1932

Abstract

Silk fibers, which are protein-based biopolymers produced by spiders and silkworms, are fascinating biomaterials that have been extensively studied for numerous biomedical applications. Silk fibers often have remarkable physical and biological properties that typical synthetic materials do not exhibit. These attributes have prompted a wide variety of silk research, including genetic engineering, biotechnological synthesis, and bioinspired fiber spinning, to produce silk proteins on a large scale and to further enhance their properties. In this review, we describe the basic properties of spider silk and silkworm silk and the important production methods for silk proteins. We discuss recent advances in reinforced silk using silkworm transgenesis and functional additive diets with a focus on biomedical applications. We also explain that reinforced silk has an analogy with metamaterials such that user-designed atypical responses can be engineered beyond what naturally occurring materials offer. These insights into reinforced silk can guide better engineering of superior synthetic biomaterials and lead to discoveries of unexplored biological and medical applications of silk.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-082719-032747
2020-06-04
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/22/1/annurev-bioeng-082719-032747.html?itemId=/content/journals/10.1146/annurev-bioeng-082719-032747&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL et al. 2003. Silk-based biomaterials. Biomaterials 24:401–16
    [Google Scholar]
  2. 2. 
    Hardy JG, Romer LM, Scheibel TR 2008. Polymeric materials based on silk proteins. Polymer 49:4309–27
    [Google Scholar]
  3. 3. 
    Vollrath F, Porter D. 2009. Silks as ancient models for modern polymers. Polymer 50:5623–32
    [Google Scholar]
  4. 4. 
    Omenetto FG, Kaplan DL. 2010. New opportunities for an ancient material. Science 329:528–31
    [Google Scholar]
  5. 5. 
    Rockwood DN, Preda RC, Yucel T, Wang XQ, Lovett ML, Kaplan DL 2011. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6:1612–31
    [Google Scholar]
  6. 6. 
    Joseph B, Raj SJ. 2012. Therapeutic applications and properties of silk proteins from Bombyx mori. Front. . Life Sci 6:55–60
    [Google Scholar]
  7. 7. 
    Tao H, Kaplan DL, Omenetto FG 2012. Silk materials—a road to sustainable high technology. Adv. Mater. 24:2824–37
    [Google Scholar]
  8. 8. 
    Kasoju N, Bora U. 2012. Silk fibroin in tissue engineering. Adv. Healthc. Mater. 1:393–412
    [Google Scholar]
  9. 9. 
    Partlow BP, Hanna CW, Rnjak-Kovacina J, Moreau JE, Applegate MB et al. 2014. Highly tunable elastomeric silk biomaterials. Adv. Funct. Mater. 24:4615–24
    [Google Scholar]
  10. 10. 
    Brooks AE. 2015. The potential of silk and silk-like proteins as natural mucoadhesive biopolymers for controlled drug delivery. Front. Chem. 3:65
    [Google Scholar]
  11. 11. 
    Koh LD, Cheng Y, Teng CP, Khin YW, Loh XJ et al. 2015. Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci. 46:86–110
    [Google Scholar]
  12. 12. 
    Thurber AE, Omenetto FG, Kaplan DL 2015. In vivo bioresponses to silk proteins. Biomaterials 71:145–57
    [Google Scholar]
  13. 13. 
    Lefevre T, Auger M. 2016. Spider silk as a blueprint for greener materials: a review. Int. Mater. Rev. 61:127–53
    [Google Scholar]
  14. 14. 
    Floren M, Migliaresi C, Motta A 2016. Processing techniques and applications of silk hydrogels in bioengineering. J. Funct. Biomater. 7:26
    [Google Scholar]
  15. 15. 
    Marelli B, Brenckle MA, Kaplan DL, Omenetto FG 2016. Silk fibroin as edible coating for perishable food preservation. Sci. Rep. 6:25263
    [Google Scholar]
  16. 16. 
    Deptuch T, Dams-Kozlowska H. 2017. Silk materials functionalized via genetic engineering for biomedical applications. Materials 10:1417
    [Google Scholar]
  17. 17. 
    Tran SH, Wilson CG, Seib FP 2018. A review of the emerging role of silk for the treatment of the eye. Pharm. Res. 35:248
    [Google Scholar]
  18. 18. 
    Choi SH, Kim SW, Ku Z, Visbal Onufrak MA, Kim SR et al. 2018. Anderson light localization in biological nanostructures of native silk. Nat. Commun. 9:452
    [Google Scholar]
  19. 19. 
    Shi NN, Tsai CC, Carter MJ, Mandal J, Overvig AC et al. 2018. Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization. Light-Sci. Appl. 7:37
    [Google Scholar]
  20. 20. 
    Holland C, Numata K, Rnjak-Kovacina J, Seib FP 2019. The biomedical use of silk: past, present, future. Adv. Healthc. Mater. 8:201800465
    [Google Scholar]
  21. 21. 
    Fan SN, Zhang Y, Huang XY, Geng LH, Shao HL et al. 2019. Silk materials for medical, electronic and optical applications. Sci. China Technol. Sci. 62:903–18
    [Google Scholar]
  22. 22. 
    Romer L, Scheibel T. 2008. The elaborate structure of spider silk: structure and function of a natural high performance fiber. Prion 2:154–61
    [Google Scholar]
  23. 23. 
    Lin S, Ryu S, Tokareva O, Gronau G, Jacobsen MM et al. 2015. Predictive modelling–based design and experiments for synthesis and spinning of bioinspired silk fibres. Nat. Commun. 6:6892
    [Google Scholar]
  24. 24. 
    Winkler S, Kaplan DL. 2000. Molecular biology of spider silk. Rev. Mol. Biotechnol. 74:85–93
    [Google Scholar]
  25. 25. 
    Hinman MB, Jones JA, Lewis RV 2000. Synthetic spider silk: a modular fiber. Trends Biotechnol 18:374–79
    [Google Scholar]
  26. 26. 
    Scheibel T. 2004. Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb. Cell Factor. 3:14
    [Google Scholar]
  27. 27. 
    Saravanan D. 2006. Spider silk—structure, properties and spinning. J. Text. Appar. Technol. Manag. 5:1–20
    [Google Scholar]
  28. 28. 
