1932

Abstract

Since aptamers were first reported in the early 2000s, research on their use for the detection of health-relevant analytical targets has exploded. This review article provides a brief overview of the most recent developments in the field of aptamer-based biosensors for global health applications. The review provides a description of general aptasensing principles and follows up with examples of recent reports of diagnostics-related applications. These applications include detection of proteins and small molecules, circulating cancer cells, whole-cell pathogens, extracellular vesicles, and tissue diagnostics. The review also discusses the main challenges that this growing technology faces in the quest of bringing these new devices from the laboratory to the market.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-082020-035644
2021-07-13
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/23/1/annurev-bioeng-082020-035644.html?itemId=/content/journals/10.1146/annurev-bioeng-082020-035644&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Flahault A, Geissbuhler A, Guessous I, Guérin P, Bolon I et al. 2017. Precision global health in the digital age. Swiss Med. Wkly. 147:w14423
    [Google Scholar]
  2. 2. 
    Steinhubl SR, Muse ED, Topol EJ. 2015. The emerging field of mobile health. Sci. Transl. Med. 7:283rv3
    [Google Scholar]
  3. 3. 
    Candia J, Cheung F, Kotliarov Y, Fantoni G, Sellers B et al. 2017. Assessment of variability in the SOMAscan assay. Sci. Rep 7:14248
    [Google Scholar]
  4. 4. 
    Robertson DL, Joyce GF. 1990. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–68
    [Google Scholar]
  5. 5. 
    Ellington AD, Szostak JW. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–22
    [Google Scholar]
  6. 6. 
    Tuerk C, Gold L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–10
    [Google Scholar]
  7. 7. 
    Zhu K, Wang ZY, Zong SF, Liu Y, Yang K et al. 2020. Hydrophobic plasmonic nanoacorn array for a label-free and uniform SERS-based biomolecular assay. ACS Appl. Mater. Interfaces 12:29917–27
    [Google Scholar]
  8. 8. 
    Cheng S, Zheng B, Yao DB, Wang Y, Tian JJ et al. 2019. Determination of saxitoxin by aptamer-based surface-enhanced Raman scattering. Anal. Lett. 52:902–18
    [Google Scholar]
  9. 9. 
    Bagheri E, Abnous K, Alibolandi M, Ramezani M, Taghdisi SM. 2018. Triple-helix molecular switch-based aptasensors and DNA sensors. Biosens. Bioelectron. 111:1–9
    [Google Scholar]
  10. 10. 
    Su ZH, Xu XL, Xu HT, Zhang Y, Li CR et al. 2017. Amperometric thrombin aptasensor using a glassy carbon electrode modified with polyaniline and multiwalled carbon nanotubes tethered with a thiolated aptamer. Microchim. Acta 184:1677–82
    [Google Scholar]
  11. 11. 
    Zhang YT, Figueroa-Miranda G, Zafiu C, Willbold D, Offenhausser A, Mayer D. 2019. Amperometric aptasensor for amyloid-β oligomer detection by optimized stem-loop structures with an adjustable detection range. ACS Sens 4:3042–50
    [Google Scholar]
  12. 12. 
    Ghalehno MH, Mirzaei M, Torkzadeh-Mahani M. 2019. Electrochemical aptasensor for tumor necrosis factor α using aptamer–antibody sandwich structure and cobalt hexacyanoferrate for signal amplification. J. Iran. Chem. Soc. 16:1783–91
    [Google Scholar]
  13. 13. 
    Shandost-Fard F, Roushani M. 2017. The use of a signal amplification strategy for the fabrication of a TNT impedimetric nanoaptasensor based on electrodeposited NiONPs immobilized onto a GCE surface. Sens. Actuators B Chem. 246:848–53
    [Google Scholar]
  14. 14. 
    Wang GX, Han R, Li Q, Han YF, Luo XL. 2020. Electrochemical biosensors capable of detecting biomarkers in human serum with unique long-term antifouling abilities based on designed multifunctional peptides. Anal. Chem. 92:7186–93
    [Google Scholar]
  15. 15. 
    Wang HY, Sun JJ, Lu L, Yang X, Xia JF et al. 2020. Competitive electrochemical aptasensor based on a cDNA-ferrocene/MXene probe for detection of breast cancer marker Mucin1. Anal. Chim. Acta 1094:18–25
    [Google Scholar]
  16. 16. 
    Yang ZH, Ding XF, Guo Q, Wang Y, Lu ZW et al. 2017. Second generation of signaling-probe displacement electrochemical aptasensor for detection of picomolar ampicillin and sulfadimethoxine. Sens. Actuators B Chem. 253:1129–36
    [Google Scholar]
  17. 17. 
    Urbanova V, Jayaramulu K, Schneemann A, Kment S, Fischer RA, Zbaril R. 2018. Hierarchical porous fluorinated graphene oxide@metal–organic gel composite: label-free electrochemical aptasensor for selective detection of thrombin. ACS Appl. Mater. Interfaces 10:41089–97
    [Google Scholar]
  18. 18. 
