1932

Abstract

Modeling immunity in vitro has the potential to be a powerful tool for investigating fundamental biological questions, informing therapeutics and vaccines, and providing new insight into disease progression. There are two major elements to immunity that are necessary to model: primary immune tissues and peripheral tissues with immune components. Here, we systematically review progress made along three strategies to modeling immunity: ex vivo cultures, which preserve native tissue structure; microfluidic devices, which constitute a versatile approach to providing physiologically relevant fluid flow and environmental control; and engineered tissues, which provide precise control of the 3D microenvironment and biophysical cues. While many models focus on disease modeling, more primary immune tissue models are necessary to advance the field. Moving forward, we anticipate that the expansion of patient-specific models may inform why immunity varies from patient to patient and allow for the rapid comprehension and treatment of emerging diseases, such as coronavirus disease 2019.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-082420-124920
2021-07-13
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/23/1/annurev-bioeng-082420-124920.html?itemId=/content/journals/10.1146/annurev-bioeng-082420-124920&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Couzin-Frankel J. 2013. Cancer immunotherapy. Science 342:61651432–33
    [Google Scholar]
  2. 2. 
    Hotaling NA, Tang L, Irvine DJ, Babensee JE. 2015. Biomaterial strategies for immunomodulation. Annu. Rev. Biomed. Eng. 17:317–49
    [Google Scholar]
  3. 3. 
    Germain RN, Meier-Schellersheim M, Nita-Lazar A, Fraser IDC 2011. Systems biology in immunology: a computational modeling perspective. Annu. Rev. Immunol. 29:527–85
    [Google Scholar]
  4. 4. 
    Makaryan SZ, Cess CG, Finley SD. 2020. Modeling immune cell behavior across scales in cancer. WIREs Syst. Biol. Med. 12:4e1484
    [Google Scholar]
  5. 5. 
    Hunter MC, Teijeira A, Halin C. 2016. T cell trafficking through lymphatic vessels. Front. Immunol. 7:613
    [Google Scholar]
  6. 6. 
    Lewis SM, Williams A, Eisenbarth SC. 2019. Structure and function of the immune system in the spleen. Sci. Immunol. 4:33eaau6085
    [Google Scholar]
  7. 7. 
    Vinuesa CG, Linterman MA, Yu D, MacLennan ICM 2016. Follicular helper T cells. Annu. Rev. Immunol. 34:335–68
    [Google Scholar]
  8. 8. 
    Crotty S. 2014. T follicular helper cell differentiation, function, and roles in disease. Immunity 41:4529–42
    [Google Scholar]
  9. 9. 
    Sallusto F, Geginat J, Lanzavecchia A. 2004. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22:745–63
    [Google Scholar]
  10. 10. 
    Kurosaki T, Kometani K, Ise W. 2015. Memory B cells. Nat. Rev. Immunol. 15:3149–59
    [Google Scholar]
  11. 11. 
    Steinbach K, Vincenti I, Merkler D. 2018. Resident-memory T cells in tissue-restricted immune responses: for better or worse?. Front. Immunol. 9:2827
    [Google Scholar]
  12. 12. 
    Xing Z, Afkhami S, Bavananthasivam J, Fritz DK, D'Agostino MR et al. 2020. Innate immune memory of tissue-resident macrophages and trained innate immunity: re-vamping vaccine concept and strategies. J. Leukoc. Biol. 108:825–34
    [Google Scholar]
  13. 13. 
    Sompayrac L. 2016. How the Immune System Works Chichester, UK: Wiley. , 5th ed..
    [Google Scholar]
  14. 14. 
    Mak TW, Saunders ME, Jett BD. 2014. Introduction to the immune response. Primer to the Immune Response3–20 Boston: Academic Cell Press. , 2nd ed..
    [Google Scholar]
  15. 15. 
    Mogensen TH. 2009. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 22:2240–73
    [Google Scholar]
  16. 16. 
    Proudfoot AEI. 2006. The biological relevance of chemokine-proteoglycan interactions. Biochem. Soc. Trans. 34:3422–26
    [Google Scholar]
  17. 17. 
    Jin T, Xu X, Hereld D. 2008. Chemotaxis, chemokine receptors and human disease. Cytokine 44:11–8
    [Google Scholar]
  18. 18. 
    Pompano RR, Chiang AH, Kastrup CJ, Ismagilov RF. 2017. Conceptual and experimental tools to understand spatial effects and transport phenomena in nonlinear biochemical networks illustrated with patchy switching. Annu. Rev. Biochem. 86:333–56
    [Google Scholar]
  19. 19. 
    de la Zerda A, Kratochvil MJ, Suhar NA, Heilshorn SC. 2018. Review: Bioengineering strategies to probe T cell mechanobiology. APL Bioeng 2:2021501
    [Google Scholar]
  20. 20. 
    Chittur KK, Mcintire LV, Rich RR. 1988. Shear stress effects on human T cell function. Biotechnol. Prog. 4:289–96
    [Google Scholar]
  21. 21. 
    Valignat M-P, Theodoly O, Gucciardi A, Hogg N, Lellouch AC. 2013. T lymphocytes orient against the direction of fluid flow during LFA-1-mediated migration. Biophys. J. 104:2322–31
    [Google Scholar]
  22. 22. 
    Li R, Serrano JC, Xing H, Lee TA, Azizgolshani H et al. 2018. Interstitial flow promotes macrophage polarization toward an M2 phenotype. Mol. Biol. Cell 29:161927–40
    [Google Scholar]
  23. 23. 
    Rainger GE, Buckley CD, Simmons DL, Nash GB. 1999. Neutrophils sense flow-generated stress and direct their migration through αVβ3-integrin. Am. J. Physiol. Heart Circ. Physiol. 276:3H858–64
    [Google Scholar]
  24. 24. 