    Sponner A. 2007. Spider silk as a resource for future biotechnologies. Entomol. Res. 37:238–50
    [Google Scholar]
  29. 29. 
    Vendrely C, Scheibel T. 2007. Biotechnological production of spider-silk proteins enables new applications. Macromol. Biosci. 7:401–9
    [Google Scholar]
  30. 30. 
    Vepari C, Kaplan DL. 2007. Silk as a biomaterial. Prog. Polym. Sci. 32:991–1007
    [Google Scholar]
  31. 31. 
    Zhang XH, Reagan MR, Kaplan DL 2009. Electrospun silk biomaterial scaffolds for regenerative medicine. Adv. Drug Deliv. Rev. 61:988–1006
    [Google Scholar]
  32. 32. 
    Numata K, Kaplan DL. 2010. Silk-based delivery systems of bioactive molecules. Adv. Drug Deliv. Rev. 62:1497–508
    [Google Scholar]
  33. 33. 
    Leal-Egana A, Scheibel T. 2010. Silk-based materials for biomedical applications. Biotechnol. Appl. Biochem. 55:155–67
    [Google Scholar]
  34. 34. 
    Humenik M, Smith AM, Scheibel T 2011. Recombinant spider silks—biopolymers with potential for future applications. Polymers 3:640–61
    [Google Scholar]
  35. 35. 
    Widhe M, Johansson J, Hedhammar M, Rising A 2012. Current progress and limitations of spider silk for biomedical applications. Biopolymers 97:468–78
    [Google Scholar]
  36. 36. 
    Rising A, Widhe M, Johansson J, Hedhammar M 2011. Spider silk proteins: recent advances in recombinant production, structure–function relationships and biomedical applications. Cell. Mol. Life Sci. 68:169–84
    [Google Scholar]
  37. 37. 
    Wenk E, Merkle HP, Meinel L 2011. Silk fibroin as a vehicle for drug delivery applications. J. Control. Release 150:128–41
    [Google Scholar]
  38. 38. 
    Chung H, Kim TY, Lee SY 2012. Recent advances in production of recombinant spider silk proteins. Curr. Opin. Biotechnol. 23:957–64
    [Google Scholar]
  39. 39. 
    Tansil NC, Koh LD, Han MY 2012. Functional silk: colored and luminescent. Adv. Mater. 24:1388–97
    [Google Scholar]
  40. 40. 
    Meinel L, Kaplan DL. 2012. Silk constructs for delivery of musculoskeletal therapeutics. Adv. Drug Deliv. Rev. 64:1111–22
    [Google Scholar]
  41. 41. 
    Pritchard EM, Dennis PB, Omenetto F, Naik RR, Kaplan DL 2012. Physical and chemical aspects of stabilization of compounds in silk. Biopolymers 97:479–98
    [Google Scholar]
  42. 42. 
    Seib FP, Kaplan DL. 2013. Silk for drug delivery applications: opportunities and challenges. Isr. J. Chem. 53:756–66
    [Google Scholar]
  43. 43. 
    Kundu B, Rajkhowa R, Kundu SC, Wang XG 2013. Silk fibroin biomaterials for tissue regenerations. Adv. Drug Deliv. Rev. 65:457–70
    [Google Scholar]
  44. 44. 
    Tokareva O, Michalczechen-Lacerda VA, Rech EL, Kaplan DL 2013. Recombinant DNA production of spider silk proteins. Microb. Biotechnol. 6:651–63
    [Google Scholar]
  45. 45. 
    Schacht K, Scheibel T. 2014. Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications. Curr. Opin. Biotechnol. 29:62–69
    [Google Scholar]
  46. 46. 
    Kundu B, Kurland NE, Bano S, Patra C, Engel FB et al. 2014. Silk proteins for biomedical applications: bioengineering perspectives. Prog. Polym. Sci. 39:251–67
    [Google Scholar]
  47. 47. 
    Yucel T, Lovett ML, Keplan DL 2014. Silk-based biomaterials for sustained drug delivery. J. Control. Release 190:381–97
    [Google Scholar]
  48. 48. 
    Chen Y, Zheng YM. 2014. Bioinspired micro-/nanostructure fibers with a water collecting property. Nanoscale 6:7703–14
    [Google Scholar]
  49. 49. 
    Li G, Li Y, Chen GQ, He JH, Han YF et al. 2015. Silk-based biomaterials in biomedical textiles and fiber-based implants. Adv. Healthc. Mater. 4:1134–51
    [Google Scholar]
  50. 50. 
    Jastrzebska K, Kucharczyk K, Florczak A, Dondajewska E, Mackiewicz A et al. 2015. Silk as an innovative biomaterial for cancer therapy. Rep. Pract. Oncol. Radiother. 20:87–98
    [Google Scholar]
  51. 51. 
    Mottaghitalab F, Farokhi M, Shokrgozar MA, Atyabi F, Hosseinkhani H 2015. Silk fibroin nanoparticle as a novel drug delivery system. J. Control. Release 206:161–76
    [Google Scholar]
  52. 52. 
    Zhao Z, Li Y, Xie MB 2015. Silk fibroin–based nanoparticles for drug delivery. Int. J. Mol. Sci. 16:4880–903
    [Google Scholar]
  53. 53. 
    Mottaghitalab F, Hosseinkhani H, Shokrgozar MA, Mao CB, Yang MY, Farokhi M 2015. Silk as a potential candidate for bone tissue engineering. J. Control. Release 215:112–28
    [Google Scholar]
  54. 54. 
    Yigit S, Dinjaski N, Kaplan DL 2016. Fibrous proteins: at the crossroads of genetic engineering and biotechnological applications. Biotechnol. Bioeng. 113:913–29
    [Google Scholar]
  55. 55. 
    Su I, Buehler MJ. 2016. Nanomechanics of silk: the fundamentals of a strong, tough and versatile material. Nanotechnology 27:302001
    [Google Scholar]
  56. 56. 
    Kapoor S, Kundu SC. 2016. Silk protein–based hydrogels: promising advanced materials for biomedical applications. Acta Biomater 31:17–32
    [Google Scholar]
  57. 57. 