    Wang XY, Gao FX, Gong YY, Liu GT, Zhang Y, Ding CF. 2019. Electrochemical aptasensor based on conductive supramolecular polymer hydrogels for thrombin detection with high selectivity. Talanta 205:120140
    [Google Scholar]
  19. 19. 
    Jiang D, Du X, Liu Q, Zhou L, Dai L et al. 2015. Silver nanoparticles anchored on nitrogen-doped graphene as a novel electrochemical biosensing platform with enhanced sensitivity for aptamer-based pesticide assay. Analyst 140:6404–11
    [Google Scholar]
  20. 20. 
    Madianos L, Skotadis E, Tsekenis G, Patsiouras L, Tsigkourakos M, Tsoukalas D. 2018. Ιmpedimetric nanoparticle aptasensor for selective and label free pesticide detection. Microelectron. Eng. 189:39–45
    [Google Scholar]
  21. 21. 
    Li S, Wu X, Liu C, Yin G, Luo J, Xu Z. 2016. Application of DNA aptamers as sensing layers for detection of carbofuran by electrogenerated chemiluminescence energy transfer. Anal. Chim. Acta 941:94–100
    [Google Scholar]
  22. 22. 
    Javidi M, Housaindokht MR, Verdian A, Razavizadeh BM. 2018. Detection of chloramphenicol using a novel apta-sensing platform based on aptamer terminal-lock in milk samples. Anal. Chim. Acta 1039:116–23
    [Google Scholar]
  23. 23. 
    Roushani M, Nezhadali A, Jalilian Z. 2018. An electrochemical chlorpyrifos aptasensor based on the use of a glassy carbon electrode modified with an electropolymerized aptamer-imprinted polymer and gold nanorods. Microchim. Acta 185:551
    [Google Scholar]
  24. 24. 
    Fu J, Yao Y, An X, Wang G, Guo Y et al. 2020. Voltammetric determination of organophosphorus pesticides using a hairpin aptamer immobilized in a graphene oxide-chitosan composite. Microchim. Acta 187:36
    [Google Scholar]
  25. 25. 
    Bala R, Kumar M, Bansal K, Sharma RK, Wangoo N. 2016. Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles. Biosens. Bioelectron. 85:445–49
    [Google Scholar]
  26. 26. 
    Bala R, Sharma RK, Wangoo N. 2016. Development of gold nanoparticles-based aptasensor for the colorimetric detection of organophosphorus pesticide phorate. Anal. Bioanal. Chem. 408:333–38
    [Google Scholar]
  27. 27. 
    Fu J, An X, Yao Y, Guo Y, Sun X. 2019. Electrochemical aptasensor based on one step co-electrodeposition of aptamer and GO-CuNPs nanocomposite for organophosphorus pesticide detection. Sens. Actuators B Chem. 287:503–9
    [Google Scholar]
  28. 28. 
    Derbyshire N, White SJ, Bunka DH, Song L, Stead S et al. 2012. Toggled RNA aptamers against aminoglycosides allowing facile detection of antibiotics using gold nanoparticle assays. Anal. Chem. 84:6595–602
    [Google Scholar]
  29. 29. 
    Liu Y, Yan K, Okoth OK, Zhang J. 2015. A label-free photoelectrochemical aptasensor based on nitrogen-doped graphene quantum dots for chloramphenicol determination. Biosens. Bioelectron. 74:1016–21
    [Google Scholar]
  30. 30. 
    Sun X, Li F, Shen G, Huang J, Wang X. 2014. Aptasensor based on the synergistic contributions of chitosan–gold nanoparticles, graphene–gold nanoparticles and multi-walled carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection. Analyst 139:299–308
    [Google Scholar]
  31. 31. 
    Li S, Liu C, Yin G, Zhang Q, Luo J, Wu N. 2017. Aptamer-molecularly imprinted sensor base on electrogenerated chemiluminescence energy transfer for detection of lincomycin. Biosens. Bioelectron. 91:687–91
    [Google Scholar]
  32. 32. 
    He L, Luo Y, Zhi W, Zhou P. 2013. Colorimetric sensing of tetracyclines in milk based on the assembly of cationic conjugated polymer-aggregated gold nanoparticles. Food Anal. Methods 6:1704–11
    [Google Scholar]
  33. 33. 
    Wu Y, Zhan S, Wang F, He L, Zhi W, Zhou P. 2012. Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic (III) in aqueous solution. Chem. Commun. 48:4459–61
    [Google Scholar]
  34. 34. 
    Chen Z, Li L, Mu X, Zhao H, Guo L. 2011. Electrochemical aptasensor for detection of copper based on a reagentless signal-on architecture and amplification by gold nanoparticles. Talanta 85:730–35
    [Google Scholar]
  35. 35. 
    Pelossof G, Tel-Vered R, Liu XQ, Willner I. 2011. Amplified surface plasmon resonance based DNA biosensors, aptasensors, and Hg2+ sensors using hemin/G-quadruplexes and Au nanoparticles. Chem. A Eur. J. 17:8904–12
    [Google Scholar]
  36. 36. 
