cohn SM, Miller SK, Luo RQ, Berg CL. 2001. Characterization of a human plasma membrane heme transporter in intestinal and hepatocyte cell lines. Am. J. Physiol. Liver Physiol. 280:6G1172–77
    [Google Scholar]
  90. 90.
    Latunde-Dada GO, Simpson RJ, McKie AT. 2006. Recent advances in mammalian haem transport. Trends Biochem. Sci. 31:182–88
    [Google Scholar]
  91. 91.
    Noyer CM, Immenschuh S, Liem HH, Muller-Eberhard U, Wolkoff AW. 1998. Initial heme uptake from albumin by short-term cultured rat hepatocytes is mediated by a transport mechanism differing from that of other organic anions. Hepatology 28:1150–55
    [Google Scholar]
  92. 92.
    Taketani S, Immenschuh S, Go S, Sinclair PR, Stockert RJ et al. 1998. Hemopexin from four species inhibits the association of heme with cultured hepatoma cells or primary rat hepatocytes exhibiting a small number of species specific hemopexin receptors. Hepatology 27:3808–14
    [Google Scholar]
  93. 93.
    Jennifer B, Berg V, Modak M, Puck A, Seyerl-Jiresch M et al. 2020. Transferrin receptor 1 is a cellular receptor for human heme-albumin. Commun. Biol. 3:1621
    [Google Scholar]
  94. 94.
    Hellman NE, Gitlin JD. 2002. Ceruloplasmin metabolism and function. Annu. Rev. Nutr. 22:439–58
    [Google Scholar]
  95. 95.
    Ramos D, Mar D, Ishida M, Vargas R, Gaite M et al. 2016. Mechanism of copper uptake from blood plasma ceruloplasmin by mammalian cells. PLOS ONE 11:3e0149516
    [Google Scholar]
  96. 96.
    De Domenico I, Ward DM, di Patti MCB, Jeong SY, David S et al. 2007. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J 26:122823–31
    [Google Scholar]
  97. 97.
    de Silva D, Aust SD. 1992. Stoichiometry of Fe(II) oxidation during ceruloplasmin-catalyzed loading of ferritin. Arch. Biochem. Biophys. 298:1259–64
    [Google Scholar]
  98. 98.
    Samokyszyn VM, Miller DM, Reif DW, Aust SD. 1989. Inhibition of superoxide and ferritin-dependent lipid peroxidation by ceruloplasmin. J. Biol. Chem. 264:121–26
    [Google Scholar]
  99. 99.
    de Silva DM, Aust SD 1993. Ferritin and ceruloplasmin in oxidative damage: review and recent findings. Can. J. Physiol. Pharmacol. 71:9715–20
    [Google Scholar]
  100. 100.
    Dubick M, Barr J, Keen C, Atkins J 2015. Ceruloplasmin and hypoferremia: studies in burn and non-burn trauma patients. Antioxidants 4:1153–69
    [Google Scholar]
  101. 101.
    Dauberschmidt R, Mrochen H, Förster I, Stumpe C, Dressler C et al. 1991. Changes in ceruloplasmin activity and lactate concentration in patients at high risk of acute organ system failure. Clin. Chim. Acta 199:2167–72
    [Google Scholar]
  102. 102.
    Cunningham JJ, Lydon MK, Emerson R, Harmatz PR 1996. Low ceruloplasmin levels during recovery from major burn injury: influence of open wound size and copper supplementation. Nutrition 12:283–88
    [Google Scholar]
  103. 103.
    Chun RF. 2012. New perspectives on the vitamin D binding protein. Cell Biochem. Funct. 30:6445–56
    [Google Scholar]
  104. 104.
    Meier U, Gressner O, Lammert F, Gressner AM. 2006. Gc-globulin: roles in response to injury. Clin. Chem. 52:71247–53
    [Google Scholar]
  105. 105.
    Piktel E, Levental I, Durnaś B, Janmey P, Bucki R. 2018. Plasma gelsolin: indicator of inflammation and its potential as a diagnostic tool and therapeutic target. Int. J. Mol. Sci. 19:92516
    [Google Scholar]
  106. 106.
    Peddada N, Sagar A, Garg R. 2012. Plasma gelsolin: a general prognostic marker of health. Med. Hypotheses 78:203–10
    [Google Scholar]
  107. 107.
    Smith D, Janmey P, Sherwood J, Howard R, Lind S 1988. Decreased plasma gelsolin levels in patients with Plasmodium falciparum malaria: a consequence of hemolysis?. Blood 72:1214–18
    [Google Scholar]
  108. 108.