    Konwarh R, Gupta P, Mandal BB 2016. Silk-microfluidics for advanced biotechnological applications: a progressive review. Biotechnol. Adv. 34:845–58
    [Google Scholar]
  58. 58. 
    Zhu BW, Wang H, Leow WR, Cai YR, Loh XJ et al. 2016. Silk fibroin for flexible electronic devices. Adv. Mater. 28:4250–65
    [Google Scholar]
  59. 59. 
    Mirjalili M, Zohoori S. 2016. Review for application of electrospinning and electrospun nanofibers technology in textile industry. J. Nanostruct. Chem. 6:207–13
    [Google Scholar]
  60. 60. 
    Midha S, Murab S, Ghosh S 2016. Osteogenic signaling on silk-based matrices. Biomaterials 97:133–53
    [Google Scholar]
  61. 61. 
    Abbott RD, Kimmerling EP, Cairns DM, Kaplan DL 2016. Silk as a biomaterial to support long-term three-dimensional tissue cultures. ACS Appl. Mater. Interfaces 8:21861–68
    [Google Scholar]
  62. 62. 
    Jao D, Mou X, Hu X 2016. Tissue regeneration: a silk road. J. Funct. Biomater. 7:22
    [Google Scholar]
  63. 63. 
    Cheng J, Lee SH. 2016. Development of new smart materials and spinning systems inspired by natural silks and their applications. Front. Mater. 2:74
    [Google Scholar]
  64. 64. 
    Koeppel A, Holland C. 2017. Progress and trends in artificial silk spinning: a systematic review. ACS Biomater. Sci. Eng. 3:226–37
    [Google Scholar]
  65. 65. 
    Bhattacharjee P, Kundu B, Naskar D, Kim HW, Maiti TK et al. 2017. Silk scaffolds in bone tissue engineering: an overview. Acta Biomater 63:1–17
    [Google Scholar]
  66. 66. 
    Liu Q, Liu HF, Fan YB 2017. Preparation of silk fibroin carriers for controlled release. Microsc. Res. Tech. 80:312–20
    [Google Scholar]
  67. 67. 
    Qi Y, Wang H, Wei K, Yang Y, Zheng RY et al. 2017. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int. J. Mol. Sci. 18:237
    [Google Scholar]
  68. 68. 
    Blamires SJ, Blackledge TA, Tso IM 2017. Physicochemical property variation in spider silk: ecology, evolution, and synthetic production. Annu. Rev. Entomol. 62:443–60
    [Google Scholar]
  69. 69. 
    Cao K, Liu Y, Ramakrishna S 2017. Recent developments in regenerated silk fiber. J. Nanosci. Nanotechnol. 17:8667–82
    [Google Scholar]
  70. 70. 
    Huang WW, Ling SJ, Li CM, Omenetto FG, Kaplan DL 2018. Silkworm silk–based materials and devices generated using bio-nanotechnology. Chem. Soc. Rev. 47:6486–504
    [Google Scholar]
  71. 71. 
    Chen JM, Venkatesan H, Hu JL 2018. Chemically modified silk proteins. Adv. Eng. Mater. 20:1700961
    [Google Scholar]
  72. 72. 
    Zhou ZT, Zhang SQ, Cao YT, Marelli B, Xia XX, Tao TH 2018. Engineering the future of silk materials through advanced manufacturing. Adv. Mater. 30:1706983
    [Google Scholar]
  73. 73. 
    Chawla S, Midha S, Sharma A, Ghosh S 2018. Silk-based bioinks for 3D bioprinting. Adv. Healthc. Mater. 7:1701204
    [Google Scholar]
  74. 74. 
    Farokhi M, Mottaghitalab F, Fatahi Y, Khademhosseini A, Kaplan DL 2018. Overview of silk fibroin use in wound dressings. Trends Biotechnol 36:907–22
    [Google Scholar]
  75. 75. 
    Crivelli B, Perteghella S, Bari E, Sorrenti M, Tripodo G et al. 2018. Silk nanoparticles: from inert supports to bioactive natural carriers for drug delivery. Soft Matter 14:546–57
    [Google Scholar]
  76. 76. 
    Koh LD, Yeo J, Lee YY, Ong Q, Han MY, Tee BCK 2018. Advancing the frontiers of silk fibroin protein–based materials for futuristic electronics and clinical wound-healing. Mater. Sci. Eng. C 86:151–72
    [Google Scholar]
  77. 77. 
    Cheng G, Davoudi Z, Xing X, Yu X, Cheng X et al. 2018. Advanced silk fibroin biomaterials for cartilage regeneration. ACS Biomater. Sci. Eng. 4:2704–15
    [Google Scholar]
  78. 78. 
    Fazal N, Latief N. 2018. Bombyx mori derived scaffolds and their use in cartilage regeneration: a systematic review. Osteoarthr. Cartil. 26:1583–94
    [Google Scholar]
  79. 79. 
    Pérez-Rigueiro J, Madurga R, Gañán-Calvo AM, Plaza GR, Elices M et al. 2018. Straining flow spinning of artificial silk fibers: a review. Biomimetics 3:29
    [Google Scholar]
  80. 80. 
    Saric M, Scheibel T. 2019. Engineering of silk proteins for materials applications. Curr. Opin. Biotechnol. 60:213–20
    [Google Scholar]
  81. 81. 
    Barreiro DL, Yeo JJ, Tarakanova A, Martin-Martinez FJ, Buehler MJ 2019. Multiscale modeling of silk and silk-based biomaterials—a review. Macromol. Biosci. 19:1800253
    [Google Scholar]
  82. 82. 
    Liu L, Zhang S, Huang JY 2019. Progress in modification of silk fibroin fiber. Sci. China Technol. Sci. 62:919–30
    [Google Scholar]
  83. 83. 
    Katashima T, Malay AD, Numata K 2019. Chemical modification and biosynthesis of silk-like polymers. Curr. Opin. Chem. Eng. 24:61–68
    [Google Scholar]
  84. 84. 
    Mehrotra S, Chouhan D, Konwarh R, Kumar M, Jadi PK, Manda BB 2019. Comprehensive review on silk at nanoscale for regenerative medicine and allied applications. ACS Biomater. Sci. Eng. 5:2054–78
    [Google Scholar]
  85. 85. 