    Giese C, Marx U. 2014. Human immunity in vitro—solving immunogenicity and more. Adv. Drug Deliv. Rev 69–70:103–22
    [Google Scholar]
  25. 25. 
    Ramadan Q, Ting FCW. 2016. In vitro micro-physiological immune-competent model of the human skin. Lab Chip 16:101899–908
    [Google Scholar]
  26. 26. 
    Gosselin EA, Eppler HB, Bromberg JS, Jewell CM. 2018. Designing natural and synthetic immune tissues. Nat. Mater. 17:6484–98
    [Google Scholar]
  27. 27. 
    Ribeiro-Filho AC, Levy D, Ruiz JLM, Mantovani MC, Bydlowski SP. 2019. Traditional and advanced cell cultures in hematopoietic stem cell studies. Cells 8:121628
    [Google Scholar]
  28. 28. 
    Mokhtari Z, Mech F, Zehentmeier S, Hauser AE, Figge MT. 2015. Quantitative image analysis of cell colocalization in murine bone marrow. Cytometry A 87:6503–12
    [Google Scholar]
  29. 29. 
    Bellido T, Delgado-Calle J. 2020. Ex vivo organ cultures as models to study bone biology. JBMR Plus 4:3e10345
    [Google Scholar]
  30. 30. 
    Sieber S, Wirth L, Cavak N, Koenigsmark M, Marx U et al. 2018. Bone marrow-on-a-chip: long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment. J. Tissue Eng. Regen. Med. 12:2479–89
    [Google Scholar]
  31. 31. 
    Wagner I, Materne E-M, Brincker S, Süßbier U, Frädrich C et al. 2013. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 13:183538–47
    [Google Scholar]
  32. 32. 
    Torisawa Y, Mammoto T, Jiang E, Jiang A, Mammoto A et al. 2016. Modeling hematopoiesis and responses to radiation countermeasures in a bone marrow-on-a-chip. Tissue Eng. Part C Methods 22:5509–15
    [Google Scholar]
  33. 33. 
    Torisawa Y, Spina CS, Mammoto T, Mammoto A, Weaver JC et al. 2014. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat. Methods 11:6663–69
    [Google Scholar]
  34. 34. 
    Chou DB, Frismantas V, Milton Y, David R, Pop-Damkov P et al. 2020. On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat. Biomed. Eng. 4:4394–406
    [Google Scholar]
  35. 35. 
    Aleman J, George SK, Herberg S, Devarasetty M, Porada CD et al. 2019. Deconstructed microfluidic bone marrow on-a-chip to study normal and malignant hemopoietic cell-niche interactions. Small 15:431902971
    [Google Scholar]
  36. 36. 
    Mortera-Blanco T, Mantalaris A, Bismarck A, Aqel N, Panoskaltsis N. 2011. Long-term cytokine-free expansion of cord blood mononuclear cells in three-dimensional scaffolds. Biomaterials 32:359263–70
    [Google Scholar]
  37. 37. 
    Nichols JE, Cortiella J, Lee J, Niles JA, Cuddihy M et al. 2009. In vitro analog of human bone marrow from 3D scaffolds with biomimetic inverted colloidal crystal geometry. Biomaterials 30:61071–79
    [Google Scholar]
  38. 38. 
    Bourgine PE, Klein T, Paczulla AM, Shimizu T, Kunz L et al. 2018. In vitro biomimetic engineering of a human hematopoietic niche with functional properties. PNAS 115:25E5688–95
    [Google Scholar]
  39. 39. 
    Braham MVJ, Minnema MC, Aarts T, Sebestyen Z, Straetemans T et al. 2018. Cellular immunotherapy on primary multiple myeloma expanded in a 3D bone marrow niche model. OncoImmunology 7:6e1434465
    [Google Scholar]
  40. 40. 
    Miller JFAP 1962. Effect of neonatal thymectomy on the immunological responsiveness of the mouse. Proc. R. Soc. B 156:964415–28
    [Google Scholar]
  41. 41. 
    Miller JFAP. 1965. Effect of thymectomy in adult mice on immunological responsiveness. Nature 208:50171337–38
    [Google Scholar]
  42. 42. 
    Mandel T, Russell PJ. 1971. Differentiation of foetal mouse thymus. Ultrastructure of organ cultures and of subcapsular grafts. Immunology 21:4659–74
    [Google Scholar]
  43. 43. 
    Takeuchi Y, Horiuchi T, Hamamura K, Sugimoto T, Yagita H, Okumura K. 1991. Role of CD4 molecule in intrathymic T-cell development. Immunology 74:2183–90
    [Google Scholar]
  44. 44. 
    Oh S-H, Kim K 1999. Expression of interleukin-1 receptors in the later period of foetal thymic organ culture and during suspension culture of thymocytes from aged mice. Immunol. Cell Biol. 77:6491–98
    [Google Scholar]
  45. 45. 
    Robinson JH, Owen JJT. 2008. Generation of T-cell function in organ culture of foetal mouse thymus. I. Mitogen responsiveness. J. Immunol. 181:117437–44
    [Google Scholar]
  46. 46. 
    Sahni H, Ross S, Barbarulo A, Solanki A, Lau C-I et al. 2015. A genome wide transcriptional model of the complex response to pre-TCR signalling during thymocyte differentiation. Oncotarget 6:3028646–60
    [Google Scholar]
  47. 47. 
    Ross JO, Melichar HJ, Au-Yeung BB, Herzmark P, Weiss A, Robey EA 2014. Distinct phases in the positive selection of CD8+ T cells distinguished by intrathymic migration and T-cell receptor signaling patterns. PNAS 111:25E2550–58
    [Google Scholar]
  48. 48. 
    Kurd N, Robey EA. 2016. T-cell selection in the thymus: a spatial and temporal perspective. Immunol. Rev. 271:1114–26
    [Google Scholar]
  49. 49. 
