1932

Abstract

One of the greatest concerns in the subzero storage of cells, tissues, and organs is the ability to control the nucleation or recrystallization of ice. In nature, evidence of these processes, which aid in sustaining internal temperatures below the physiologic freezing point for extended periods of time, is apparent in freeze-avoidant and freeze-tolerant organisms. After decades of studying these proteins, we now have easily accessible compounds and materials capable of recapitulating the mechanisms seen in nature for biopreser-vation applications. The output from this burgeoning area of research can interact synergistically with other novel developments in the field of cryobiology, making it an opportune time for a review on this topic.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-082222-015243
2023-06-08
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/25/1/annurev-bioeng-082222-015243.html?itemId=/content/journals/10.1146/annurev-bioeng-082222-015243&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Taylor MJ, Weegman BP, Baicu SC, Giwa SE. 2019. New approaches to cryopreservation of cells, tissues, and organs. Transfus. Med. Hemother. 46:197–215
    [Google Scholar]
  2. 2.
    William N, Acker JP. 2021. High sub-zero organ preservation: a paradigm of nature-inspired strategies. Cryobiology 102:15–26
    [Google Scholar]
  3. 3.
    Acker JP 2006. Biopreservation of cells and engineered tissues. Tissue Engineering II: Basics of Tissue Engineering and Tissue Applications K Lee, D Kaplan 157–87. Berlin: Springer-Verlag
    [Google Scholar]
  4. 4.
    Polge C, Smith AU, Parkes AS. 1949. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666
    [Google Scholar]
  5. 5.
    Lovelock JE, Bishop MWH. 1959. Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 183:1394–95
    [Google Scholar]
  6. 6.
    Fahy GM, MacFarlane DR, Angell CA, Meryman HT. 1984. Vitrification as an approach to cryopreservation. Cryobiology 21:407–26
    [Google Scholar]
  7. 7.
    Armitage WJ, Pegg DE. 1979. The contribution of the cryoprotectant to total injury in rabbit hearts frozen with ethylene glycol. Cryobiology 16:152–60
    [Google Scholar]
  8. 8.
    Rudolf LE, Mandel S. 1967. Supercooling, intermittent perfusion, and high pressure oxygen in whole organ preservation. Transplantation 5:4, Suppl.1159–66
    [Google Scholar]
  9. 9.
    Storey K, Storey J. 1989. Freeze tolerance and freeze avoidance in ectotherms. Animal Adaptation to Cold51–82. Berlin: Springer
    [Google Scholar]
  10. 10.
    DeVries AL, Wohlschlag DE. 1969. Freezing resistance in some Antarctic fishes. Science 163:1073–75
    [Google Scholar]
  11. 11.
    Somero GN, DeVries AL. 1967. Temperature tolerance of some Antarctic fishes. Science 156:257–58
    [Google Scholar]
  12. 12.
    Chao H, Davies PL, Carpenter JF. 1996. Effects of antifreeze proteins on red blood cell survival during cryopreservation. J. Exp. Biol. 199:2071–76
    [Google Scholar]
  13. 13.
    Rubinsky B, Arav A, Hong JS, Lee CY. 1994. Freezing of mammalian livers with glycerol and antifreeze proteins. Biochem. Biophys. Res. Commun. 200:732–41
    [Google Scholar]
  14. 14.
    Amir G, Rubinsky B, Basheer SY, Horowitz L, Jonathan L et al. 2005. Improved viability and reduced apoptosis in sub-zero 21-hour preservation of transplanted rat hearts using anti-freeze proteins. J. Heart Lung Transplant. 24:1915–29
    [Google Scholar]
  15. 15.
    Amir G, Rubinsky B, Horowitz L, Miller L, Leor J et al. 2004. Prolonged 24-hour subzero preservation of heterotopically transplanted rat hearts using antifreeze proteins derived from arctic fish. Ann. Thorac. Surg. 77:1648–55
    [Google Scholar]
  16. 16.
    Amir G, Horowitz L, Rubinsky B, Yousif BS, Lavee J, Smolinsky AK. 2004. Subzero nonfreezing cryopresevation of rat hearts using antifreeze protein I and antifreeze protein III. Cryobiology 48:273–82
    [Google Scholar]
  17. 17.
    Amir G, Rubinsky B, Kassif Y, Horowitz L, Smolinsky AK, Lavee J. 2003. Preservation of myocyte structure and mitochondrial integrity in subzero cryopreservation of mammalian hearts for transplantation using antifreeze proteins—an electron microscopy study. Eur. J. Cardio-Thorac. Surg. 24:292–97
    [Google Scholar]
  18. 18.
    Raymond JA, DeVries AL. 1977. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. PNAS 74:2589–93
    [Google Scholar]
  19. 19.
    Devries AL, Lin Y. 1977. Structure of a peptide antifreeze and mechanism of adsorption to ice. Biochim. Biophys. Acta 495:388–92
    [Google Scholar]
  20. 20.
    Knight CA, Cheng CC, DeVries AL. 1991. Adsorption of α-helical antifreeze peptides on specific ice crystal surface planes. Biophys. J. 59:409–18
    [Google Scholar]
  21. 21.
    Rubinsky B, Mattioli M, Arav A, Barboni B, Fletcher GL. 1992. Inhibition of Ca2+ and K+ currents by “antifreeze” proteins. Am. J. Physiol. Regul. Integr. Comp. Physiol. 262:R542–45
    [Google Scholar]
  22. 22.