    Wang QS, Han GC, Yan SQ, Zhang Q 2019. 3D printing of silk fibroin for biomedical applications. Materials 12:504
    [Google Scholar]
  86. 86. 
    Xu ZP, Shi LY, Yang MY, Zhu LJ 2019. Preparation and biomedical applications of silk fibroin-nanoparticles composites with enhanced properties—a review. Mater. Sci. Eng. C 95:302–11
    [Google Scholar]
  87. 87. 
    Ebrahimi D, Tokareva O, Rim NG, Wong JY, Kaplan DL, Buehler MJ 2015. Silk—its mysteries, how it is made, and how it is used. ACS Biomater. Sci. Eng. 1:864–76
    [Google Scholar]
  88. 88. 
    Capperauld I. 1989. Suture materials: a review. Clin. Mater. 4:3–12
    [Google Scholar]
  89. 89. 
    Ling S, Qin Z, Li C, Huang W, Kaplan DL, Buehler MJ 2017. Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat. Commun. 8:1387
    [Google Scholar]
  90. 90. 
    Fei X, Jia MH, Du X, Yang YH, Zhang R et al. 2013. Green synthesis of silk fibroin–silver nanoparticle composites with effective antibacterial and biofilm-disrupting properties. Biomacromolecules 14:4483–88
    [Google Scholar]
  91. 91. 
    Valentini L, Bon SB, Tripathi M, Dalton A, Pugno NM 2019. Regenerated silk and carbon nanotubes dough as masterbatch for high content filled nanocomposites. Front. Mater. 6:60
    [Google Scholar]
  92. 92. 
    Elakkiya T, Malarvizhi G, Rajiv S, Natarajan TS 2014. Curcumin loaded electrospun Bombyx mori silk nanofibers for drug delivery. Polym. Int. 63:100–5
    [Google Scholar]
  93. 93. 
    Xu KZ, Li FC, Ma L, Wang BB, Zhang H et al. 2015. Mechanism of enhanced Bombyx mori nucleopolyhedrovirus resistance by titanium dioxide nanoparticles in silkworm. PLOS ONE 10:e0118222
    [Google Scholar]
  94. 94. 
    Cao Y, Wang BC. 2009. Biodegradation of silk biomaterials. Int. J. Mol. Sci. 10:1514–24
    [Google Scholar]
  95. 95. 
    Leem JW, Kim MS, Choi SH, Kim SR, Kim SW et al. 2020. Edible unclonable functions. Nat. Commun. 11:328
    [Google Scholar]
  96. 96. 
    Tomita M. 2011. Transgenic silkworms that weave recombinant proteins into silk cocoons. Biotechnol. Lett. 33:645–54
    [Google Scholar]
  97. 97. 
    Mabashi-Asazuma H, Sohn BH, Kim YS, Kuo CW, Khoo KH et al. 2015. Targeted glycoengineering extends the protein N-glycosylation pathway in the silkworm silk gland. Insect Biochem. Mol. Biol. 65:20–27
    [Google Scholar]
  98. 98. 
    Qian QJ, You ZY, Ye LP, Che JQ, Wang YR et al. 2018. High-efficiency production of human serum albumin in the posterior silk glands of transgenic silkworms, Bombyx mori L. PLOS ONE 13:0159111
    [Google Scholar]
  99. 99. 
    Chen WJ, Wang F, Tian C, Wang YC, Xu S et al. 2018. Transgenic silkworm–based silk gland bioreactor for large scale production of bioactive human platelet-derived growth factor (PDGF-BB) in silk cocoons. Int. J. Mol. Sci. 19:2533
    [Google Scholar]
  100. 100. 
    Tamura T, Thibert C, Royer C, Kanda T, Abraham E et al. 2000. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat. Biotechnol. 18:81–84
    [Google Scholar]
  101. 101. 
    Xing R, Chen XD, Zhou YF, Zhang J, Su YY et al. 2016. Targeting and retention enhancement of quantum dots decorated with amino acids in an invertebrate model organism. Sci. Rep. 6:19802
    [Google Scholar]
  102. 102. 
    Wang Q, Wang CY, Zhang MC, Jian MQ, Zhang YY 2016. Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett 16:6695–700
    [Google Scholar]
  103. 103. 
    Cai LY, Shao HL, Hu XC, Zhang YP 2015. Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles. ACS Sustain. Chem. Eng. 3:2551–57
    [Google Scholar]
  104. 104. 
    Tansil NC, Li Y, Teng CP, Zhang SY, Win KY et al. 2011. Intrinsically colored and luminescent silk. Adv. Mater. 23:1463–66
    [Google Scholar]
  105. 105. 
    Ma L, Akurugu MA, Andoh V, Liu HY, Song JC et al. 2019. Intrinsically reinforced silks obtained by incorporation of graphene quantum dots into silkworms. Sci. China Mater. 62:245–55
    [Google Scholar]
  106. 106. 
    Shimizu K. 2018. Genetic engineered color silk: fabrication of a photonics material through a bioassisted technology. Bioinspir. Biomim. 13:041003
    [Google Scholar]
  107. 107. 
    Zhu SN, Zhang X. 2018. Metamaterials: artificial materials beyond nature. Natl. Sci. Rev. 5:131
    [Google Scholar]
  108. 108. 
    Kadic M, Milton GW, Hecke M, Wegener M 2019. 3D metamaterials. Nat. Rev. Phys. 1:198–210
    [Google Scholar]
  109. 109. 
    Urbas AM, Jacob Z, Dal Negro L, Engheta N, Boardman AD et al. 2016. Roadmap on optical metamaterials. J. Opt. 18:093005
    [Google Scholar]
  110. 110. 
    Tretyakov S, Urbas A, Zheludev N 2017. The century of metamaterials. J. Opt. 19:080404
    [Google Scholar]
  111. 111. 
    Bertoldi K, Vitelli V, Christensen J, van Hecke M 2017. Flexible mechanical metamaterials. Nat. Rev. Mater. 2:17066
    [Google Scholar]
  112. 112. 
    Surjadi JU, Gao LB, Du HF, Li X, Xiong X et al. 2019. Mechanical metamaterials and their engineering applications. Adv. Eng. Mater. 21:1800864
    [Google Scholar]
  113. 113. 