    Seok Y, Byun J-Y, Shim W-B, Kim M-G. 2015. A structure-switchable aptasensor for aflatoxin B1 detection based on assembly of an aptamer/split DNAzyme. Anal. Chim. Acta 886:182–87
    [Google Scholar]
  37. 37. 
    Wu S, Duan N, Ma X, Xia Y, Wang H et al. 2012. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal. Chem. 84:6263–70
    [Google Scholar]
  38. 38. 
    Yang C, Wang Y, Marty J-L, Yang X 2011. Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator. Biosens. Bioelectron. 26:2724–27
    [Google Scholar]
  39. 39. 
    Rivas L, Mayorga-Martinez CC, Quesada-González D, Zamora-Gálvez A, de la Escosura-Muñiz A, Merkoçi A. 2015. Label-free impedimetric aptasensor for ochratoxin-A detection using iridium oxide nanoparticles. Anal. Chem. 87:5167–72
    [Google Scholar]
  40. 40. 
    Temur E, Zengin A, Boyacı IH, Dudak FC, Torul H, Tamer U. 2012. Attomole sensitivity of staphylococcal enterotoxin B detection using an aptamer-modified surface-enhanced Raman scattering probe. Anal. Chem. 84:10600–6
    [Google Scholar]
  41. 41. 
    Ramezani M, Danesh NM, Lavaee P, Abnous K, Taghdisi SM. 2015. A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens. Bioelectron. 70:181–87
    [Google Scholar]
  42. 42. 
    Taghdisi SM, Danesh NM, Ramezani M, Emrani AS, Abnous K. 2018. Novel colorimetric aptasensor for zearalenone detection based on nontarget-induced aptamer walker, gold nanoparticles, and exonuclease-assisted recycling amplification. ACS Appl. Mater. Interfaces 10:12504–9
    [Google Scholar]
  43. 43. 
    Wang G, Su X, Xu Q, Xu G, Lin J, Luo X. 2018. Antifouling aptasensor for the detection of adenosine triphosphate in biological media based on mixed self-assembled aptamer and zwitterionic peptide. Biosens. Bioelectron. 101:129–34
    [Google Scholar]
  44. 44. 
    Zhou L, Wang J, Li D, Li Y 2014. An electrochemical aptasensor based on gold nanoparticles dotted graphene modified glassy carbon electrode for label-free detection of bisphenol A in milk samples. Food Chem 162:34–40
    [Google Scholar]
  45. 45. 
    Marks HL, Pishko MV, Jackson GW, Coté GL. 2014. Rational design of a bisphenol A aptamer selective surface-enhanced Raman scattering nanoprobe. Anal. Chem. 86:11614–19
    [Google Scholar]
  46. 46. 
    Taghdisi SM, Danesh NM, Emrani AS, Ramezani M, Abnous K. 2015. A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine. Biosens. Bioelectron. 73:245–50
    [Google Scholar]
  47. 47. 
    Ma C, Wang W, Yang Q, Shi C, Cao L. 2011. Cocaine detection via rolling circle amplification of short DNA strand separated by magnetic beads. Biosens. Bioelectron. 26:3309–12
    [Google Scholar]
  48. 48. 
    Wang W, Wu W-Y, Zhong X, Miao Q, Zhu J-J. 2011. Aptamer-based PDMS–gold nanoparticle composite as a platform for visual detection of biomolecules with silver enhancement. Biosens. Bioelectron. 26:3110–14
    [Google Scholar]
  49. 49. 
    Zamay GS, Zamay TN, Kolovskii VA, Shabanov AV, Glazyrin YE et al. 2016. Electrochemical aptasensor for lung cancer-related protein detection in crude blood plasma samples. Sci. Rep. 6:34350
    [Google Scholar]
  50. 50. 
    Rodríguez MC, Rivas GA. 2009. Label-free electrochemical aptasensor for the detection of lysozyme. Talanta 78:212–16
    [Google Scholar]
  51. 51. 
    Jarczewska M, Rębiś J, Górski Ł, Malinowska E. 2018. Development of DNA aptamer-based sensor for electrochemical detection of C-reactive protein. Talanta 189:45–54
    [Google Scholar]
  52. 52. 
    Wang J, Guo J, Zhang J, Zhang W, Zhang Y. 2017. RNA aptamer-based electrochemical aptasensor for C-reactive protein detection using functionalized silica microspheres as immunoprobes. Biosens. Bioelectron. 95:100–5
    [Google Scholar]
  53. 53. 
    Crulhas BP, Karpik AE, Delella FK, Castro GR, Pedrosa VA. 2017. Electrochemical aptamer-based biosensor developed to monitor PSA and VEGF released by prostate cancer cells. Anal. Bioanal. Chem. 409:6771–80
    [Google Scholar]
  54. 54. 
    Kumar LS, Wang X, Hagen J, Naik R, Papautsky I, Heikenfeld J. 2016. Label free nano-aptasensor for interleukin-6 in protein-dilute bio fluids such as sweat. Anal. Methods 8:3440–44
    [Google Scholar]
  55. 55. 