    Hasan M, Fayter AE, Gibson MI. 2018. Ice recrystallization inhibiting polymers enable glycerol-free cryopreservation of microorganisms. Biomacromolecules 19:3371–76
    [Google Scholar]
  23. 23.
    Graham B, Fayter AE, Houston JE, Evans RC, Gibson MI. 2018. Facially amphipathic glycopolymers inhibit ice recrystallization. J. Am. Chem. Soc. 140:5682–85
    [Google Scholar]
  24. 24.
    Gibson MI, Barker CA, Spain SG, Albertin L, Cameron NR. 2009. Inhibition of ice crystal growth by synthetic glycopolymers: implications for the rational design of antifreeze glycoprotein mimics. Biomacromolecules 10:328–33
    [Google Scholar]
  25. 25.
    Trant JF, Biggs RA, Capicciotti CJ, Ben RN. 2013. Developing highly active small molecule ice recrystallization inhibitors based upon C-linked antifreeze glycoprotein analogues. RSC Adv. 3:26005–9
    [Google Scholar]
  26. 26.
    Capicciotti CJ, Doshi M, Ben RN. 2013. Ice recrystallization inhibitors: from biological antifreezes to small molecules. Recent Developments in the Study of Recrystallization P Wilson 177–224. Rijeka, Croatia: InTech
    [Google Scholar]
  27. 27.
    Kristiansen E, Zachariassen KE. 2005. The mechanism by which fish antifreeze proteins cause thermal hysteresis. Cryobiology 51:262–80
    [Google Scholar]
  28. 28.
    Morris GJ, Acton E. 2013. Controlled ice nucleation in cryopreservation—a review. Cryobiology 66:85–92
    [Google Scholar]
  29. 29.
    Liu Z, Muldrew K, Wan RG, Elliott JA. 2003. Measurement of freezing point depression of water in glass capillaries and the associated ice front shape. Phys. Rev. E 67:061602
    [Google Scholar]
  30. 30.
    Mer VKL. 1952. Nucleation in phase transitions. Ind. Eng. Chem. 44:1270–77
    [Google Scholar]
  31. 31.
    Acker JP, McGann LE. 2003. Protective effect of intracellular ice during freezing?. Cryobiology 46:197–202
    [Google Scholar]
  32. 32.
    Rubinsky B, Pegg DE. 1988. A mathematical model for the freezing process in biological tissue. Proc. R. Soc. Lond. B Biol. Sci. 234:343–58
    [Google Scholar]
  33. 33.
    Rubinsky B, Lee C, Bastacky J, Hayes T. 1987. The mechanism of freezing in biological tissue—the liver. CryoLetters 8:370–81
    [Google Scholar]
  34. 34.
    Storey KB, Bischof J, Rubinsky B. 1992. Cryomicroscopic analysis of freezing in liver of the freeze-tolerant wood frog. Am. J. Physiol. 263:R185–94
    [Google Scholar]
  35. 35.
    Rubinsky B, Cravalho EG, Mikic B. 1980. Thermal stresses in frozen organs. Cryobiology 17:66–73
    [Google Scholar]
  36. 36.
    Mazur P. 1963. Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J. Gen. Physiol. 47:347–69
    [Google Scholar]
  37. 37.
    Ishine N, Rubinsky B, Lee CY. 2000. Transplantation of mammalian livers following freezing: vascular damage and functional recovery. Cryobiology 40:84–89
    [Google Scholar]
  38. 38.
    Ishine N, Rubinsky B, Lee CY. 1999. A histological analysis of liver injury in freezing storage. Cryobiology 39:271–77
    [Google Scholar]
  39. 39.
    Yan J, Patey G. 2011. Heterogeneous ice nucleation induced by electric fields. J. Phys. Chem. Lett. 2:2555–59
    [Google Scholar]
  40. 40.
    Chow R, Blindt R, Chivers R, Povey M. 2005. A study on the primary and secondary nucleation of ice by power ultrasound. Ultrasonics 43:227–30
    [Google Scholar]
  41. 41.
    Passot S, Tréléa IC, Marin M, Galan M, Morris GJ, Fonseca F. 2009. Effect of controlled ice nucleation on primary drying stage and protein recovery in vials cooled in a modified freeze-dryer. J. Biomed. Eng. 131:7074511
    [Google Scholar]
  42. 42.
    Petersen A, Schneider H, Rau G, Glasmacher B. 2006. A new approach for freezing of aqueous solutions under active control of the nucleation temperature. Cryobiology 53:248–57
    [Google Scholar]
  43. 43.
    Niu Y, Wang J, Men S, Zhao Y, Lu S et al. 2018. Urea and plasma ice-nucleating proteins promoted the modest freeze tolerance in Pleske's high altitude frog Nanorana pleskei. J. Comp. Physiol. B 188:599–610
    [Google Scholar]
  44. 44.
    Maki LR, Galyan EL, Chang-Chien M-M, Caldwell DR. 1974. Ice nucleation induced by Pseudomonas syringae. Appl. Microbiol. 28:456–59
    [Google Scholar]
  45. 45.
    Lorv JS, Rose DR, Glick BR. 2014. Bacterial ice crystal controlling proteins. Scientifica 2014:976895
    [Google Scholar]
  46. 46.
    Wolber PK, Deininger CA, Southworth MW, Vandekerckhove J, Van Montagu M, Warren GJ. 1986. Identification and purification of a bacterial ice-nucleation protein. PNAS 83:7256–60
    [Google Scholar]
  47. 47.