    Smith DR, Pendry JB, Wiltshire MCK 2004. Metamaterials and negative refractive index. Science 305:788–92
    [Google Scholar]
  114. 114. 
    Yarger JL, Cherry BR, van der Vaart A 2018. Uncovering the structure–function relationship in spider silk. Nat. Rev. 3:18008–10
    [Google Scholar]
  115. 115. 
    Vollrath F, Knight DP. 2001. Liquid crystalline spinning of spider silk. Nature 410:541–48
    [Google Scholar]
  116. 116. 
    Lewis RV. 2006. Spider silk: ancient ideas for new biomaterials. Chem. Rev. 106:3762–74
    [Google Scholar]
  117. 117. 
    Gosline JM, Guerette PA, Ortlepp CS, Savage KN 1999. The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202:3295–303
    [Google Scholar]
  118. 118. 
    Eisoldt L, Smith A, Scheibel T 2011. Decoding the secrets of spider silk. Mater. Today 14:80–86
    [Google Scholar]
  119. 119. 
    Keten S, Xu Z, Ihle B, Buehler MJ 2010. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 9:359–67
    [Google Scholar]
  120. 120. 
    Vehoff T, Glišović A, Schollmeyer H, Zippelius A, Salditt T 2007. Mechanical properties of spider dragline silk: humidity, hysteresis, and relaxation. Biophys. J. 93:4425–32
    [Google Scholar]
  121. 121. 
    Heidebrecht A, Eisoldt L, Diehl J, Schmidt A, Geffers M et al. 2015. Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk. Adv. Mater. 27:2189–94
    [Google Scholar]
  122. 122. 
    Jin HJ, Kaplan DL. 2003. Mechanism of silk processing in insects and spiders. Nature 424:1057–61
    [Google Scholar]
  123. 123. 
    Andersson M, Johansson J, Rising A 2016. Silk spinning in silkworms and spiders. Int. J. Mol. Sci. 17:1290
    [Google Scholar]
  124. 124. 
    Liu XF, Zhang KQ. 2014. Silk fiber—molecular formation mechanism, structure–property relationship and advanced applications. Oligomerization of Chemical and Biological CompoundsVol. 3:ed. C Lesieur69–102 Rijeka, Croat.: InTech
    [Google Scholar]
  125. 125. 
    Zhou CZ, Confalonieri F, Medina N, Zivanovic Y, Esnault C et al. 2000. Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res 28:2413–19
    [Google Scholar]
  126. 126. 
    Tanaka K, Kajiyama N, Ishikura K, Waga S, Kikuchi A et al. 1999. Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol 1432:92–103
    [Google Scholar]
  127. 127. 
    Wen HX, Lan XQ, Zhang YS, Zhao TF, Wang YJ et al. 2010. Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. Mol. Biol. Rep. 37:1815–21
    [Google Scholar]
  128. 128. 
    Nova A, Keten S, Pugno NM, Redaelli A, Buehler MJ 2010. Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett 10:2626–34
    [Google Scholar]
  129. 129. 
    Patel P. 2018. Mimicking spider silk. Sci. Am. 319:19
    [Google Scholar]
  130. 130. 
    Andersson M, Jia QP, Abella A, Lee XY, Landreh M et al. 2017. Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat. Chem. Biol. 13:262–64
    [Google Scholar]
  131. 131. 
    Teule F, Cooper AR, Furin WA, Bittencourt D, Rech EL et al. 2009. A protocol for the production of recombinant spider silk–like proteins for artificial fiber spinning. Nat. Protoc. 4:341–55
    [Google Scholar]
  132. 132. 
    Jansson R, Lau CH, Ishida T, Ramström M, Sandgren M, Hedhammar M 2016. Functionalized silk assembled from a recombinant spider silk fusion protein (Z-4RepCT) produced in the methylotrophic yeast Pichia pastoris. Biotechnol. J 11:687–99
    [Google Scholar]
  133. 133. 
    Zhang YS, Hu JH, Miao YG, Zhao AC, Zhao TF et al. 2008. Expression of EGFP-spider dragline silk fusion protein in BmN cells and larvae of silkworm showed the solubility is primary limit for dragline proteins yield. Mol. Biol. Rep. 35:329–35
    [Google Scholar]
  134. 134. 
    Huemmerich D, Scheibel T, Vollrath F, Cohen S, Gat U, Ittah S 2004. Novel assembly properties of recombinant spider dragline silk proteins. Curr. Biol. 14:2070–74
    [Google Scholar]
  135. 135. 
    Lazaris A, Arcidiacono S, Huang Y, Zhou JF, Duguay F et al. 2002. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295:472–76
    [Google Scholar]
  136. 136. 
    Hauptmann V, Weichert N, Menzel M, Knoch D, Paege N et al. 2013. Native-sized spider silk proteins synthesized in planta via intein-based multimerization. Transgenic Res 22:369–77
    [Google Scholar]
  137. 137. 
    Xu HT, Fan BL, Yu SY, Huang YH, Zhao ZH et al. 2007. Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice. Anim. Biotechnol. 18:1–12
    [Google Scholar]
  138. 138. 
    Williams D. 2003. Sows’ ears, silk purses and goats’ milk: new production methods and medical applications for silk. Med. Device Technol. 14:9–11
    [Google Scholar]
  139. 139. 
    Xu M, Lewis RV. 1990. Structure of a protein superfiber—spider dragline silk. PNAS 87:7120–24
    [Google Scholar]
  140. 140. 
    Hayashi CY, Lewis RV. 2000. Molecular architecture and evolution of a modular spider silk protein gene. Science 287:1477–79
    [Google Scholar]
  141. 141. 
    Hinman MB, Lewis RV. 1992. Isolation of a clone encoding a second dragline silk fibroin. J. Biol. Chem. 267:19320–24
    [Google Scholar]
  142. 142. 
    Hayashi CY, Shipley NH, Lewis RV 1999. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Biol. Macromol. 24:271–75
    [Google Scholar]
  143. 143. 
    Edlund AM, Jones J, Lewis R, Quinn JC 2018. Economic feasibility and environmental impact of synthetic spider silk production from Escherichia coli. . New Biotechnol 42:12–18
    [Google Scholar]
  144. 144. 