    Sypabekova M, Jolly P, Estrela P, Kanayeva D. 2019. Electrochemical aptasensor using optimized surface chemistry for the detection of Mycobacterium tuberculosis secreted protein MPT64 in human serum. Biosens. Bioelectron. 123:141–51
    [Google Scholar]
  56. 56. 
    Bhardwaj J, Chaudhary N, Kim H, Jang J. 2019. Subtyping of influenza A H1N1 virus using a label-free electrochemical biosensor based on the DNA aptamer targeting the stem region of HA protein. Anal. Chim. Acta 1064:94–103
    [Google Scholar]
  57. 57. 
    Ren Q, Mou J, Guo Y, Wang H, Cao X et al. 2020. Simple homogeneous electrochemical target-responsive aptasensor based on aptamer bio-gated and porous carbon nanocontainer derived from ZIF-8. Biosens. Bioelectron. 166:112448
    [Google Scholar]
  58. 58. 
    Lu L, Liu B, Leng J, Ma X, Peng H. 2020. Electrochemical mixed aptamer-antibody sandwich assay for mucin protein 16 detection through hybridization chain reaction amplification. Anal. Bioanal. Chem. 412:7169–78
    [Google Scholar]
  59. 59. 
    Liu Y, Tian H, Chen X, Liu W, Xia K et al. 2020. Indirect surface-enhanced Raman scattering assay of insulin-like growth factor 2 receptor protein by combining the aptamer modified gold substrate and silver nanoprobes. Microchim. Acta 187:160
    [Google Scholar]
  60. 60. 
    Mazzaracchio V, Neagu D, Porchetta A, Marcoccio E, Pomponi A et al. 2019. A label-free impedimetric aptasensor for the detection of Bacillus anthracis spore simulant. Biosens. Bioelectron. 126:640–46
    [Google Scholar]
  61. 61. 
    Zhou C, You T, Jang H, Ryu H, Lee E-S et al. 2020. Aptamer-conjugated polydiacetylene colorimetric paper chip for the detection of Bacillus thuringiensis spores. Sensors 20:3124
    [Google Scholar]
  62. 62. 
    Bruno JG, Phillips T, Carrillo MP, Crowell R. 2009. Plastic-adherent DNA aptamer-magnetic bead and quantum dot sandwich assay for Campylobacter detection. J. Fluoresc. 19:42735
    [Google Scholar]
  63. 63. 
    Li L, Li Q, Liao Z, Sun Y, Cheng Q et al. 2018. Magnetism-resolved separation and fluorescence quantification for near-simultaneous detection of multiple pathogens. Anal. Chem. 90:9621–28
    [Google Scholar]
  64. 64. 
    Mohsin DH, Mashkour MS, Fatemi F. 2021. Design of aptamer-based sensing platform using gold nanoparticles functionalized reduced graphene oxide for ultrasensitive detection of Hepatitis B virus. Chem. Pap. 75:279–95
    [Google Scholar]
  65. 65. 
    Suh SH, Choi SJ, Dwivedi HP, Moore MD, Escudero-Abarca BI, Jaykus L-A. 2018. Use of DNA aptamer for sandwich type detection of Listeria monocytogenes. Anal. Biochem. 557:27–33
    [Google Scholar]
  66. 66. 
    Weerathunge P, Ramanathan R, Torok VA, Hodgson K, Xu Y et al. 2019. Ultrasensitive colorimetric detection of murine norovirus using nanozyme aptasensor. Anal. Chem. 91:3270–76
    [Google Scholar]
  67. 67. 
    Das R, Dhiman A, Kapil A, Bansal V, Sharma TK. 2019. Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Anal. Bioanal. Chem. 411:1229–38
    [Google Scholar]
  68. 68. 
    Liang J, Zhou J, Tan J, Wang Z, Deng L 2019. Aptamer-based fluorescent determination of Salmonella paratyphi A using Phi29-DNA polymerase-assisted cyclic amplification. Anal. Lett. 52:919–31
    [Google Scholar]
  69. 69. 
    Dai G, Li Z, Luo F, Ai S, Chen B, Wang Q 2019. Electrochemical determination of Salmonella typhimurium by using aptamer-loaded gold nanoparticles and a composite prepared from a metal-organic framework (type UiO-67) and graphene. Microchim. Acta 186:620
    [Google Scholar]
  70. 70. 
    Chang Y-C, Yang C-Y, Sun R-L, Cheng Y-F, Kao W-C, Yang P-C. 2013. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci. Rep. 3:1863
    [Google Scholar]
  71. 71. 
    Sun Y, Duan N, Ma P, Liang Y, Zhu X, Wang Z. 2019. Colorimetric aptasensor based on truncated aptamer and trivalent DNAzyme for Vibrio parahemolyticus determination. J. Agric. Food Chem. 67:2313–20
    [Google Scholar]
  72. 72. 
    Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA et al. 2017. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the Global Burden of Disease study. JAMA Oncol 3:524–48
    [Google Scholar]
  73. 73. 
    Williams SCP. 2013. Circulating tumor cells. PNAS 110:4861
    [Google Scholar]
  74. 74. 
    Yu M, Bardia A, Aceto N, Bersani F, Madden MW et al. 2014. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345:216–20
    [Google Scholar]
  75. 75. 
    Fang X, Tan W. 2010. Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc. Chem. Res. 43:48–57
    [Google Scholar]
  76. 76. 
    Ferreira CS, Matthews CS, Missailidis S. 2006. DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol 27:289–301
    [Google Scholar]
  77. 77. 
    Wan Y, Kim YT, Li N, Cho SK, Bachoo R et al. 2010. Surface-immobilized aptamers for cancer cell isolation and microscopic cytology. Cancer Res 70:9371–80
    [Google Scholar]
  78. 78. 
    Song Y, Zhu Z, An Y, Zhang W, Zhang H et al. 2013. Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal. Chem. 85:4141–49
    [Google Scholar]
  79. 79. 
    Sun D, Lu J, Luo Z, Zhang L, Liu P, Chen Z 2018. Competitive electrochemical platform for ultrasensitive cytosensing of liver cancer cells by using nanotetrahedra structure with rolling circle amplification. Biosens. Bioelectron. 120:8–14
    [Google Scholar]
  80. 80. 
    Shen H, Yang J, Chen Z, Chen X, Wang L et al. 2016. A novel label-free and reusable electrochemical cytosensor for highly sensitive detection and specific collection of CTCs. Biosens. Bioelectron. 81:495–502
    [Google Scholar]
  81. 81. 
    Xu Y, Phillips JA, Yan J, Li Q, Fan ZH, Tan W. 2009. Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal. Chem. 81:7436–42
    [Google Scholar]
  82. 82. 
    Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D et al. 2007. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–39
    [Google Scholar]
  83. 83. 
    Sheng W, Chen T, Kamath R, Xiong X, Tan W, Fan ZH 2012. Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device. Anal. Chem. 84:4199–206
    [Google Scholar]
  84. 84. 
    Sheng W, Chen T, Tan W, Fan ZH 2013. Multivalent DNA nanospheres for enhanced capture of cancer cells in microfluidic devices. ACS Nano 7:7067–76
    [Google Scholar]
  85. 85. 
    Zhao W, Cui CH, Bose S, Guo D, Shen C et al. 2012. Bioinspired multivalent DNA network for capture and release of cells. PNAS 109:19626–31
    [Google Scholar]
  86. 86. 
    Shen Q, Xu L, Zhao L, Wu D, Fan Y et al. 2013. Specific capture and release of circulating tumor cells using aptamer-modified nanosubstrates. Adv. Mater. 25:2368–73
    [Google Scholar]
  87. 87. 
    Zhao L, Tang C, Xu L, Zhang Z, Li X et al. 2016. Enhanced and differential capture of circulating tumor cells from lung cancer patients by microfluidic assays using aptamer cocktail. Small 12:1072–81
    [Google Scholar]
  88. 88. 
    Herr JK, Smith JE, Medley CD, Shangguan D, Tan W. 2006. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem. 78:2918–24
    [Google Scholar]
  89. 89. 
    Smith JE, Medley CD, Tang Z, Shangguan D, Lofton C, Tan W. 2007. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal. Chem. 79:3075–82
    [Google Scholar]
  90. 90. 
    Chiu W-J, Ling T-K, Chiang H-P, Lin H-J, Huang C-C. 2015. Monitoring cluster ions derived from aptamer-modified gold nanofilms under laser desorption/ionization for the detection of circulating tumor cells. ACS Appl. Mater. Interfaces 7:8622–30
    [Google Scholar]
  91. 91. 
    Abate MF, Jia S, Ahmed MG, Li X, Lin L et al. 2019. Visual quantitative detection of circulating tumor cells with single-cell sensitivity using a portable microfluidic device. Small 15:1804890
    [Google Scholar]
  92. 92. 
    Labib M, Green B, Mohamadi RM, Mepham A, Ahmed SU et al. 2016. Aptamer and antisense-mediated two-dimensional isolation of specific cancer cell subpopulations. J. Am. Chem. Soc. 138:2476–79
    [Google Scholar]
  93. 93. 
    Zhang Y, Wang Z, Wu L, Zong S, Yun B, Cui Y 2018. Combining multiplex SERS nanovectors and multivariate analysis for in situ profiling of circulating tumor cell phenotype using a microfluidic chip. Small 14:1704433
    [Google Scholar]
  94. 94. 
    Green BJ, Kermanshah L, Labib M, Ahmed SU, Silva PN et al. 2017. Isolation of phenotypically distinct cancer cells using nanoparticle-mediated sorting. ACS Appl. Mater. Interfaces 9:20435–43
    [Google Scholar]
  95. 95. 
    Reinholt SJ, Craighead HG. 2018. Microfluidic device for aptamer-based cancer cell capture and genetic mutation detection. Anal. Chem. 90:2601–8
    [Google Scholar]
  96. 96. 
    Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW et al. 2006. Aptamers evolved from live cells as effective molecular probes for cancer study. PNAS 103:11838–43
    [Google Scholar]
  97. 97. 
    Miao P, Tang Y. 2019. Gold nanoparticles-based multipedal DNA walker for ratiometric detection of circulating tumor cell. Anal. Chem. 91:15187–92
    [Google Scholar]
  98. 98. 
    Cao J, Zhao XP, Younis MR, Li ZQ, Xia XH, Wang C. 2017. Ultrasensitive capture, detection, and release of circulating tumor cells using a nanochannel-ion channel hybrid coupled with electrochemical detection technique. Anal. Chem. 89:10957–64
    [Google Scholar]
  99. 99. 
    Dou B, Xu L, Jiang B, Yuan R, Xiang Y. 2019. Aptamer-functionalized and gold nanoparticle array-decorated magnetic graphene nanosheets enable multiplexed and sensitive electrochemical detection of rare circulating tumor cells in whole blood. Anal. Chem. 91:10792–99
    [Google Scholar]
  100. 100. 
    Feng L, Chen Y, Ren J, Qu X. 2011. A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32:2930–37
    [Google Scholar]
  101. 101. 
    Qu L, Xu J, Tan X, Liu Z, Xu L, Peng R. 2014. Dual-aptamer modification generates a unique interface for highly sensitive and specific electrochemical detection of tumor cells. ACS Appl. Mater. Interfaces 6:7309–15
    [Google Scholar]
  102. 102. 
    Gu C, Gai P, Liu X, Liu J, Li F. 2018. Ultrasensitive and versatile homogeneous electrochemical cytosensing platform based on target-induced displacement reaction for “signal-on” bioassay. Sens. Actuators B Chem. 270:1–8
    [Google Scholar]
  103. 103. 
    Hashkavayi AB, Raoof JB, Ojani R, Kavoosian S. 2017. Ultrasensitive electrochemical aptasensor based on sandwich architecture for selective label-free detection of colorectal cancer (CT26) cells. Biosens. Bioelectron. 92:630–37
    [Google Scholar]
  104. 104. 
    Kashefi-Kheyrabadi L, Mehrgardi MA, Wiechec E, Turner APF, Tiwari A. 2014. Ultrasensitive detection of human liver hepatocellular carcinoma cells using a label-free aptasensor. Anal. Chem. 86:4956–60
    [Google Scholar]
  105. 105. 
    Zhou G, Lin M, Song P, Chen X, Chao J et al. 2014. Multivalent capture and detection of cancer cells with DNA nanostructured biosensors and multibranched hybridization chain reaction amplification. Anal. Chem. 86:7843–48
    [Google Scholar]
  106. 106. 
    Liu J-X, Bao N, Luo X, Ding S-N. 2018. Nonenzymatic amperometric aptamer cytosensor for ultrasensitive detection of circulating tumor cells and dynamic evaluation of cell surface N-glycan expression. ACS Omega 3:8595–604
    [Google Scholar]
  107. 107. 
    Tian L, Qi J, Qian K, Oderinde O, Liu Q et al. 2017. Copper (II) oxide nanozyme based electrochemical cytosensor for high sensitive detection of circulating tumor cells in breast cancer. J. Electroanal. Chem. 812:1–9
    [Google Scholar]
  108. 108. 
    Liu H, Xu S, He Z, Deng A, Zhu J-J. 2013. Supersandwich cytosensor for selective and ultrasensitive detection of cancer cells using aptamer-DNA concatamer-quantum dots probes. Anal. Chem. 85:3385–92
    [Google Scholar]
  109. 109. 
    Zhou B, Qiu Y, Wen Q, Zhu M, Yang P 2017. Dual electrochemiluminescence signal system for in situ and simultaneous evaluation of multiple cell-surface receptors. ACS Appl. Mater. Interfaces 9:2074–82
    [Google Scholar]
  110. 110. 
    Wang K, Zhang R, Sun N, Li X, Wang J et al. 2016. Near-infrared light-driven photoelectrochemical aptasensor based on the upconversion nanoparticles and TiO2/CdTe heterostructure for detection of cancer cells. ACS Appl. Mater. Interfaces 8:25834–39
    [Google Scholar]
  111. 111. 
    Li J, Lin X, Zhang Z, Tu W, Dai Z. 2019. Red light-driven photoelectrochemical biosensing for ultrasensitive and scatheless assay of tumor cells based on hypotoxic AgInS2 nanoparticles. Biosens. Bioelectron. 126:332–38
    [Google Scholar]
  112. 112. 
    Zheng T, Zhang Q, Feng S, Zhu J-J, Wang Q, Wang H 2014. Robust nonenzymatic hybrid nanoelectrocatalysts for signal amplification toward ultrasensitive electrochemical cytosensing. J. Am. Chem. Soc. 136:2288–91
    [Google Scholar]
  113. 113. 