    Roeters SJ, Golbek TW, Bregnhøj M, Drace T, Alamdari S et al. 2021. Ice-nucleating proteins are activated by low temperatures to control the structure of interfacial water. Nat. Commun. 12:1183
    [Google Scholar]
  48. 48.
    Lukas M, Schwidetzky R, Kunert AT, Backus EH, Pöschl U et al. 2020. Interfacial water ordering is insufficient to explain ice-nucleating protein activity. J. Phys. Chem. Lett. 12:218–23
    [Google Scholar]
  49. 49.
    Weng L, Tessier SN, Smith K, Edd JF, Stott SL, Toner M. 2016. Bacterial ice nucleation in monodisperse D2O and H2O-in-oil emulsions. Langmuir 32:9229–36
    [Google Scholar]
  50. 50.
    Wenzel M, Hölscher B, Günther T, Merker H. 1979. Organkonservierung durch Schweres Wasser (D2O): Morphologische und biochemische Untersuchungen an Herz und Leber [Organ preservation by heavy water (D2O). Morphological and biochemical studies on heart and liver]. Z. Klinische Chem. Klinische Biochem. [J. Clin. Chem. Clin. Biochem.] 17:123–28
    [Google Scholar]
  51. 51.
    Weng L, Tessier SN, Swei A, Stott SL, Toner M. 2017. Controlled ice nucleation using freeze-dried Pseudomonas syringae encapsulated in alginate beads. Cryobiology 75:1–6
    [Google Scholar]
  52. 52.
    Zamecnik J, Skladal V, Kudela V. 1991. Ice nucleation by immobilized ice nucleation active bacteria. CryoLetters 12:149–54
    [Google Scholar]
  53. 53.
    Marcolli C, Nagare B, Welti A, Lohmann U. 2016. Ice nucleation efficiency of AgI: review and new insights. Atmos. Chem. Phys. 16:8915–37
    [Google Scholar]
  54. 54.
    Vonnegut B. 1947. The nucleation of ice formation by silver iodide. J. Appl. Phys. 18:593–95
    [Google Scholar]
  55. 55.
    Schaefer VJ. 1948. The production of clouds containing supercooled water droplets or ice crystals under laboratory conditions. Bull. Am. Meteorol. Soc. 29:175–82
    [Google Scholar]
  56. 56.
    Kojima T, Soma T, Oguri N. 1988. Effect of ice nucleation by droplet of immobilized silver iodide on freezing of rabbit and bovine embryos. Theriogenology 30:1199–207
    [Google Scholar]
  57. 57.
    Stanzel BV, Schulz A, Riemann I, Gepp MM, Neubauer J et al. 2018. Improved cryopreservation of cultured RPE with addition of a silver iodide/alginate mixture. Investig. Ophthalmol. Visual Sci. 59:4022
    [Google Scholar]
  58. 58.
    Kojima T, Soma T, Oguri N. 1986. Effect of silver iodide as an ice inducer on viability of frozen-thawed rabbit morulae. Theriogenology 26:341–52
    [Google Scholar]
  59. 59.
    Xiaobo X, Kojima T, Tiezheng L, Yunshan G. 1995. Cryopreservation of rabbit embryos—utilization of seeding method by silver iodide (AgI). Shengwu Jishu 5:19–21
    [Google Scholar]
  60. 60.
    Fukuta N, Mason B. 1963. Epitaxial growth of ice on organic crystals. J. Phys. Chem. Solids 24:715–18
    [Google Scholar]
  61. 61.
    Sosso GC, Whale TF, Holden MA, Pedevilla P, Murray BJ, Michaelides A. 2018. Unravelling the origins of ice nucleation on organic crystals. Chem. Sci. 9:8077–88
    [Google Scholar]
  62. 62.
    Head R. 1962. Ice nucleation by some cyclic compounds. J. Phys. Chem. Solids 23:1371–78
    [Google Scholar]
  63. 63.
    Massie I, Selden C, Hodgson H, Fuller B, Gibbons S, Morris GJ. 2014. GMP cryopreservation of large volumes of cells for regenerative medicine: active control of the freezing process. Tissue Eng. Part C Methods 20:693–702
    [Google Scholar]
  64. 64.
    Li K, Xu S, Shi W, He M, Li H et al. 2012. Investigating the effects of solid surfaces on ice nucleation. Langmuir 28:10749–54
    [Google Scholar]
  65. 65.
    Cox SJ, Kathmann SM, Slater B, Michaelides A. 2015. Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity. J. Chem. Phys. 142:184704
    [Google Scholar]
  66. 66.
    Bi Y, Cabriolu R, Li T. 2016. Heterogeneous ice nucleation controlled by the coupling of surface crystallinity and surface hydrophilicity. J. Phys. Chem. C 120:1507–14
    [Google Scholar]
  67. 67.
    Ehre D, Lavert E, Lahav M, Lubomirsky I. 2010. Water freezes differently on positively and negatively charged surfaces of pyroelectric materials. Science 327:672–75
    [Google Scholar]
  68. 68.
    Argyris D, Cole DR, Striolo A. 2010. Ion-specific effects under confinement: the role of interfacial water. ACS Nano 4:2035–42
    [Google Scholar]
  69. 69.
    Yang H, Ma C, Li K, Liu K, Loznik M et al. 2016. Tuning ice nucleation with supercharged polypeptides. Adv. Mater. 28:5008–12
    [Google Scholar]
  70. 70.