    Stephens JS, Fahnestock SR, Farmer RS, Kiick KL, Chase DB, Rabolt JF 2005. Effects of electrospinning and solution casting protocols on the secondary structure of a genetically engineered dragline spider silk analogue investigated via Fourier transform Raman spectroscopy. Biomacromolecules 6:1405–13
    [Google Scholar]
  145. 145. 
    Weatherbee-Martin N, Xu LL, Hupe A, Kreplak L, Fudge DS et al. 2016. Identification of wet-spinning and post-spin stretching methods amenable to recombinant spider aciniform silk. Biomacromolecules 17:2737–46
    [Google Scholar]
  146. 146. 
    Wei W, Zhang YP, Zhao YM, Luo J, Shao HL, Hu XC 2011. Bio-inspired capillary dry spinning of regenerated silk fibroin aqueous solution. Mater. Sci. Eng. C 31:1602–8
    [Google Scholar]
  147. 147. 
    Sun MJ, Zhang YP, Zhao YM, Shao HL, Hu XC 2012. The structure–property relationships of artificial silk fabricated by dry-spinning process. J. Mater. Chem. 22:18372–79
    [Google Scholar]
  148. 148. 
    Humenik M, Magdeburg M, Scheibel T 2014. Influence of repeat numbers on self-assembly rates of repetitive recombinant spider silk proteins. J. Struct. Biol. 186:431–37
    [Google Scholar]
  149. 149. 
    Rammensee S, Slotta U, Scheibel T, Bausch AR 2008. Assembly mechanism of recombinant spider silk proteins. PNAS 105:6590–95
    [Google Scholar]
  150. 150. 
    Wu HC, Quan DN, Tsao CY, Liu Y, Terrell JL et al. 2017. Conferring biological activity to native spider silk: a biofunctionalized protein-based microfiber. Biotechnol. Bioeng. 114:83–95
    [Google Scholar]
  151. 151. 
    Peng QF, Zhang YP, Lu L, Shao HL, Qin KK et al. 2016. Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip. Sci. Rep. 6:36473
    [Google Scholar]
  152. 152. 
    Thomas JL, Da Rocha M, Besse A, Mauchamp B, Chavancy G 2002. 3×P3-EGFP marker facilitates screening for transgenic silkworm Bombyx mori L. from the embryonic stage onwards. Insect Biochem. Mol. Biol. 32:247–53
    [Google Scholar]
  153. 153. 
    Tomita M, Munetsuna H, Sato T, Adachi T, Hino R et al. 2003. Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat. Biotechnol. 21:52–56
    [Google Scholar]
  154. 154. 
    Banno Y, Shimada T, Kajiura Z, Sezutsu H 2010. The silkworm—an attractive bioresource supplied by Japan. Exp. Anim. 59:139–46
    [Google Scholar]
  155. 155. 
    Royer C, Jalabert A, Da Rocha M, Grenier AM, Mauchamp B et al. 2005. Biosynthesis and cocoon—export of a recombinant globular protein in transgenic silkworms. Transgenic Res 14:463–72
    [Google Scholar]
  156. 156. 
    Kimoto M, Tsubota T, Uchino K, Sezutsu H, Takiya S 2014. Hox transcription factor Antp regulates sericin-1 gene expression in the terminal differentiated silk gland of Bombyx mori. Dev. . Biol 386:64–71
    [Google Scholar]
  157. 157. 
    Ye LP, Qian QJ, Zhang YY, You ZY, Che JQ et al. 2015. Analysis of the sericin1 promoter and assisted detection of exogenous gene expression efficiency in the silkworm Bombyx mori L. Sci. Rep. 5:8301
    [Google Scholar]
  158. 158. 
    Wang F, Wang RY, Wang YC, Zhao P, Xia QY 2015. Large-scale production of bioactive recombinant human acidic fibroblast growth factor in transgenic silkworm cocoons. Sci. Rep. 5:16323
    [Google Scholar]
  159. 159. 
    Iizuka M, Ogawa S, Takeuchi A, Nakakita S, Kubo Y et al. 2009. Production of a recombinant mouse monoclonal antibody in transgenic silkworm cocoons. FEBS J 276:5806–20
    [Google Scholar]
  160. 160. 
    Tada M, Tatematsu K, Ishii-Watabe A, Harazono A, Takakura D et al. 2015. Characterization of anti-CD20 monoclonal antibody produced by transgenic silkworms (Bombyx mori). mAbs 7:1138–50
    [Google Scholar]
  161. 161. 
    Leem JW, Park J, Kim SW, Kim SR, Choi SH et al. 2018. Green-light-activated photoreaction via genetic hybridization of far-red fluorescent protein and silk. Adv. Sci. 5:1700863
    [Google Scholar]
  162. 162. 
    Lepore E, Bosia F, Bonaccorso F, Bruna M, Taioli S et al. 2017. Spider silk reinforced by graphene or carbon nanotubes. 2D Mater 4:049501
    [Google Scholar]
  163. 163. 
    Xu H, Yi WH, Li DF, Zhang P, Yoo S et al. 2019. Obtaining high mechanical performance silk fibers by feeding purified carbon nanotube/lignosulfonate composite to silkworms. R. Soc. Chem. Adv. 9:3558–69
    [Google Scholar]
  164. 164. 
    Wang JT, Li LL, Zhang MY, Liu SL, Jiang LH, Shen Q 2014. Directly obtaining high strength silk fiber from silkworm by feeding carbon nanotubes. Mater. Sci. Eng. C 34:417–21
    [Google Scholar]
  165. 165. 
    Cheng L, Huang HM, Chen SY, Wang WL, Dai FY, Zhao HP 2017. Characterization of silkworm larvae growth and properties of silk fibres after direct feeding of copper or silver nanoparticles. Mater. Des. 129:125–34
    [Google Scholar]
  166. 166. 
    Guo ZH, Xie WS, Gao Q, Wang D, Gao F et al. 2018. In situ biomineralization by silkworm feeding with ion precursors for the improved mechanical properties of silk fiber. Int. J. Biol. Macromol. 109:21–26
    [Google Scholar]
  167. 167. 