    Pires IS, Belcher DA, Hickey R, Miller C, Badu-Tawiah AK et al. 2020. Novel manufacturing method for producing apohemoglobin and its biophysical properties. Biotechnol. Bioeng. 117:1125–45
    [Google Scholar]
  109. 109.
    Hargrove MS, Whitaker T, Olson JS, Vali RJ, Mathews AJ. 1997. Quaternary structure regulates hemin dissociation from human hemoglobin. J. Biol. Chem. 272:2817385–89
    [Google Scholar]
  110. 110.
    Pires IS, Savla C, Palmer AF. 2020. Poly(ethylene glycol) surface-conjugated apohemoglobin as a synthetic heme scavenger. Biomacromolecules 21:62155–64
    [Google Scholar]
  111. 111.
    Pires IS, Hammond PT, Irvine DJ. 2021. Engineering strategies for immunomodulatory cytokine therapies: challenges and clinical progress. Adv. Ther. 4:82100035
    [Google Scholar]
  112. 112.
    Munoz CJ, Pires IS, Baek JH, Buehler PW, Palmer AF, Cabrales P. 2020. Apohemoglobin-haptoglobin complex attenuates the pathobiology of circulating acellular hemoglobin and heme. Am. J. Physiol. Circ. Physiol. 318:5H1296–307
    [Google Scholar]
  113. 113.
    Belcher DA, Munoz C, Pires IS, Williams AT, Cabrales P, Palmer AF. 2020. Apohemoglobin-haptoglobin complexes attenuate the hypertensive response to low-molecular-weight polymerized hemoglobin. Blood Adv 4:122739–50
    [Google Scholar]
  114. 114.
    Waks M, Beychok S. 1974. Induced conformational states in human apohemoglobin on binding of haptoglobin 1–1. Effect of added heme as a probe of frozen structures. Biochemistry 13:115–22
    [Google Scholar]
  115. 115.
    Munoz CJ, Pires IS, Jani V, Palmer AF, Gopal S, Cabrales P 2022. Apohemoglobin-haptoglobin complex alleviates iron toxicity in mice with β-thalassemia via scavenging of cell-free hemoglobin and heme. Biomed. Pharmacother. 156:113911
    [Google Scholar]
  116. 116.
    Buzzi RM, Owczarek CM, Akeret K, Tester A, Pereira N et al. 2021. Modular platform for the development of recombinant hemoglobin scavenger biotherapeutics. Mol. Pharm. 18:83158–70
    [Google Scholar]
  117. 117.
    Pires IS, Govender K, Munoz CJ, Williams AT, O'Boyle QT et al. 2021. Purification and analysis of a protein cocktail capable of scavenging cell-free hemoglobin, heme, and iron. Transfusion 61:61894–907
    [Google Scholar]
  118. 118.
    Pires IS, Palmer AF. 2020. Tangential flow filtration of haptoglobin. Biotechnol. Prog. 36:5e3010
    [Google Scholar]
  119. 119.
    Fasano M, Curry S, Terreno E, Galliano M, Fanali G et al. 2005. The extraordinary ligand binding properties of human serum albumin. IUBMB Life 57:787–96
    [Google Scholar]
  120. 120.
    Stamler JS, Jaraki O, Osborne J, Simon DI, Keaney J et al. 1992. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. PNAS 89:167674–77
    [Google Scholar]
  121. 121.
    Rungatscher A, Hallström S, Linardi D, Milani E, Gasser H et al. 2015. S-nitroso human serum albumin attenuates pulmonary hypertension, improves right ventricular-arterial coupling, and reduces oxidative stress in a chronic right ventricle volume overload model. J. Heart Lung Transplant. 34:3479–88
    [Google Scholar]
  122. 122.
    Orie NN, Vallance P, Jones DP, Moore KP. 2005. S-Nitroso-albumin carries a thiol-labile pool of nitric oxide, which causes venodilation in the rat. Am. J. Physiol. Circ. Physiol. 289:2H916–23
    [Google Scholar]
  123. 123.
    Minneci PC, Deans KJ, Shiva S, Zhi H, Banks SM et al. 2008. Nitrite reductase activity of hemoglobin as a systemic nitric oxide generator mechanism to detoxify plasma hemoglobin produced during hemolysis. Am. J. Physiol. Circ. Physiol. 295:2H743–54
    [Google Scholar]
  124. 124.
    Zorzi A, Linciano S, Angelini A. 2019. Non-covalent albumin-binding ligands for extending the circulating half-life of small biotherapeutics. Medchemcomm 10:71068–81
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-081622-031203
Loading
/content/journals/10.1146/annurev-bioeng-081622-031203
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error