    Whale TF, Rosillo-Lopez M, Murray BJ, Salzmann CG. 2015. Ice nucleation properties of oxidized carbon nanomaterials. J. Phys. Chem. Lett. 6:3012–16
    [Google Scholar]
  71. 71.
    Bank H. 1973. Visualization of freezing damage. II. Structural alterations during warming. Cryobiology 10:157–70
    [Google Scholar]
  72. 72.
    Mazur P, Leibo S, Chu E. 1972. A two-factor hypothesis of freezing injury: evidence from Chinese hamster tissue-culture cells. Exp. Cell Res. 71:345–55
    [Google Scholar]
  73. 73.
    Mazur P, Paredes E. 2016. Roles of intracellular ice formation, vitrification of cell water, and recrystallisation of intracellular ice on the survival of mouse embryos and oocytes. Reprod. Fertil. Dev. 28:1088–91
    [Google Scholar]
  74. 74.
    Pasha R, Howell A, Turner TR, Halpenny M, Elmoazzen H et al. 2020. Transient warming affects potency of cryopreserved cord blood units. Cytotherapy 22:690–97
    [Google Scholar]
  75. 75.
    Germann A, Oh Y-J, Schmidt T, Schön U, Zimmermann H, von Briesen H. 2013. Temperature fluctuations during deep temperature cryopreservation reduce PBMC recovery, viability and T-cell function. Cryobiology 67:193–200
    [Google Scholar]
  76. 76.
    Pogozhykh D, Pogozhykh O, Prokopyuk V, Kuleshova L, Goltsev A et al. 2017. Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells. Stem Cell Res. Ther. 8:66
    [Google Scholar]
  77. 77.
    Weng L, Beauchesne PR. 2020. Dimethyl sulfoxide-free cryopreservation for cell therapy: a review. Cryobiology 94:9–17
    [Google Scholar]
  78. 78.
    Cobo A, Diaz C. 2011. Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertil. Steril. 96:277–85
    [Google Scholar]
  79. 79.
    Tao Y, Sanger E, Saewu A, Leveille M-C. 2020. Human sperm vitrification: the state of the art. Reprod. Biol. Endocrinol. 18:17
    [Google Scholar]
  80. 80.
    de Vries RJ, Banik PD, Nagpal S, Weng L, Ozer S et al. 2018. Bulk droplet vitrification: an approach to improve large-scale hepatocyte cryopreservation outcome. Langmuir 35:7354–63
    [Google Scholar]
  81. 81.
    Fuller BJ, Petrenko AY, Rodriguez JV, Somov AY, Balaban CL, Guibert EE. 2013. Biopreservation of hepatocytes: current concepts on hypothermic preservation, cryopreservation, and vitrification. CryoLetters 37:432–52
    [Google Scholar]
  82. 82.
    Khosla K, Zhan L, Bhati A, Carley-Clopton A, Hagedorn M, Bischof J. 2019. Characterization of laser gold nanowarming: a platform for millimeter-scale cryopreservation. Langmuir 35:7364–75
    [Google Scholar]
  83. 83.
    Gao Z, Namsrai B, Han Z, Joshi P, Rao JS et al. 2022. Vitrification and rewarming of magnetic nanoparticle-loaded rat hearts. Adv. Mater. Technol. 7:2100873
    [Google Scholar]
  84. 84.
    Finger EB, Bischof JC. 2018. Cryopreservation by vitrification: a promising approach for transplant organ banking. Curr. Opin. Organ Transplant. 23:353–60
    [Google Scholar]
  85. 85.
    de Vries RJ, Tessier SN, Banik PD, Nagpal S, Cronin SEJ et al. 2020. Subzero non-frozen preservation of human livers in the supercooled state. Nat. Protoc. 15:2024–40
    [Google Scholar]
  86. 86.
    Bruinsma BG, Berendsen TA, Izamis ML, Yeh H, Yarmush ML, Uygun K. 2015. Supercooling preservation and transplantation of the rat liver. Nat. Protoc. 10:484–94
    [Google Scholar]
  87. 87.
    Duman JG, Devries AL. 1974. Freezing resistance in winter flounder Pseudopleuronectes americanus. Nature 247:237–38
    [Google Scholar]
  88. 88.
    Gordon MS, Amdur BH, Scholander P. 1962. Freezing resistance in some northern fishes. Biol. Bull. 122:52–62
    [Google Scholar]
  89. 89.
    Ewart K, Lin Q, Hew C. 1999. Structure, function and evolution of antifreeze proteins. Cell. Mol. Life Sci. 55:271–83
    [Google Scholar]
  90. 90.
    Nada H, Furukawa Y. 2012. Antifreeze proteins: computer simulation studies on the mechanism of ice growth inhibition. Polymer J. 44:690–98
    [Google Scholar]
  91. 91.
    Harding MM, Ward LG, Haymet A. 1999. Type I ‘antifreeze’ proteins: structure–activity studies and mechanisms of ice growth inhibition. Eur. J. Biochem. 264:653–65
    [Google Scholar]
  92. 92.
    Yeh Y, Feeney RE. 1996. Antifreeze proteins: structures and mechanisms of function. Chem. Rev. 96:601–18
    [Google Scholar]
  93. 93.
    Garnham CP, Campbell RL, Davies PL. 2011. Anchored clathrate waters bind antifreeze proteins to ice. PNAS 108:7363–67
    [Google Scholar]
  94. 94.