    Zheng T, Tan T, Zhang Q, Fu JJ, Wu JJ et al. 2013. Multiplex acute leukemia cytosensing using multifunctional hybrid electrochemical nanoprobes at a hierarchically nanoarchitectured electrode interface. Nanoscale 5:10360–68
    [Google Scholar]
  114. 114. 
    Sun D, Lu J, Zhong Y, Yu Y, Wang Y et al. 2016. Sensitive electrochemical aptamer cytosensor for highly specific detection of cancer cells based on the hybrid nanoelectrocatalysts and enzyme for signal amplification. Biosens. Bioelectron. 75:301–7
    [Google Scholar]
  115. 115. 
    Chen D, Sun D, Wang Z, Qin W, Chen L et al. 2018. A DNA nanostructured aptasensor for the sensitive electrochemical detection of HepG2 cells based on multibranched hybridization chain reaction amplification strategy. Biosens. Bioelectron. 117:416–21
    [Google Scholar]
  116. 116. 
    Li F, Hu S, Zhang R, Gu Y, Li Y, Jia Y. 2019. Porous graphene oxide enhanced aptamer specific circulating-tumor-cell sensing interface on light addressable potentiometric sensor: clinical application and simulation. ACS Appl. Mater. Interfaces 11:8704–9
    [Google Scholar]
  117. 117. 
    Zaborowski MP, Balaj L, Breakefield XO, Lai CP. 2015. Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65:783–97
    [Google Scholar]
  118. 118. 
    Yáñez-Mó M, Siljander PRM, Andreu Z, Bedina Zavec A, Borràs FE et al. 2015. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4:27066
    [Google Scholar]
  119. 119. 
    Doyle LM, Wang MZ. 2019. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8:727
    [Google Scholar]
  120. 120. 
    Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. 2018. Biogenesis and function of extracellular vesicles in cancer. Pharmacol. Ther. 188:1–11
    [Google Scholar]
  121. 121. 
    Contreras-Naranjo JC, Wu HJ, Ugaz VM. 2017. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip 17:3558–77
    [Google Scholar]
  122. 122. 
    Jiang Y, Shi M, Liu Y, Wan S, Cui C et al. 2017. Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins. Angew. Chem. Int. Ed. Engl. 56:11916–20
    [Google Scholar]
  123. 123. 
    Zhang K, Deng R, Teng X, Li Y, Sun Y et al. 2018. Direct visualization of single-nucleotide variation in mtDNA using a CRISPR/Cas9-mediated proximity ligation assay. J. Am. Chem. Soc. 140:11293–301
    [Google Scholar]
  124. 124. 
    Huang L, Wang DB, Singh N, Yang F, Gu N, Zhang XE. 2018. A dual-signal amplification platform for sensitive fluorescence biosensing of leukemia-derived exosomes. Nanoscale 10:20289–95
    [Google Scholar]
  125. 125. 
    Liu C, Zhao J, Tian F, Chang J, Zhang W, Sun J. 2019. λ-DNA- and aptamer-mediated sorting and analysis of extracellular vesicles. J. Am. Chem. Soc. 141:3817–21
    [Google Scholar]
  126. 126. 
    Dong H, Chen H, Jiang J, Zhang H, Cai C, Shen Q. 2018. Highly sensitive electrochemical detection of tumor exosomes based on aptamer recognition-induced multi-DNA release and cyclic enzymatic amplification. Anal. Chem. 90:4507–13
    [Google Scholar]
  127. 127. 
    Xu H, Liao C, Zuo P, Liu Z, Ye BC. 2018. Magnetic-based microfluidic device for on-chip isolation and detection of tumor-derived exosomes. Anal. Chem. 90:13451–58
    [Google Scholar]
  128. 128. 
    Zhang K, Yue Y, Wu S, Liu W, Shi J, Zhang Z. 2019. Rapid capture and nondestructive release of extracellular vesicles using aptamer-based magnetic isolation. ACS Sens 4:1245–51
    [Google Scholar]
  129. 129. 
    Huang R, He L, Li S, Liu H, Jin L et al. 2020. A simple fluorescence aptasensor for gastric cancer exosome detection based on branched rolling circle amplification. Nanoscale 12:2445–51
    [Google Scholar]
  130. 130. 
    Li P, Yu X, Han W, Kong Y, Bao W et al. 2019. Ultrasensitive and reversible nanoplatform of urinary exosomes for prostate cancer diagnosis. ACS Sens 4:1433–41
    [Google Scholar]
  131. 131. 
    Zhao X, Zhang W, Qiu X, Mei Q, Luo Y, Fu W. 2020. Rapid and sensitive exosome detection with CRISPR/Cas12a. Anal. Bioanal. Chem. 412:601–9
    [Google Scholar]
  132. 132. 
    He D, Ho SL, Chan HN, Wang H, Hai L et al. 2019. Molecular-recognition-based DNA nanodevices for enhancing the direct visualization and quantification of single vesicles of tumor exosomes in plasma microsamples. Anal. Chem. 91:2768–75
    [Google Scholar]
  133. 133. 