    Nisal A, Trivedy K, Mohammad H, Panneri S, Sen Gupta S et al. 2014. Uptake of azo dyes into silk glands for production of colored silk cocoons using a green feeding approach. ACS Sustain. Chem. Eng. 2:312–17
    [Google Scholar]
  168. 168. 
    Iizuka T, Sezutsu H, Tatematsu K, Kobayashi I, Yonemura N et al. 2013. Colored fluorescent silk made by transgenic silkworms. Adv. Funct. Mater. 23:5232–39
    [Google Scholar]
  169. 169. 
    Kim DW, Lee OJ, Kim SW, Ki CS, Chao JR et al. 2015. Novel fabrication of fluorescent silk utilized in biotechnological and medical applications. Biomaterials 70:48–56
    [Google Scholar]
  170. 170. 
    Li XH, Burnight ER, Cooney AL, Malani N, Brady T et al. 2013. piggyBac transposase tools for genome engineering. PNAS 110:E2279–87
    [Google Scholar]
  171. 171. 
    Leem JW, Choi SH, Kim SR, Kim SW, Choi KH, Kim YL 2017. Scalable and continuous nanomaterial integration with transgenic fibers for enhanced photoluminescence. Mater. Horiz. 4:281–89
    [Google Scholar]
  172. 172. 
    Nagy A, Málnási-Csizmadia A, Somogyi B, Lőrinczy D 2004. Thermal stability of chemically denatured green fluorescent protein (GFP)—a preliminary study. Thermochim. Acta 410:161–63
    [Google Scholar]
  173. 173. 
    Alkaabi KM, Yafea A, Ashraf SS 2005. Effect of pH on thermal- and chemical-induced denaturation of GFP. Appl. Biochem. Biotechnol. 126:149–56
    [Google Scholar]
  174. 174. 
    Antonov L, Gergov G, Petrov V, Kubista M, Nygren J 1999. UV-vis spectroscopic and chemometric study on the aggregation of ionic dyes in water. Talanta 49:99–106
    [Google Scholar]
  175. 175. 
    Selwyn JE, Steinfel JI 1972. Aggregation equilibria of xanthene dyes. J. Phys. Chem. 76:762–74
    [Google Scholar]
  176. 176. 
    Kajiwara T, Chambers RW, Kearns DR 1973. Dimer spectra of rhodamine B. Chem. Phys. Lett. 22:37–40
    [Google Scholar]
  177. 177. 
    Ghasemi J, Niazi A, Kubista M 2005. Thermodynamics study of the dimerization equilibria of rhodamine B and 6G in different ionic strengths by photometric titration and chemometrics method. Spectrochim. Acta A 62:649–56
    [Google Scholar]
  178. 178. 
    Fraser MJ. 2000. The TTAA-specific family of transposable element: identification, functional characterization, and utility for transformation of insects. Transgenic Insects: Methods and Applications MQ Benedict 249–68 Orlando, FL: CRC
    [Google Scholar]
  179. 179. 
    Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E, Fraser MJ 1989. Transposon mutagenesis of baculoviruses—analysis of Trichoplusia ni transposon IFP2 insertions within the Fp-locus of nuclear polyhedrosis viruses. Virology 172:156–69
    [Google Scholar]
  180. 180. 
    Zhang XL, Xia LJ, Day BA, Harris TI, Oliveira P et al. 2019. CRISPR/Cas9 initiated transgenic silkworms as a natural spinner of spider silk. Biomacromolecules 20:2252–64
    [Google Scholar]
  181. 181. 
    Xu J, Dong QL, Yu Y, Niu BL, Ji DF et al. 2018. Mass spider silk production through targeted gene replacement in Bombyx mori. . PNAS 115:8757–62
    [Google Scholar]
  182. 182. 
    Kojima K, Kuwana Y, Sezutsu H, Kobayashi I, Uchino K et al. 2007. A new method for the modification of fibroin heavy chain protein in the transgenic silkworm. Biosci. Biotechnol. Biochem. 71:2943–51
    [Google Scholar]
  183. 183. 
    Kurihara H, Sezutsu H, Tamura T, Yamada K 2007. Production of an active feline interferon in the cocoon of transgenic silkworms using the fibroin H-chain expression system. Biochem. Biophys. Res. Commun. 355:976–80
    [Google Scholar]
  184. 184. 
    Yanagisawa S, Zhu ZH, Kobayashi I, Uchino K, Tamada Y et al. 2007. Improving cell-adhesive properties of recombinant Bombyx mori silk by incorporation of collagen or fibronectin derived peptides produced by transgenic silkworms. Biomacromolecules 8:3487–92
    [Google Scholar]
  185. 185. 
    Teule F, Furin WA, Cooper AR, Duncan JR, Lewis RV 2007. Modifications of spider silk sequences in an attempt to control the mechanical properties of the synthetic fibers. J. Mater. Sci. 42:8974–85
    [Google Scholar]
  186. 186. 
    Lewis RV, Hinman M, Kothakota S, Fournier MJ 1996. Expression and purification of a spider silk protein: a new strategy for producing repetitive proteins. Protein Expr. Purif. 7:400–6
    [Google Scholar]
  187. 187. 
    Pan H, Zhang YP, Shao HL, Hu XC, Li XH et al. 2014. Nanoconfined crystallites toughen artificial silk. J. Mater. Chem. B 2:1408–14
    [Google Scholar]
  188. 188. 
    Jung IY, Kang PD, Kim KY, Ryu KS, Sohn BH et al. 2007. Fabrication process of natural silk including Ag nano-particle. Korean J. Sericult. Sci. 49:24–27
    [Google Scholar]
  189. 189. 
    Gaillet S, Rouanet JM. 2015. Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms—a review. Food Chem. Toxicol. 77:58–63
    [Google Scholar]
  190. 190. 
    Prabhu S, Poulose EK. 2012. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2:32
    [Google Scholar]
  191. 191. 
    Chen L, Meng X, Gu J, Fan WQ, Abdili N et al. 2019. Silver nanoparticle toxicity in silkworms: omics technologies for a mechanistic understanding. Ecotoxicol. Environ. Saf. 172:388–95
    [Google Scholar]
  192. 192. 