    Liu K, Wang C, Ma J, Shi G, Yao X et al. 2016. Janus effect of antifreeze proteins on ice nucleation. PNAS 113:14739–44
    [Google Scholar]
  95. 95.
    Liou Y-C, Tocilj A, Davies PL, Jia Z. 2000. Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein. Nature 406:322–24
    [Google Scholar]
  96. 96.
    Avanov AY. 1990. Biological antifreezes and the mechanism of their activity. Mol. Biol. 24:473–87
    [Google Scholar]
  97. 97.
    Du N, Liu XY, Hew CL. 2003. Ice nucleation inhibition: mechanism of antifreeze by antifreeze protein. J. Biol. Chem. 278:36000–4
    [Google Scholar]
  98. 98.
    Liu S, Wang W, Von Moos E, Jackman J, Mealing G et al. 2007. In vitro studies of antifreeze glycoprotein (AFGP) and a C-linked AFGP analogue. Biomacromolecules 8:1456–62
    [Google Scholar]
  99. 99.
    Graham LA, Liou YC, Walker VK, Davies PL. 1997. Hyperactive antifreeze protein from beetles. Nature 388:727–28
    [Google Scholar]
  100. 100.
    Liou YC, Thibault P, Walker VK, Davies PL, Graham LA. 1999. A complex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor. Biochemistry 38:11415–24
    [Google Scholar]
  101. 101.
    Sally OY, Brown A, Middleton AJ, Tomczak MM, Walker VK, Davies PL. 2010. Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis. Cryobiology 61:327–34
    [Google Scholar]
  102. 102.
    Drori R, Celik Y, Davies PL, Braslavsky I. 2014. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics. J. R. Soc. Interface 11:20140526
    [Google Scholar]
  103. 103.
    Drori R, Davies PL, Braslavsky I. 2015. When are antifreeze proteins in solution essential for ice growth inhibition?. Langmuir 31:5805–11
    [Google Scholar]
  104. 104.
    Chapsky L, Rubinsky B. 1997. Kinetics of antifreeze protein-induced ice growth inhibition. FEBS Lett. 412:241–44
    [Google Scholar]
  105. 105.
    Knight C, DeVries A. 2009. Ice growth in supercooled solutions of a biological “antifreeze”, AFGP 1–5: an explanation in terms of adsorption rate for the concentration dependence of the freezing point. Phys. Chem. Chem. Phys. 11:5749–61
    [Google Scholar]
  106. 106.
    Acker JP, Elliott JAW, McGann LE. 2001. Intercellular ice propagation: experimental evidence for ice growth through membrane pores. Biophys. J. 81:1389–97
    [Google Scholar]
  107. 107.
    Wang T, Zhu Q, Yang X, Layne JR Jr., Devries AL. 1994. Antifreeze glycoproteins from Antarctic notothenioid fishes fail to protect the rat cardiac explant during hypothermic and freezing preservation. Cryobiology 31:185–92
    [Google Scholar]
  108. 108.
    Mugnano J, Wang T, Layne JR Jr., DeVries A, Lee R Jr. 1995. Antifreeze glycoproteins promote intracellular freezing of rat cardiomyocytes at high subzero temperatures. Am. J. Physiol. Regul. Integr. Comp. Physiol. 269:R474–79
    [Google Scholar]
  109. 109.
    Larese A, Acker J, Muldrew K, Hongyou Y, McGann L. 1996. Antifreeze proteins induce intracellular nucleation. CryoLetters 17:175–82
    [Google Scholar]
  110. 110.
    Muldrew K, Rewcastle J, Donnelly BJ, Saliken JC, Liang S et al. 2001. Flounder antifreeze peptides increase the efficacy of cryosurgery. Cryobiology 42:182–89
    [Google Scholar]
  111. 111.
    Capicciotti CJ, Poisson JS, Boddy CN, Ben RN. 2015. Modulation of antifreeze activity and the effect upon post-thaw HepG2 cell viability after cryopreservation. Cryobiology 70:79–89
    [Google Scholar]
  112. 112.
    Eniade A, Purushotham M, Ben RN, Wang J, Horwath K. 2003. A serendipitous discovery of antifreeze protein-specific activity in C-linked antifreeze glycoprotein analogs. Cell Biochem. Biophys. 38:115–24
    [Google Scholar]
  113. 113.
    Leclere M, Kwok BK, Wu LK, Allan DS, Ben RN. 2011. C-linked antifreeze glycoprotein (C-AFGP) analogues as novel cryoprotectants. Bioconjug. Chem. 22:1804–10
    [Google Scholar]
  114. 114.
    Balcerzak AK, Capicciotti CJ, Briard JG, Ben RN 2014. Designing ice recrystallization inhibitors: from antifreeze (glyco)proteins to small molecules. RSC Adv. 4:42682–96
    [Google Scholar]
  115. 115.
    Czechura P, Tam RY, Dimitrijevic E, Murphy AV, Ben RN. 2008. The importance of hydration for inhibiting ice recrystallization with C-linked antifreeze glycoproteins. J. Am. Chem. Soc. 130:2928–29
    [Google Scholar]
  116. 116.
    Tam RY, Ferreira SS, Czechura P, Chaytor JL, Ben RN. 2008. Hydration index—a better parameter for explaining small molecule hydration in inhibition of ice recrystallization. J. Am. Chem. Soc. 130:17494–501
    [Google Scholar]
  117. 117.