    Ross JO, Melichar HJ, Halkias J, Robey EA 2016. Studying T cell development in thymic slices. T-Cell Development: Methods and Protocols R Bosselut, MS Vacchio 131–40 New York: Springer
    [Google Scholar]
  50. 50. 
    Sood A, Dong M, Melichar HJ. 2016. Preparation and applications of organotypic thymic slice cultures. J. Vis. Exp. 114:e54355
    [Google Scholar]
  51. 51. 
    Lancaster JN, Ehrlich LIR. 2017. Analysis of thymocyte migration, cellular interactions, and activation by multiphoton fluorescence microscopy of live thymic slices. T-Cell Trafficking: Methods and Protocols GE Rainger, HM Mcgettrick 9–25 New York: Springer
    [Google Scholar]
  52. 52. 
    Lancaster JN, Thyagarajan HM, Srinivasan J, Li Y, Hu Z, Ehrlich LIR. 2019. Live-cell imaging reveals the relative contributions of antigen-presenting cell subsets to thymic central tolerance. Nat. Commun. 10:12220
    [Google Scholar]
  53. 53. 
    Hale LP, Neff J, Cheatham L, Cardona D, Markert ML, Kurtzberg J. 2020. Histopathologic assessment of cultured human thymus. PLOS ONE 15:3e0230668
    [Google Scholar]
  54. 54. 
    Poznansky MC, Evans RH, Foxall RB, Olszak IT, Piascik AH et al. 2000. Efficient generation of human T cells from a tissue-engineered thymic organoid. Nat. Biotechnol. 18:7729–34
    [Google Scholar]
  55. 55. 
    Seet CS, He C, Bethune MT, Li S, Chick B et al. 2017. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids. Nat. Methods 14:5521–30
    [Google Scholar]
  56. 56. 
    Bredenkamp N, Ulyanchenko S, O'Neill KE, Manley NR, Vaidya HJ, Blackburn CC 2014. An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts. Nat. Cell Biol. 16:9902–8
    [Google Scholar]
  57. 57. 
    Grant SM, Lou M, Yao L, Germain RN, Radtke AJ. 2020. The lymph node at a glance—how spatial organization optimizes the immune response. J. Cell Sci. 133:5jcs241828
    [Google Scholar]
  58. 58. 
    Swain SL. 1995. T-cell subsets: Who does the polarizing?. Curr. Biol. 5:8849–51
    [Google Scholar]
  59. 59. 
    Cameron SB, Stolte EH, Chow AW, Savelkoul HFJ. 2003. T helper cell polarisation as a measure of the maturation of the immune response. Mediators Inflamm 12:5285–92
    [Google Scholar]
  60. 60. 
    Miller MJ, Wei SH, Parker I, Cahalan MD 2002. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296:55741869–73
    [Google Scholar]
  61. 61. 
    Stoll S, Delon J, Brotz TM, Germain RN. 2002. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296:55741873–76
    [Google Scholar]
  62. 62. 
    Huang JH, Cárdenas-Navia LI, Caldwell CC, Plumb TJ, Radu CG et al. 2007. Requirements for T lymphocyte migration in explanted lymph nodes. J. Immunol. 178:127747–55
    [Google Scholar]
  63. 63. 
    Salmon H, Rivas-Caicedo A, Asperti-Boursin F, Lebugle C, Bourdoncle P, Donnadieu E. 2011. Ex vivo imaging of T cells in murine lymph node slices with widefield and confocal microscopes. J. Vis. Exp. 53:e3054
    [Google Scholar]
  64. 64. 
    Katakai T 2018. Live imaging of interstitial T cell migration using lymph node slices. Intravital Imaging of Dynamic Bone and Immune Systems: Methods and Protocols M Ishii 29–42 New York: Springer
    [Google Scholar]
  65. 65. 
    Hoffmann P, Skibinski G, James K 1995. Organ culture of human lymphoid tissue. I. Characteristics of the system. J. Immunol. Methods 179:137–49
    [Google Scholar]
  66. 66. 
    Skibinski G, Hoffmann P, Radbruch A, James K. 1997. Organ culture of human lymphoid tissue. II. Marked differences in cytokine production and proliferation between slice and suspension cultures of human spleen. J. Immunol. Methods 205:2115–25
    [Google Scholar]
  67. 67. 
    Grivel J-C, Margolis L. 2009. Use of human tissue explants to study human infectious agents. Nat. Protoc. 4:2256–69
    [Google Scholar]
  68. 68. 
    Giger B, Bonanomi A, Odermatt B, Ladell K, Speck RF et al. 2004. Human tonsillar tissue block cultures differ from autologous tonsillar cell suspension cultures in lymphocyte subset activation and cytokine gene expression. J. Immunol. Methods 289:1–2179–90
    [Google Scholar]
  69. 69. 
    Belanger MC, Kinman AWL, Catterton MA, Ball AG, Groff BD et al. 2019. Acute lymph node slices are a functional model system to study immunity ex vivo. bioRxiv 865543. https://doi.org/10.1101/865543
    [Crossref]
  70. 70. 
    Groff BD, Kinman AWL, Woodroof JF, Pompano RR. 2019. Immunofluorescence staining of live lymph node tissue slices. J. Immunol. Methods 464:119–25
    [Google Scholar]
  71. 71. 
    Knoblich K, Cruz Migoni S, Siew SM, Jinks E, Kaul B et al. 2018. The human lymph node microenvironment unilaterally regulates T-cell activation and differentiation. PLOS Biol 16:9e2005046
    [Google Scholar]
  72. 72. 
    Shim S, Belanger MC, Harris AR, Munson JM, Pompano RR. 2019. Two-way communication between ex vivo tissues on a microfluidic chip: application to tumor–lymph node interaction. Lab Chip 19:61013–26
    [Google Scholar]
  73. 73. 