    Dastjerdi R, Montazer M. 2010. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf. B 79:5–18
    [Google Scholar]
  193. 193. 
    Shahid-ul-Islam , Shahid M, Mohammad F 2013. Perspectives for natural product based agents derived from industrial plants in textile applications—a review. J. Clean. Prod. 57:2–18
    [Google Scholar]
  194. 194. 
    Tang B, Li JL, Hou XL, Afrin T, Sun L, Wang XG 2013. Colorful and antibacterial silk fiber from anisotropic silver nanoparticles. Ind. Eng. Chem. Res. 52:4556–63
    [Google Scholar]
  195. 195. 
    Li Z, Jiang Y, Cao GL, Li JZ, Xue RY, Gong CL 2015. Construction of transgenic silkworm spinning antibacterial silk with fluorescence. Mol. Biol. Rep. 42:19–25
    [Google Scholar]
  196. 196. 
    Saviane A, Romoli O, Bozzato A, Freddi G, Cappelletti C et al. 2018. Intrinsic antimicrobial properties of silk spun by genetically modified silkworm strains. Transgenic Res 27:87–101
    [Google Scholar]
  197. 197. 
    Leem JW, Kim SR, Choi KH, Kim YL 2018. Plasmonic photocatalyst-like fluorescent proteins for generating reactive oxygen species. Nano Converg 5:8
    [Google Scholar]
  198. 198. 
    Vegh RB, Solntsev KM, Kuimova MK, Cho S, Liang Y et al. 2011. Reactive oxygen species in photochemistry of the red fluorescent protein “Killer Red. Chem. Commun. 47:4887–89
    [Google Scholar]
  199. 199. 
    Strack RL, Strongin DE, Bhattacharyya D, Tao W, Berman A et al. 2008. A noncytotoxic DsRed variant for whole-cell labeling. Nat. Methods 5:955–57
    [Google Scholar]
  200. 200. 
    Strack RL, Hein B, Bhattacharyya D, Hell SW, Keenan RJ, Glick BS 2009. A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling. Biochemistry 48:8279–81
    [Google Scholar]
  201. 201. 
    Subach FV, Verkhusha VV. 2012. Chromophore transformations in red fluorescent proteins. Chem. Rev. 112:4308–27
    [Google Scholar]
  202. 202. 
    Pletnev S, Gurskaya NG, Pletneva NV, Lukyanov KA, Chudakov DM et al. 2009. Structural basis for phototoxicity of the genetically encoded photosensitizer KillerRed. J. Biol. Chem. 284:32028–39
    [Google Scholar]
  203. 203. 
    Choi JW, Nam YS, Lee WH, Kim D, Fujihira M 2001. Rectified photocurrent of the protein-based bio-photodiode. Appl. Phys. Lett. 79:1570–72
    [Google Scholar]
  204. 204. 
    Chirgwandi ZG, Panas I, Johansson LG, Norden B, Willander M et al. 2008. Properties of a biophotovoltaic nanodevice. J. Phys. Chem. C 112:18717–21
    [Google Scholar]
  205. 205. 
    Deepankumar K, George A, Priya GK, Ilamaran M, Kamini NR et al. 2017. Next generation designed protein as a photosensitizer for biophotovoltaics prepared by expanding the genetic code. ACS Sustain. Chem. Eng. 5:72–77
    [Google Scholar]
  206. 206. 
    Leem JW, Allcca AEL, Chen JJ, Kim SW, Kim KY et al. 2018. Visible light biophotosensors using biliverdin from Antheraea yamamai. Opt. . Express 26:31817–28
    [Google Scholar]
  207. 207. 
    Yeaman MR, Yount NY. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55:27–55
    [Google Scholar]
  208. 208. 
    Zhang LJ, Gallo RL. 2016. Antimicrobial peptides. Curr. Biol. 26:R14–19
    [Google Scholar]
  209. 209. 
    Teramoto H, Amano Y, Iraha F, Kojima K, Ito T, Sakamoto K 2018. Genetic code expansion of the silkworm Bombyx mori to functionalize silk fiber. ACS Synth. Biol. 7:801–6
    [Google Scholar]
  210. 210. 
    Lang K, Chin JW. 2014. Bioorthogonal reactions for labeling proteins. ACS Chem. Biol. 9:16–20
    [Google Scholar]
  211. 211. 
    Patterson DM, Nazarova LA, Prescher JA 2014. Finding the right (bioorthogonal) chemistry. ACS Chem. Biol. 9:592–605
    [Google Scholar]
  212. 212. 
    Silverberg JL, Evans AA, McLeod L, Hayward RC, Hull T et al. 2014. Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345:647–50
    [Google Scholar]
  213. 213. 
    Paulose J, Chen BGG, Vitelli V 2015. Topological modes bound to dislocations in mechanical metamaterials. Nat. Phys. 11:153–56
    [Google Scholar]
  214. 214. 
    Sengul H, Theis TL, Ghosh S 2008. Toward sustainable nanoproducts: an overview of nanomanufacturing methods. J. Ind. Ecol. 12:329–59
    [Google Scholar]
  215. 215. 
    Liddle JA, Gallatin GM. 2016. Nanomanufacturing: a perspective. ACS Nano 10:2995–3014
    [Google Scholar]
  216. 216. 
    Lambert N, Chen YN, Cheng YC, Li CM, Chen GY, Nori F 2013. Quantum biology. Nat. Phys. 9:10–18
    [Google Scholar]
  217. 217. 
    de la Lande A, Babcock NS, Rezac J, Levy B, Sanders BC, Salahub DR 2012. Quantum effects in biological electron transfer. Phys. Chem. Chem. Phys. 14:5902–18
    [Google Scholar]
  218. 218. 
    Winkler JR, Gray HB. 2014. Long-range electron tunneling. J. Am. Chem. Soc. 136:2930–39
    [Google Scholar]
  219. 219. 
    Bogdanov AM, Acharya A, Titelmayer AV, Mamontova AV, Bravaya KB et al. 2016. Turning on and off photoinduced electron transfer in fluorescent proteins by pi-stacking, halide binding, and Tyr145 mutations. J. Am. Chem. Soc. 138:4807–17
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-082719-032747
Loading
/content/journals/10.1146/annurev-bioeng-082719-032747
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error