    Capicciotti CJ, Leclere M, Perras FA, Bryce DL, Paulin H et al. 2012. Potent inhibition of ice recrystallization by low molecular weight carbohydrate-based surfactants and hydrogelators. Chem. Sci. 3:1408–16
    [Google Scholar]
  118. 118.
    Ampaw AA, Newell K, Ben RN. 2021. Investigating the solubility and activity of a novel class of ice recrystallization inhibitors. Processes 9:1781
    [Google Scholar]
  119. 119.
    Poisson JS, Acker JP, Briard JG, Meyer JE, Ben RN. 2018. Modulating intracellular ice growth with cell-permeating small-molecule ice recrystallization inhibitors. Langmuir 35:7451–58
    [Google Scholar]
  120. 120.
    Poisson JS, Briard JG, Turner TR, Acker JP, Ben RN. 2017. Hydroxyethyl starch supplemented with ice recrystallization inhibitors greatly improves cryopreservation of human red blood cells. BioProcess. J. 15:16–21
    [Google Scholar]
  121. 121.
    Capicciotti CJ, Kurach JD, Turner TR, Mancini RS, Acker JP, Ben RN. 2015. Small molecule ice recrystallization inhibitors enable freezing of human red blood cells with reduced glycerol concentrations. Sci. Rep. 5:9692
    [Google Scholar]
  122. 122.
    Briard JG, Jahan S, Chandran P, Allan D, Pineault N, Ben RN. 2016. Small-molecule ice recrystallization inhibitors improve the post-thaw function of hematopoietic stem and progenitor cells. ACS Omega 1:1010–18
    [Google Scholar]
  123. 123.
    Waters L, Ben R, Acker JP, Padula MP, Marks DC, Johnson L. 2020. Characterizing the ability of an ice recrystallization inhibitor to improve platelet cryopreservation. Cryobiology 96:152–58
    [Google Scholar]
  124. 124.
    Jahan S, Adam MK, Manesia JK, Doxtator E, Ben RN, Pineault N. 2020. Inhibition of ice recrystallization during cryopreservation of cord blood grafts improves platelet engraftment. Transfusion 60:769–78
    [Google Scholar]
  125. 125.
    Lautner L, Himmat S, Acker JP, Nagendran J. 2020. The efficacy of ice recrystallization inhibitors in rat lung cryopreservation using a low cost technique for ex vivo subnormothermic lung perfusion. Cryobiology 97:93–100
    [Google Scholar]
  126. 126.
    William N, Acker JP. 2020. Cryoprotectant-dependent control of intracellular ice recrystallization in hepatocytes using small molecule carbohydrate derivatives. Cryobiology 97:123–30
    [Google Scholar]
  127. 127.
    Shirai Y, Nakanishi K, Matsuno R, Kamikubo T. 1985. Effects of polymers on secondary nucleation of ice crystals. J. Food Sci. 50:401–6
    [Google Scholar]
  128. 128.
    Franks F, Darlington J, Schenz T, Mathias S, Slade L, Levine H. 1987. Antifreeze activity of Antarctic fish glycoprotein and a synthetic polymer. Nature 325:146–47
    [Google Scholar]
  129. 129.
    Knight CA, Wen D, Laursen RA. 1995. Nonequilibrium antifreeze peptides and the recrystallization of ice. Cryobiology 32:23–34
    [Google Scholar]
  130. 130.
    Nothling MD, Fu Q, Reyhani A, Allison-Logan S, Jung K et al. 2020. Progress and perspectives beyond traditional RAFT polymerization. Adv. Sci. 7:2001656
    [Google Scholar]
  131. 131.
    Wowk B, Leitl E, Rasch CM, Mesbah-Karimi N, Harris SB, Fahy GM. 2000. Vitrification enhancement by synthetic ice blocking agents. Cryobiology 40:228–36
    [Google Scholar]
  132. 132.
    Inada T, Lu S-S. 2004. Thermal hysteresis caused by non-equilibrium antifreeze activity of poly(vinyl alcohol). Chem. Phys. Lett. 394:361–65
    [Google Scholar]
  133. 133.
    Fahy GM, Wowk B. 2013. The control of ice nucleation and growth in tissues and organs. Cryobiology 67:401
    [Google Scholar]
  134. 134.
    Budke C, Koop T. 2006. Ice recrystallization inhibition and molecular recognition of ice faces by poly(vinyl alcohol). ChemPhysChem 7:2601–6
    [Google Scholar]
  135. 135.
    Wang H-Y, Inada T, Funakoshi K, Lu S-S. 2009. Inhibition of nucleation and growth of ice by poly(vinyl alcohol) in vitrification solution. Cryobiology 59:83–89
    [Google Scholar]
  136. 136.
    Mousazadehkasin M, Tsavalas JG. 2020. Insights into design of biomimetic glycerol-grafted polyol-based polymers for ice nucleation/recrystallization inhibition and thermal hysteresis activity. Biomacromolecules 21:4626–37
    [Google Scholar]
  137. 137.
    Congdon T, Dean BT, Kasperczak-Wright J, Biggs CI, Notman R, Gibson MI. 2015. Probing the biomimetic ice nucleation inhibition activity of poly(vinyl alcohol) and comparison to synthetic and biological polymers. Biomacromolecules 16:2820–26
    [Google Scholar]
  138. 138.