    Ross AE, Pompano RR. 2018. Diffusion of cytokines in live lymph node tissue using microfluidic integrated optical imaging. Anal. Chim. Acta 1000:205–13
    [Google Scholar]
  74. 74. 
    Catterton MA, Dunn AF, Pompano RR. 2018. User-defined local stimulation of live tissue through a movable microfluidic port. Lab Chip 18:142003–12
    [Google Scholar]
  75. 75. 
    Moura Rosa P, Gopalakrishnan N, Ibrahim H, Haug M, Halaas Ø 2016. The intercell dynamics of T cells and dendritic cells in a lymph node-on-a-chip flow device. Lab Chip 16:193728–40
    [Google Scholar]
  76. 76. 
    Faley S, Seale K, Hughey J, Schaffer DK, VanCompernolle S et al. 2008. Microfluidic platform for real-time signaling analysis of multiple single T cells in parallel. Lab Chip 8:101700–12
    [Google Scholar]
  77. 77. 
    Lin F, Butcher EC. 2006. T cell chemotaxis in a simple microfluidic device. Lab Chip 6:111462–69
    [Google Scholar]
  78. 78. 
    Han S, Yan J-J, Shin Y, Jeon JJ, Won J et al. 2012. A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Lab Chip 12:203861–65
    [Google Scholar]
  79. 79. 
    Wu X, Newbold MA, Haynes CL. 2015. Recapitulation of in vivo-like neutrophil transendothelial migration using a microfluidic platform. Analyst 140:155055–64
    [Google Scholar]
  80. 80. 
    Mitra B, Jindal R, Lee S, Dong DX, Li L et al. 2013. Microdevice integrating innate and adaptive immune responses associated with antigen presentation by dendritic cells. RSC Adv 3:3616002–10
    [Google Scholar]
  81. 81. 
    Purwada A, Singh A. 2017. Immuno-engineered organoids for regulating the kinetics of B-cell development and antibody production. Nat. Protoc. 12:1168–82
    [Google Scholar]
  82. 82. 
    Giese C, Lubitz A, Demmler CD, Reuschel J, Bergner K, Marx U 2010. Immunological substance testing on human lymphatic micro-organoids in vitro. J. Biotechnol. 148:138–45
    [Google Scholar]
  83. 83. 
    Kraus T, Lubitz A, Schließer U, Giese C, Reuschel J et al. 2019. Evaluation of a 3D human artificial lymph node as test model for the assessment of immunogenicity of protein aggregates. J. Pharm. Sci. 108:72358–66
    [Google Scholar]
  84. 84. 
    Kuzin I, Sun H, Moshkani S, Feng C, Mantalaris A et al. 2011. Long-term immunologically competent human peripheral lymphoid tissue cultures in a 3D bioreactor. Biotechnol. Bioeng. 108:61430–40
    [Google Scholar]
  85. 85. 
    Tomei AA, Siegert S, Britschgi MR, Luther SA, Swartz MA. 2009. Fluid flow regulates stromal cell organization and CCL21 expression in a tissue-engineered lymph node microenvironment. J. Immunol. 183:74273–83
    [Google Scholar]
  86. 86. 
    Kim J, Wu B, Niedzielski SM, Hill MT, Coleman RM et al. 2015. Characterizing natural hydrogel for reconstruction of three-dimensional lymphoid stromal network to model T-cell interactions. J. Biomed. Mater. Res. A 103:82701–10
    [Google Scholar]
  87. 87. 
    Murakami T, Kim J, Li Y, Green GE, Shikanov A, Ono A. 2018. Secondary lymphoid organ fibro-blastic reticular cells mediate trans-infection of HIV-1 via CD44-hyaluronan interactions. Nat. Commun. 9:12436
    [Google Scholar]
  88. 88. 
    Votanopoulos KI, Forsythe S, Sivakumar H, Mazzocchi A, Aleman J et al. 2020. Model of patient-specific immune-enhanced organoids for immunotherapy screening: feasibility study. Ann. Surg. Oncol. 27:61956–67
    [Google Scholar]
  89. 89. 
    Higbee RG, Byers AM, Dhir V, Drake D, Fahlenkamp HG et al. 2009. An immunologic model for rapid vaccine assessment—a clinical trial in a test tube. Altern. Lab. Anim. 37:Suppl. 119–27
    [Google Scholar]
  90. 90. 
    Willerson JT, Wakeland JR, Stone MJ, Wildenthal K. 1975. Maintenance of mouse spleen in organ culture and assessment of certain functional capabilities. Cytologia 40:2433–40
    [Google Scholar]
  91. 91. 
    Finetti F, Capitani N, Manganaro N, Tatangelo V, Libonati F et al. 2020. Optimization of organotypic cultures of mouse spleen for staining and functional assays. Front. Immunol. 11:471
    [Google Scholar]
  92. 92. 
    Kontcevaya EA, Linkova NS, Chalisova NI, Dudkov AV, Sinyachkin DA. 2012. Effect of amino acids on expression of signal molecules in organotypic culture of the spleen. Bull. Exp. Biol. Med. 153:4573–76
    [Google Scholar]
  93. 93. 
    Picot J, Ndour PA, Lefevre SD, El Nemer W, Tawfik H et al. 2015. A biomimetic microfluidic chip to study the circulation and mechanical retention of red blood cells in the spleen. Am. J. Hematol. 90:4339–45
    [Google Scholar]
  94. 94. 
    Rigat-Brugarolas LG, Elizalde-Torrent A, Bernabeu M, De Niz M, Martin-Jaular L et al. 2014. A functional microengineered model of the human splenon-on-a-chip. Lab Chip 14:101715–24
    [Google Scholar]
  95. 95. 
    Nipper ME, Dixon JB. 2011. Engineering the lymphatic system. Cardiovasc. Eng. Technol. 2:4296–308
    [Google Scholar]
  96. 96. 
