1932

Abstract

Telemedicine is perhaps the most rapidly growing area in health care. Approximately 15 million Americans receive medical assistance remotely every year. Yet rural communities face significant challenges in securing subspecialist care. In the United States, 25% of the population resides in rural areas, where less than 15% of physicians work. Current surgery residency programs do not adequately prepare surgeons for rural practice. Telementoring, wherein a remote expert guides a less experienced caregiver, has been proposed to address this challenge. Nonetheless, existing mentoring technologies are not widely available to rural communities, due to a lack of infrastructure and mentor availability. For this reason, some clinicians prefer simpler and more reliable technologies. This article presents past and current telementoring systems, with a focus on rural settings, and proposes aset of requirements for such systems. We conclude with a perspective on the future of telementoring systems and the integration of artificial intelligence within those systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-083120-023315
2021-07-13
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/23/1/annurev-bioeng-083120-023315.html?itemId=/content/journals/10.1146/annurev-bioeng-083120-023315&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bath M, Bashford T, Fitzgerald JE. 2019. What is “global surgery”? Defining the multidisciplinary interface between surgery, anaesthesia and public health. BMJ Glob. Health 4:5e001808
    [Google Scholar]
  2. 2. 
    Farmer PE, Kim JY. 2008. Surgery and global health: a view from beyond the OR. World J. Surg. 32:4533–36
    [Google Scholar]
  3. 3. 
    Meara JG, Leather AJM, Hagander L, Alkire BC, Alonso N et al. 2015. Global Surgery 2030: evidence and solutions for achieving health, welfare, and economic development. Lancet 386:9993569–624
    [Google Scholar]
  4. 4. 
    Richardson JD. 2011. General surgeon shortage in the United States: fact or fiction, causes and consequences. Soc. Work Public Health 26:5513–23
    [Google Scholar]
  5. 5. 
    Ereso AQ, Garcia P, Tseng E, Gauger G, Kim H et al. 2010. Live transference of surgical subspecialty skills using telerobotic proctoring to remote general surgeons. J. Am. Coll. Surg. 211:3400–11
    [Google Scholar]
  6. 6. 
    Borman KR, Vick LR, Biester TW, Mitchell ME. 2008. Changing demographics of residents choosing fellowships: longterm data from the American Board of Surgery. J. Am. Coll. Surg. 206:5782–88
    [Google Scholar]
  7. 7. 
    Napolitano LM, Fulda GJ, Davis KA, Ashley DW, Friese R et al. 2010. Challenging issues in surgical critical care, trauma, and acute care surgery: a report from the Critical Care Committee of the American Association for the Surgery of Trauma. J. Trauma Inj. Infect. Crit. Care 69:61619–33
    [Google Scholar]
  8. 8. 
    Tulloh B, Clifforth S, Miller I. 2001. Caseload in rural general surgical practice and implications for training. ANZ J. Surg. 71:4215–17
    [Google Scholar]
  9. 9. 
    Randall T. 1993. Rural health care faces reform too; providers sow seeds for better future. JAMA 270:4419–21
    [Google Scholar]
  10. 10. 
    Rosenblatt RA. 1992. Which medical schools produce rural physicians?. JAMA 268:121559
    [Google Scholar]
  11. 11. 
    Zhou M, Tse S, Derevianko A, Jones DB, Schwaitzberg SD, Cao CGL. 2012. Effect of haptic feedback in laparoscopic surgery skill acquisition. Surg. Endosc. 26:41128–34
    [Google Scholar]
  12. 12. 
    Wang B, G, Patel AA, Ren P, Cheng I. 2011. An evaluation of the learning curve for a complex surgical technique: the full endoscopic interlaminar approach for lumbar disc herniations. Spine J 11:2122–30
    [Google Scholar]
  13. 13. 
    Bashshur RL. 1995. On the definition and evaluation of telemedicine. Telemed. J. 1:119–30
    [Google Scholar]
  14. 14. 
    Challacombe BJ, Kavoussi LR, Dasgupta P. 2003. Trans-oceanic telerobotic surgery. BJU Int 92:7678–80
    [Google Scholar]
  15. 15. 
    Agarwal R, Levinson AW, Allaf M, Makarov DV, Nason A, Su L-M. 2007. The RoboConsultant: telementoring and remote presence in the operating room during minimally invasive urologic surgeries using a novel mobile robotic interface. Urology 70:5970–74
    [Google Scholar]
  16. 16. 