    Bachtiger F, Congdon TR, Stubbs C, Gibson MI, Sosso GC. 2021. The atomistic details of the ice recrystallisation inhibition activity of PVA. Nat. Commun. 12:1323
    [Google Scholar]
  139. 139.
    Deller RC, Congdon T, Sahid MA, Morgan M, Vatish M et al. 2013. Ice recrystallisation inhibition by polyols: comparison of molecular and macromolecular inhibitors and role of hydrophobic units. Biomater. Sci. 1:478–85
    [Google Scholar]
  140. 140.
    Jin S, Yin L, Kong B, Wu S, He Z et al. 2019. Spreading fully at the ice-water interface is required for high ice recrystallization inhibition activity. Sci. China Chem. 62:909–15
    [Google Scholar]
  141. 141.
    Naullage PM, Molinero V. 2020. Slow propagation of ice binding limits the ice-recrystallization inhibition efficiency of PVA and other flexible polymers. J. Am. Chem. Soc. 142:4356–66
    [Google Scholar]
  142. 142.
    Congdon T, Notman R, Gibson MI. 2013. Antifreeze (glyco)protein mimetic behavior of poly(vinyl alcohol): detailed structure ice recrystallization inhibition activity study. Biomacromolecules 14:1578–86
    [Google Scholar]
  143. 143.
    Biggs CI, Bailey TL, Graham B, Stubbs C, Fayter A, Gibson MI. 2017. Polymer mimics of biomacromolecular antifreezes. Nat. Commun. 8:1546
    [Google Scholar]
  144. 144.
    Matsumura K, Hyon S-H. 2009. Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties. Biomaterials 30:4842–49
    [Google Scholar]
  145. 145.
    He Z, Zheng L, Liu Z, Jin S, Li C, Wang J 2017. Inhibition of heterogeneous ice nucleation by bioinspired coatings of polyampholytes. ACS Appl. Mater. Interfaces 9:30092–99
    [Google Scholar]
  146. 146.
    Stubbs C, Lipecki J, Gibson MI. 2017. Regioregular alternating polyampholytes have enhanced biomimetic ice recrystallization activity compared to random copolymers and the role of side chain versus main chain hydrophobicity. Biomacromolecules 18:295–302
    [Google Scholar]
  147. 147.
    Rajan R, Hayashi F, Nagashima T, Matsumura K. 2016. Toward a molecular understanding of the mechanism of cryopreservation by polyampholytes: cell membrane interactions and hydrophobicity. Biomacromolecules 17:1882–93
    [Google Scholar]
  148. 148.
    Busseron E, Ruff Y, Moulin E, Giuseppone N. 2013. Supramolecular self-assemblies as functional nanomaterials. Nanoscale 5:7098–140
    [Google Scholar]
  149. 149.
    Adam MK, Jarrett-Wilkins C, Beards M, Staykov E, MacFarlane LR et al. 2018. 1D self-assembly and ice recrystallization inhibition activity of antifreeze glycopeptide-functionalized perylene bisimides. Chemistry 24:7834–39
    [Google Scholar]
  150. 150.
    Xue B, Zhao L, Qin X, Qin M, Lai J et al. 2019. Bioinspired ice growth inhibitors based on self-assembling peptides. ACS Macro Lett. 8:1383–90
    [Google Scholar]
  151. 151.
    Cornel EJ, Jiang J, Chen S, Du J. 2021. Principles and characteristics of polymerization-induced self-assembly with various polymerization techniques. CCS Chem. 3:2104–25
    [Google Scholar]
  152. 152.
    Georgiou PG, Marton HL, Baker AN, Congdon TR, Whale TF, Gibson MI. 2021. Polymer self-assembly induced enhancement of ice recrystallization inhibition. J. Am. Chem. Soc. 143:7449–61
    [Google Scholar]
  153. 153.
    Georgiou PG, Kontopoulou I, Congdon TR, Gibson MI. 2020. Ice recrystallisation inhibiting polymer nano-objects via saline-tolerant polymerisation-induced self-assembly. Mater. Horizons 7:1883–87
    [Google Scholar]
  154. 154.
    Eickhoff L, Dreischmeier K, Zipori A, Sirotinskaya V, Adar C et al. 2019. Contrasting behavior of antifreeze proteins: ice growth inhibitors and ice nucleation promoters. J. Phys. Chem. Lett. 10:966–72
    [Google Scholar]
  155. 155.
    Phillips DJ, Congdon TR, Gibson MI. 2016. Activation of ice recrystallization inhibition activity of poly(vinyl alcohol) using a supramolecular trigger. Polymer Chem. 7:1701–4
    [Google Scholar]
  156. 156.
    Li Y, Wen J, Qin M, Cao Y, Ma H, Wang W. 2017. Single-molecule mechanics of catechol-iron coordination bonds. ACS Biomater. Sci. Eng. 3:979–89
    [Google Scholar]
  157. 157.
    Ma X, Tian H. 2014. Stimuli-responsive supramolecular polymers in aqueous solution. Acc. Chem. Res. 47:1971–81
    [Google Scholar]
  158. 158.
    Kahr B, Gurney RW. 2001. Dyeing crystals. Chem. Rev. 101:893–952
    [Google Scholar]
  159. 159.
    Drori R, Li C, Hu C, Raiteri P, Rohl AL et al. 2016. A supramolecular ice growth inhibitor. J. Am. Chem. Soc. 138:13396–401
    [Google Scholar]
  160. 160.