    Card CM, Yu SS, Swartz MA. 2014. Emerging roles of lymphatic endothelium in regulating adaptive immunity. J. Clin. Investig. 124:3943–52
    [Google Scholar]
  97. 97. 
    Randolph GJ, Ivanov S, Zinselmeyer BH, Scallan JP. 2017. The lymphatic system: integral roles in immunity. Annu. Rev. Immunol. 35:31–52
    [Google Scholar]
  98. 98. 
    Shields JD. 2011. Lymphatics: at the interface of immunity, tolerance, and tumor metastasis. Microcirculation 18:7517–31
    [Google Scholar]
  99. 99. 
    Harris AR, Perez MJ, Munson JM. 2018. Docetaxel facilitates lymphatic-tumor crosstalk to promote lymphangiogenesis and cancer progression. BMC Cancer 18:1718
    [Google Scholar]
  100. 100. 
    Zawieja SD, Castorena-Gonzalez JA, Dixon B, Davis MJ. 2017. Experimental models used to assess lymphatic contractile function. Lymphat. Res. Biol. 15:4331–42
    [Google Scholar]
  101. 101. 
    Maejima D, Nagai T, Bridenbaugh EA, Cromer WE, Gashev AA. 2014. The position- and lymphatic lumen-controlled tissue chambers to study live lymphatic vessels and surrounding tissues ex vivo. Lymphat. Res. Biol. 12:3150–56
    [Google Scholar]
  102. 102. 
    Thompson RL, Margolis EA, Ryan TJ, Coisman BJ, Price GM et al. 2018. Design principles for lymphatic drainage of fluid and solutes from collagen scaffolds. J. Biomed. Mater. Res. A 106:1106–14
    [Google Scholar]
  103. 103. 
    Gong MM, Lugo-Cintron KM, White BR, Kerr SC, Harari PM, Beebe DJ. 2019. Human organotypic lymphatic vessel model elucidates microenvironment-dependent signaling and barrier function. Biomaterials 214:119225
    [Google Scholar]
  104. 104. 
    Kim S, Chung M, Jeon NL. 2016. Three-dimensional biomimetic model to reconstitute sprouting lymphangiogenesis in vitro. Biomaterials 78:115–28
    [Google Scholar]
  105. 105. 
    Osaki T, Serrano JC, Kamm RD. 2018. Cooperative effects of vascular angiogenesis and lymphangiogenesis. Regen. Eng. Transl. Med. 4:3120–32
    [Google Scholar]
  106. 106. 
    Ozcelikkale A, Shin K, Noe-Kim V, Elzey BD, Dong Z et al. 2017. Differential response to doxorubicin in breast cancer subtypes simulated by a microfluidic tumor model. J. Control. Release 266:129–39
    [Google Scholar]
  107. 107. 
    Harris AR, Yuan JX, Munson JM. 2018. Assessing multiparametric drug response in tissue engineered tumor microenvironment models. Methods 134–135:20–31
    [Google Scholar]
  108. 108. 
    Dai TT, Jiang ZH, Li SL, Zhou GD, Kretlow JD et al. 2010. Reconstruction of lymph vessel by lymphatic endothelial cells combined with polyglycolic acid scaffolds: a pilot study. J. Biotechnol. 150:1182–89
    [Google Scholar]
  109. 109. 
    Helm C-LE, Zisch A, Swartz MA. 2007. Engineered blood and lymphatic capillaries in 3-D VEGF-fibrin-collagen matrices with interstitial flow. Biotechnol. Bioeng. 96:1167–76
    [Google Scholar]
  110. 110. 
    Ng CP, Helm C-LE, Swartz MA. 2004. Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc. Res. 68:3258–64
    [Google Scholar]
  111. 111. 
    Yang Y, Yang J, Chen X, Qin B, Li F et al. 2018. Construction of tissue-engineered lymphatic vessel using human adipose derived stem cells differentiated lymphatic endothelial like cells and decellularized arterial scaffold: a preliminary study. Biotechnol. Appl. Biochem. 65:3428–34
    [Google Scholar]
  112. 112. 
    Castell-Rodríguez A, Piñón-Zárate G, Herrera-Enríquez M, Jarquín-Yáñez K, Medina-Solares I. 2017. Dendritic cells: location, function, and clinical implications. Biology of Myelomonocytic Cells, ed. A Ghosh 21–50 Rijeka, Croatia: IntechOpen
    [Google Scholar]
  113. 113. 
    Romero-López M, Li Z, Rhee C, Maruyama M, Pajarinen J et al. 2020. Macrophage effects on mesenchymal stem cell osteogenesis in a three-dimensional in vitro bone model. Tissue Eng. Part A 26:1099–111
    [Google Scholar]
  114. 114. 
    Tang H, Husch JFA, Zhang Y, Jansen JA, Yang F, van den Beucken JJJP. 2019. Coculture with monocytes/macrophages modulates osteogenic differentiation of adipose-derived mesenchymal stromal cells on poly(lactic-co-glycolic) acid/polycaprolactone scaffolds. J. Tissue Eng. Regen. Med. 13:5785–98
    [Google Scholar]
  115. 115. 
    He X-T, Wu R-X, Xu X-Y, Wang J, Yin Y, Chen F-M. 2018. Macrophage involvement affects matrix stiffness-related influences on cell osteogenesis under three-dimensional culture conditions. Acta Biomater 71:132–47
    [Google Scholar]
  116. 116. 
    Juhas M, Abutaleb N, Wang JT, Ye J, Shaikh Z et al. 2018. Incorporation of macrophages into engineered skeletal muscle enables enhanced muscle regeneration. Nat. Biomed. Eng. 2:12942–54
    [Google Scholar]
  117. 117. 