    He F, Wang J, BC Yin, Ye BC. 2018. Quantification of exosome based on a copper-mediated signal amplification strategy. Anal. Chem. 90:8072–79
    [Google Scholar]
  134. 134. 
    Wang L, Pan Y, Liu Y, Sun Z, Huang Y et al. 2020. Fabrication of an aptamer-coated liposome complex for the detection and profiling of exosomes based on terminal deoxynucleotidyl transferase-mediated signal amplification. ACS Appl. Mater. Interfaces 12:322–29
    [Google Scholar]
  135. 135. 
    Zhang J, Shi J, Liu W, Zhang K, Zhao H et al. 2018. A simple, specific and “on-off” type MUC1 fluorescence aptasensor based on exosomes for detection of breast cancer. Sens. Actuators B Chem. 276:552–59
    [Google Scholar]
  136. 136. 
    Zhang Q, Wang F, Zhang H, Zhang Y, Liu M, Liu Y. 2018. Universal Ti3C2 MXenes based self-standard ratiometric fluorescence resonance energy transfer platform for highly sensitive detection of exosomes. Anal. Chem. 90:12737–44
    [Google Scholar]
  137. 137. 
    Zhang Z, Tang C, Zhao L, Xu L, Zhou W et al. 2019. Aptamer-based fluorescence polarization assay for separation-free exosome quantification. Nanoscale 11:10106–13
    [Google Scholar]
  138. 138. 
    Sun Y, Jin H, Jiang X, Gui R 2020. Assembly of black phosphorus nanosheets and MOF to form functional hybrid thin-film for precise protein capture, dual-signal and intrinsic self-calibration sensing of specific cancer-derived exosomes. Anal. Chem. 92:2866–75
    [Google Scholar]
  139. 139. 
    Wang S, Zhang L, Wan S, Cansiz S, Cui C et al. 2017. Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano 11:3943–49
    [Google Scholar]
  140. 140. 
    Huang R, He L, Xia Y, Xu H, Liu C et al. 2019. A sensitive aptasensor based on a hemin/G-quadruplex-assisted signal amplification strategy for electrochemical detection of gastric cancer exosomes. Small 15:1900735
    [Google Scholar]
  141. 141. 
    Zhou YG, Mohamadi RM, Poudineh M, Kermanshah L, Ahmed S et al. 2016. Interrogating circulating microsomes and exosomes using metal nanoparticles. Small 12:727–32
    [Google Scholar]
  142. 142. 
    Wang Y-M, Liu J-W, Adkins GB, Shen W, Trinh MP et al. 2017. Enhancement of the intrinsic peroxidase-like activity of graphitic carbon nitride nanosheets by ssDNAs and its application for detection of exosomes. Anal. Chem. 89:12327–33
    [Google Scholar]
  143. 143. 
    Chen J, Xu Y, Lu Y, Xing W. 2018. Isolation and visible detection of tumor-derived exosomes from plasma. Anal. Chem. 90:14207–15
    [Google Scholar]
  144. 144. 
    Zeng Z, Zhang P, Zhao N, Sheehan AM, Tung CH et al. 2010. Using oligonucleotide aptamer probes for immunostaining of formalin-fixed and paraffin-embedded tissues. Mod. Pathol. 23:1553–58
    [Google Scholar]
  145. 145. 
    Pu Y, Liu Z, Lu Y, Yuan P, Liu J et al. 2015. Using DNA aptamer probe for immunostaining of cancer frozen tissues. Anal. Chem. 87:1919–24
    [Google Scholar]
  146. 146. 
    Li WM, Bing T, Wei JY, Chen ZZ, Shangguan DH, Fang J. 2014. Cell-SELEX-based selection of aptamers that recognize distinct targets on metastatic colorectal cancer cells. Biomaterials 35:6998–7007
    [Google Scholar]
  147. 147. 
    Yuan B, Jiang X, Chen Y, Guo Q, Wang K et al. 2017. Metastatic cancer cell and tissue-specific fluorescence imaging using a new DNA aptamer developed by Cell-SELEX. Talanta 170:56–62
    [Google Scholar]
  148. 148. 
    Li X, An Y, Jin J, Zhu Z, Hao L et al. 2015. Evolution of DNA aptamers through in vitro metastatic-cell-based systematic evolution of ligands by exponential enrichment for metastatic cancer recognition and imaging. Anal. Chem. 87:4941–48
    [Google Scholar]
  149. 149. 
    Li S, Xu H, Ding H, Huang Y, Cao X et al. 2009. Identification of an aptamer targeting hnRNP A1 by tissue slide-based SELEX. J. Pathol. 218:327–36
    [Google Scholar]
  150. 150. 
    Bukari BA, Citartan M, Ch'ng ES, Bilibana MP, Rozhdestvensky T, Tang TH. 2017. Aptahistochemistry in diagnostic pathology: technical scrutiny and feasibility. Histochem. Cell Biol. 147:545–53
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-082020-035644
Loading
/content/journals/10.1146/annurev-bioeng-082020-035644
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error