    Wu X, Yao F, Zhang H, Li J. 2021. Antifreeze proteins and their biomimetics for cell cryopreservation: mechanism, function and application—a review. Int. J. Biol. Macromol. 192:1276–91
    [Google Scholar]
  161. 161.
    Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B. 2012. Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–87
    [Google Scholar]
  162. 162.
    Li T, Li M, Dia VP, Lenaghan S, Zhong Q, Wu T. 2020. Electrosterically stabilized cellulose nanocrystals demonstrate ice recrystallization inhibition and cryoprotection activities. Int. J. Biol. Macromol. 165:2378–86
    [Google Scholar]
  163. 163.
    Safari S, Sheikhi A, van de Ven TGM. 2014. Electroacoustic characterization of conventional and electrosterically stabilized nanocrystalline celluloses. J. Colloid Interface Sci. 432:151–57
    [Google Scholar]
  164. 164.
    Li T, Zhao Y, Zhong Q, Wu T. 2019. Inhibiting ice recrystallization by nanocelluloses. Biomacromolecules 20:1667–74
    [Google Scholar]
  165. 165.
    Bai G, Gao D, Liu Z, Zhou X, Wang J. 2019. Probing the critical nucleus size for ice formation with graphene oxide nanosheets. Nature 576:437–41
    [Google Scholar]
  166. 166.
    Geng H, Liu X, Shi G, Bai G, Ma J et al. 2017. Graphene oxide restricts growth and recrystallization of ice crystals. Angew. Chem. 129:1017–21
    [Google Scholar]
  167. 167.
    Bai G, Zhang H. 2022. Influences of oxidation degree and size on the ice nucleation efficiency of graphene oxide. J. Phys. Chem. Lett. 13:2950–55
    [Google Scholar]
  168. 168.
    Liu X, Geng H, Sheng N, Wang J, Shi G. 2020. Suppressing ice growth by integrating the dual characteristics of antifreeze proteins into biomimetic two-dimensional graphene derivatives. J. Mater. Chem. A 8:23555–62
    [Google Scholar]
  169. 169.
    Bai G, Gao D, Wang J. 2017. Control of ice growth and recrystallization by sulphur-doped oxidized quasi-carbon nitride quantum dots. Carbon 124:415–21
    [Google Scholar]
  170. 170.
    Wang Z, Yang B, Chen Z, Liu D, Jing L et al. 2020. Bioinspired cryoprotectants of glucose-based carbon dots. ACS Appl. Bio Mater. 3:3785–91
    [Google Scholar]
  171. 171.
    Wilson PW, Osterday KE, Heneghan AF, Haymet AD. 2010. Type I antifreeze proteins enhance ice nucleation above certain concentrations. J. Biol. Chem. 285:34741–45
    [Google Scholar]
  172. 172.
    Mitchell DE, Lovett JR, Armes SP, Gibson MI. 2016. Combining biomimetic block copolymer worms with an ice-inhibiting polymer for the solvent-free cryopreservation of red blood cells. Angew. Chem. 128:2851–54
    [Google Scholar]
  173. 173.
    William N, Ben R, Nagendran J, Acker J. 2019. Controlling intra- and extracellular ice recrystallization in liver tissues using small molecule ice recrystallization inhibitors. Cryobiology 91:180–81
    [Google Scholar]
  174. 174.
    Nowshari M, Brem G. 2000. The protective action of polyvinyl alcohol during rapid-freezing of mouse embryos. Theriogenology 53:1157–66
    [Google Scholar]
  175. 175.
    Asada M, Ishibashi S, Ikumi S, Fukui Y. 2002. Effect of polyvinyl alcohol (PVA) concentration during vitrification of in vitro matured bovine oocytes. Theriogenology 58:1199–208
    [Google Scholar]
  176. 176.
    Tekin K, Daşkın A. 2019. Effect of polyvinyl alcohol on survival and function of angora buck spermatozoa following cryopreservation. Cryobiology 89:60–67
    [Google Scholar]
  177. 177.
    Six KR, Lyssens S, Devloo R, Compernolle V, Feys HB. 2019. The ice recrystallization inhibitor polyvinyl alcohol does not improve platelet cryopreservation. Transfusion 59:3029–31
    [Google Scholar]
  178. 178.
    Deller RC, Vatish M, Mitchell DA, Gibson MI. 2015. Glycerol-free cryopreservation of red blood cells enabled by ice-recrystallization-inhibiting polymers. ACS Biomater. Sci. Eng. 1:789–94
    [Google Scholar]
  179. 179.
    Deller RC, Pessin JE, Vatish M, Mitchell DA, Gibson MI. 2016. Enhanced non-vitreous cryopreservation of immortalized and primary cells by ice-growth inhibiting polymers. Biomater. Sci. 4:1079–84
    [Google Scholar]
  180. 180.
    Murray A, Congdon TR, Tomás RM, Kilbride P, Gibson MI. 2021. Red blood cell cryopreservation with minimal post-thaw lysis enabled by a synergistic combination of a cryoprotecting polyampholyte with DMSO/trehalose. Biomacromolecules 23:467–77
    [Google Scholar]
  181. 181.
    Matsumura K, Kawamoto K, Takeuchi M, Yoshimura S, Tanaka D, Hyon S-H. 2016. Cryopreservation of a two-dimensional monolayer using a slow vitrification method with polyampholyte to inhibit ice crystal formation. ACS Biomater. Sci. Eng. 2:1023–29
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-082222-015243
Loading
/content/journals/10.1146/annurev-bioeng-082222-015243
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error