    Sesia SB, Duhr R, Medeiros da Cunha C, Todorov A, Schaeren S et al. 2015. Anti-inflammatory/tissue repair macrophages enhance the cartilage-forming capacity of human bone marrow-derived mesenchymal stromal cells. J. Cell. Physiol. 230:61258–69
    [Google Scholar]
  118. 118. 
    Zheng D, Liwinski T, Elinav E. 2020. Interaction between microbiota and immunity in health and disease. Cell Res 30:6492–506
    [Google Scholar]
  119. 119. 
    Randall KJ, Turton J, Foster JR. 2011. Explant culture of gastrointestinal tissue: a review of methods and applications. Cell Biol. Toxicol. 27:4267–84
    [Google Scholar]
  120. 120. 
    Russo I, Zeppa P, Iovino P, Del Giorno C, Zingone F et al. 2016. The culture of gut explants: a model to study the mucosal response. J. Immunol. Methods 438:1–10
    [Google Scholar]
  121. 121. 
    Schwerdtfeger LA, Ryan EP, Tobet SA. 2015. An organotypic slice model for ex vivo study of neural, immune, and microbial interactions of mouse intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 310:4G240–48
    [Google Scholar]
  122. 122. 
    Pender SLF, Breese EJ, Günther U, Howie D, Wathen NC et al. 1998. Suppression of T cell-mediated injury in human gut by interleukin 10: role of matrix metalloproteinases. Gastroenterology 115:3573–83
    [Google Scholar]
  123. 123. 
    Schwerdtfeger LA, Nealon NJ, Ryan EP, Tobet SA. 2019. Human colon function ex vivo: dependence on oxygen and sensitivity to antibiotic. PLOS ONE 14:5e0217170
    [Google Scholar]
  124. 124. 
    Ambrosini YM, Shin W, Min S, Kim HJ 2020. Microphysiological engineering of immune responses in intestinal inflammation. Immune Netw 20:2e13
    [Google Scholar]
  125. 125. 
    Maurer M, Gresnigt MS, Last A, Wollny T, Berlinghof F et al. 2019. A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies. Biomaterials 220:119396
    [Google Scholar]
  126. 126. 
    Ramadan Q, Jafarpoorchekab H, Huang C, Silacci P, Carrara S et al. 2013. NutriChip: nutrition analysis meets microfluidics. Lab Chip 13:2196–203
    [Google Scholar]
  127. 127. 
    Kim HJ, Li H, Collins JJ, Ingber DE 2016. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. PNAS 113:1E7–15
    [Google Scholar]
  128. 128. 
    Roh TT, Chen Y, Paul HT, Guo C, Kaplan DL. 2019. 3D bioengineered tissue model of the large intestine to study inflammatory bowel disease. Biomaterials 225:119517
    [Google Scholar]
  129. 129. 
    Leonard F, Ali H, Collnot E-M, Crielaard BJ, Lammers T et al. 2012. Screening of budesonide nanoformulations for treatment of inflammatory bowel disease in an inflamed 3D cell-culture model. ALTEX 29:3275–85
    [Google Scholar]
  130. 130. 
    Leonard F, Collnot E-M, Lehr C-M. 2010. A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro. Mol. Pharm. 7:62103–19
    [Google Scholar]
  131. 131. 
    Susewind J, de Souza Carvalho-Wodarz C, Repnik U, Collnot E-M, Schneider-Daum N et al. 2016. A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials. Nanotoxicology 10:153–62
    [Google Scholar]
  132. 132. 
    Abbott NJ. 2013. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J. Inherit. Metab. Dis. 36:3437–49
    [Google Scholar]
  133. 133. 
    Serlin Y, Shelef I, Knyazer B, Friedman A. 2015. Anatomy and physiology of the blood-brain barrier. Semin. Cell Dev. Biol. 38:2–6
    [Google Scholar]
  134. 134. 
    van der Helm MW, van der Meer AD, Eijkel JCT, van den Berg A, Segerink LI. 2016. Microfluidic organ-on-chip technology for blood-brain barrier research. Tissue Barriers 4:1e1142493
    [Google Scholar]
  135. 135. 
    Cucullo L, Marchi N, Hossain M, Janigro D. 2011. A dynamic in vitro BBB model for the study of immune cell trafficking into the central nervous system. J. Cereb. Blood Flow Metab. 31:2767–77
    [Google Scholar]
  136. 136. 
    Grossmann R, Stence N, Carr J, Fuller L, Waite M, Dailey ME 2002. Juxtavascular microglia migrate along brain microvessels following activation during early postnatal development. Glia 37:3229–40
    [Google Scholar]
  137. 137. 
    Kasahara Y, Koyama R, Ikegaya Y. 2016. Depth and time-dependent heterogeneity of microglia in mouse hippocampal slice cultures. Neurosci. Res. 111:64–69
    [Google Scholar]
  138. 138. 
    Basilico B, Pagani F, Grimaldi A, Cortese B, Angelantonio SD et al. 2019. Microglia shape presynaptic properties at developing glutamatergic synapses. Glia 67:153–67
    [Google Scholar]
  139. 139. 
    Keaney J, Gasser J, Gillet G, Scholz D, Kadiu I. 2019. Inhibition of Bruton's tyrosine kinase modulates microglial phagocytosis: therapeutic implications for Alzheimer's disease. J. Neuroimmune Pharmacol. 14:3448–61
    [Google Scholar]
  140. 140. 
    Ta T-T, Dikmen HO, Schilling S, Chausse B, Lewen A et al. 2019. Priming of microglia with IFN-γ slows neuronal gamma oscillations in situ. PNAS 116:104637–42
    [Google Scholar]
  141. 141. 
    Coleman LG, Zou J, Crews FT. 2020. Microglial depletion and repopulation in brain slice culture normalizes sensitized proinflammatory signaling. J. Neuroinflamm. 17:127
    [Google Scholar]
  142. 142. 
    Huuskonen J, Suuronen T, Miettinen R, van Groen T, Salminen A. 2005. A refined in vitro model to study inflammatory responses in organotypic membrane culture of postnatal rat hippocampal slices. J. Neuroinflamm. 2:125
    [Google Scholar]
  143. 143. 
    Foraker JE, Oh JY, Ylostalo JH, Lee RH, Watanabe J, Prockop DJ. 2011. Cross-talk between human mesenchymal stem/progenitor cells (MSCs) and rat hippocampal slices in LPS-stimulated cocultures: the MSCs are activated to secrete prostaglandin E2. J. Neurochem. 119:51052–63
    [Google Scholar]
  144. 144. 
    Nitsch R, Pohl EE, Smorodchenko A, Infante-Duarte C, Aktas O, Zipp F. 2004. Direct impact of T cells on neurons revealed by two-photon microscopy in living brain tissue. J. Neurosci. 24:102458–64
    [Google Scholar]
  145. 145. 
    Dombrowski Y, O'Hagan T, Dittmer M, Penalva R, Mayoral SR et al. 2017. Regulatory T cells promote myelin regeneration in the central nervous system. Nat. Neurosci. 20:5674–80
    [Google Scholar]
  146. 146. 
    van den Pol AN, Reuter JD, Santarelli JG. 2002. Enhanced cytomegalovirus infection of developing brain independent of the adaptive immune system. J. Virol. 76:178842–54
    [Google Scholar]
  147. 147. 
    Onorati M, Li Z, Liu F, Sousa AMM, Nakagawa N et al. 2016. Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia. Cell Rep 16:102576–92
    [Google Scholar]
  148. 148. 
    Ramesh G, Borda JT, Dufour J, Kaushal D, Ramamoorthy R et al. 2008. Interaction of the Lyme disease spirochete Borrelia burgdorferi with brain parenchyma elicits inflammatory mediators from glial cells as well as glial and neuronal apoptosis. Am. J. Pathol. 173:51415–27
    [Google Scholar]
  149. 149. 
    Mossu A, Rosito M, Khire T, Chung HL, Nishihara H et al. 2019. A silicon nanomembrane platform for the visualization of immune cell trafficking across the human blood-brain barrier under flow. J. Cereb. Blood Flow Metab. 39:3395–410
    [Google Scholar]
  150. 150. 
    Cho HJ, Verbridge SS, Davalos RV, Lee YW. 2018. Development of an in vitro 3D brain tissue model mimicking in vivo-like pro-inflammatory and pro-oxidative responses. Ann. Biomed. Eng. 46:6877–87
    [Google Scholar]
  151. 151. 
    Haw RT, Tong C, Yew A, Lee H, Phillips JB, Vidyadaran S. 2014. A three-dimensional collagen construct to model lipopolysaccharide-induced activation of BV2 microglia. J. Neuroinflamm. 11:1134
    [Google Scholar]
  152. 152. 
    Pöttler M, Zierler S, Kerschbaum HH. 2006. An artificial three-dimensional matrix promotes ramification in the microglial cell-line, BV-2. Neurosci. Lett. 410:2137–40
    [Google Scholar]
  153. 153. 
    Song Q, Jiang Z, Li N, Liu P, Liu L et al. 2014. Anti-inflammatory effects of three-dimensional graphene foams cultured with microglial cells. Biomaterials 35:256930–40
    [Google Scholar]
  154. 154. 
    Abreu CM, Gama L, Krasemann S, Chesnut M, Odwin-Dacosta S et al. 2018. Microglia increase inflammatory responses in iPSC-derived human BrainSpheres. Front. Microbiol. 9:2766
    [Google Scholar]
  155. 155. 
    Park J, Wetzel I, Marriott I, Dréau D, D'Avanzo C et al. 2018. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer's disease. Nat. Neurosci. 21:7941–51
    [Google Scholar]
  156. 156. 
    Tang M, Xie Q, Gimple RC, Zhong Z, Tam T et al. 2020. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Res 30:833–53
    [Google Scholar]
  157. 157. 
    Hermida MA, Kumar JD, Schwarz D, Laverty KG, Di Bartolo A et al. 2020. Three dimensional in vitro models of cancer: bioprinting multilineage glioblastoma models. Adv. Biol. Regul. 75:100658
    [Google Scholar]
  158. 158. 
    Nature Immunology 2015. The lungs at the frontlines of immunity. Nat. Immunol 16:117
    [Google Scholar]
  159. 159. 
    Henjakovic M, Sewald K, Switalla S, Kaiser D, Müller M et al. 2008. Ex vivo testing of immune responses in precision-cut lung slices. Toxicol. Appl. Pharmacol. 231:168–76
    [Google Scholar]
  160. 160. 
    Kretschmer S, Dethlefsen I, Hagner-Benes S, Marsh LM, Garn H, König P. 2013. Visualization of intrapulmonary lymph vessels in healthy and inflamed murine lung using CD90/Thy-1 as a marker. PLOS ONE 8:2e55201
    [Google Scholar]
  161. 161. 
    Lyons-Cohen MR, Thomas SY, Cook DN, Nakano H. 2017. Precision-cut mouse lung slices to visualize live pulmonary dendritic cells. J. Vis. Exp. 122:e55465
    [Google Scholar]
  162. 162. 
    Neuhaus V, Schaudien D, Golovina T, Temann U-A, Thompson C et al. 2017. Assessment of long-term cultivated human precision-cut lung slices as an ex vivo system for evaluation of chronic cytotoxicity and functionality. J. Occup. Med. Toxicol. 12:113
    [Google Scholar]
  163. 163. 
    Temann A, Golovina T, Neuhaus V, Thompson C, Chichester JA et al. 2017. Evaluation of inflammatory and immune responses in long-term cultured human precision-cut lung slices. Hum. Vaccines Immunother. 13:2351–58
    [Google Scholar]
  164. 164. 
    Delgado-Ortega M, Melo S, Punyadarsaniya D, Ramé C, Olivier M et al. 2014. Innate immune response to a H3N2 subtype swine influenza virus in newborn porcine trachea cells, alveolar macrophages, and precision-cut lung slices. Vet. Res. 45:142
    [Google Scholar]
  165. 165. 
    Neuhaus V, Schwarz K, Klee A, Seehase S, Förster C et al. 2013. Functional testing of an inhalable nanoparticle based influenza vaccine using a human precision cut lung slice technique. PLOS ONE 8:8e71728
    [Google Scholar]
  166. 166. 
    Neuhaus V, Chichester JA, Ebensen T, Schwarz K, Hartman CE et al. 2014. A new adjuvanted nanoparticle-based H1N1 influenza vaccine induced antigen-specific local mucosal and systemic immune responses after administration into the lung. Vaccine 32:263216–22
    [Google Scholar]
  167. 167. 
    Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. 2010. Reconstituting organ-level lung functions on a chip. Science 328:59861662–68
    [Google Scholar]
  168. 168. 
    Stucki AO, Stucki JD, Hall SRR, Felder M, Mermoud Y et al. 2015. A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip 15:51302–10
    [Google Scholar]
  169. 169. 
    Rothen-Rutishauser BM, Kiama SG, Gehr P. 2005. A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am. J. Respir. Cell Mol. Biol. 32:4281–89
    [Google Scholar]
  170. 170. 
    Klein SG, Serchi T, Hoffmann L, Blömeke B, Gutleb AC. 2013. An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung. Part. Fibre Toxicol. 10:131
    [Google Scholar]
  171. 171. 
    Brandenberger C, Rothen-Rutishauser B, Mühlfeld C, Schmid O, Ferron GA et al. 2010. Effects and uptake of gold nanoparticles deposited at the air-liquid interface of a human epithelial airway model. Toxicol. Appl. Pharmacol. 242:156–65
    [Google Scholar]
  172. 172. 
    Harrington H, Cato P, Salazar F, Wilkinson M, Knox A et al. 2014. Immunocompetent 3D model of human upper airway for disease modeling and in vitro drug evaluation. Mol. Pharm. 11:72082–91
    [Google Scholar]
  173. 173. 
    Han Y, Yang L, Duan X, Duan F, Nilsson-Payant BE et al. 2020. Identification of candidate COVID-19 therapeutics using hPSC-derived lung organoids. bioRxiv 079095. https://doi.org/10.1101/2020.05.05.079095
    [Crossref]
  174. 174. 
    Suzuki T, Itoh Y, Sakai Y, Saito A, Okuzaki D et al. 2020. Generation of human bronchial organoids for SARS-CoV-2 research. bioRxiv 115600. https://doi.org/10.1101/2020.05.25.115600
    [Crossref]
  175. 175. 
    Luque-González MA, Reis RL, Kundu SC, Caballero D. 2020. Human microcirculation-on-chip models in cancer research: key integration of lymphatic and blood vasculatures. Adv. Biosyst. 4:72000045
    [Google Scholar]
  176. 176. 
    Sato M, Sasaki N, Ato M, Hirakawa S, Sato K, Sato K. 2015. Microcirculation-on-a-chip: a microfluidic platform for assaying blood- and lymphatic-vessel permeability. PLOS ONE 10:9e0137301
    [Google Scholar]
  177. 177. 
    Srigunapalan S, Lam C, Wheeler AR, Simmons CA. 2011. A microfluidic membrane device to mimic critical components of the vascular microenvironment. Biomicrofluidics 5:1013409
    [Google Scholar]
  178. 178. 
    Kim SK, Moon WK, Park JY, Jung H. 2012. Inflammatory mimetic microfluidic chip by immobilization of cell adhesion molecules for T cell adhesion. Analyst 137:174062–68
    [Google Scholar]
  179. 179. 
    Zhang B, Peticone C, Murthy SK, Radisic M. 2013. A standalone perfusion platform for drug testing and target validation in micro-vessel networks. Biomicrofluidics 7:4044125
    [Google Scholar]
  180. 180. 
    Wu X, Newbold MA, Gao Z, Haynes CL. 2017. A versatile microfluidic platform for the study of cellular interactions between endothelial cells and neutrophils. Biochim. Biophys. Acta Gen. Subj. 1861:51122–30
    [Google Scholar]
  181. 181. 
    Moore EM, West JL. 2019. Harnessing macrophages for vascularization in tissue engineering. Ann. Biomed. Eng. 47:2354–65
    [Google Scholar]
  182. 182. 
    Graney PL, Ben-Shaul S, Landau S, Bajpai A, Singh B et al. 2020. Macrophages of diverse phenotypes drive vascularization of engineered tissues. Sci. Adv. 6:18eaay6391
    [Google Scholar]
  183. 183. 
    Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR et al. 2014. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35:154477–88
    [Google Scholar]
  184. 184. 
    Lurier EB, Dalton D, Dampier W, Raman P, Nassiri S et al. 2017. Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing. Immunobiology 222:7847–56
    [Google Scholar]
  185. 185. 
    Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. 1998. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Investig. 101:4890–98
    [Google Scholar]
  186. 186. 
    Ronaldson-Bouchard K, Vunjak-Novakovic G. 2018. Organs-on-a-chip: a fast track for engineered human tissues in drug development. Cell Stem Cell 22:310–24
    [Google Scholar]
  187. 187. 
    Vardhana SA, Wolchok JD 2020. The many faces of the anti-COVID immune response. J. Exp. Med 217:6e20200678
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-082420-124920
Loading
/content/journals/10.1146/annurev-bioeng-082420-124920
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error