    Pian L, Gillman LM, McBeth PB, Xiao Z, Ball CG et al. 2013. Potential use of remote telesonography as a transformational technology in underresourced and/or remote settings. Emerg. Med. Int. 2013.986160
    [Google Scholar]
  17. 17. 
    Portnoy J, Waller M, Elliott T. 2020. Telemedicine in the era of COVID-19. J. Allergy Clin. Immunol. Pract. 8:51489–91
    [Google Scholar]
  18. 18. 
    Jordan V. 2020. Coronavirus (COVID-19): remote care through telehealth. J. Prim. Health Care 12:2184–85
    [Google Scholar]
  19. 19. 
    Chebbi B, Lazaroff D, Liu PX. 2007. A collaborative virtual haptic environment for surgical training and tele-mentoring. Int. J. Robot. Autom. 22:169–78
    [Google Scholar]
  20. 20. 
    Anvari M. 2007. Remote telepresence surgery: the Canadian experience. Surg. Endosc. 21:4537–41
    [Google Scholar]
  21. 21. 
    El-Sabawi B, Magee W III 2016. The evolution of surgical telementoring: current applications and future directions. Ann. Transl. Med. 4:20391
    [Google Scholar]
  22. 22. 
    Wood D. 2011. No surgeon should operate alone: how telementoring could change operations. Telemed. e-Health 17:3150–52
    [Google Scholar]
  23. 23. 
    Eadie LH, Seifalian AM, Davidson BR. 2003. Telemedicine in surgery. Br. J. Surg. 90:6647–58
    [Google Scholar]
  24. 24. 
    Challacombe B, Kavoussi L, Stoianovici D. 2006. Remote percutaneous renal access using a telesurgical robotic system. Endourooncology H Kumon, M Murai, S Baba 63–73 Dordrecht, Neth: Springer-Verlag
    [Google Scholar]
  25. 25. 
    Marescaux J, Rubino F. 2003. Telesurgery, telementoring, virtual surgery, and telerobotics. Curr. Urol. Rep. 4:2109–13
    [Google Scholar]
  26. 26. 
    Ballantyne GH. 2002. Robotic surgery, telerobotic surgery, telepresence, and telementoring. Surg. Endosc. 16:101389–402
    [Google Scholar]
  27. 27. 
    Netzer I, Kirkpatrick AW, Nissan M, McKee JL, McBeth P et al. 2019. Rubrum coelis: the contribution of real-time telementoring in acute trauma scenarios—a randomized controlled trial. Telemed. e-Health 25:111108–14
    [Google Scholar]
  28. 28. 
    Kirkpatrick AW, Mckee JL, Netzer I, Mckee IA, McBeth P et al. 2020. A randomized trial of mentored versus nonmentored military medics compared in the application of a wound clamp without prior training: when to shut up and just watch!. Mil. Med. 185:Suppl. 167–72
    [Google Scholar]
  29. 29. 
    Anvari M. 2007. Telesurgery: remote knowledge translation in clinical surgery. World J. Surg. 31:81545–50
    [Google Scholar]
  30. 30. 
    Antoniou SA, Antoniou GA, Franzen J, Bollmann S, Koch OO et al. 2012. A comprehensive review of telementoring applications in laparoscopic general surgery. Surg. Endosc. 26:82111–16
    [Google Scholar]
  31. 31. 
    Andersen DS, Cabrera ME, Rojas-Muñoz EJ, Popescu VS, Gonzalez GT et al. 2019. Augmented reality future step visualization for robust surgical telementoring. Simul. Healthc. J. Soc. Simul. Healthc. 14:159–66
    [Google Scholar]
  32. 32. 
    Rothenberg SS, Yoder S, Kay S, Ponsky T. 2009. Initial experience with surgical telementoring in pediatric laparoscopic surgery using remote presence technology. J. Laparoendosc. Adv. Surg. Tech. 19:Suppl. 1219–22
    [Google Scholar]
  33. 33. 
    Wachs JP, Kölsch M, Stern H, Edan Y. 2011. Vision-based hand-gesture applications. Commun. ACM 54:260–71
    [Google Scholar]
  34. 34. 
    Snyderman CH, Gardner PA, Lanisnik B, Ravnik J. 2016. Surgical telementoring: a new model for surgical training. Laryngoscope 126:61334–38
    [Google Scholar]
  35. 35. 
    Treter S, Perrier N, Sosa JA, Roman S 2013. Telementoring: a multi-institutional experience with the introduction of a novel surgical approach for adrenalectomy. Ann. Surg. Oncol. 20:82754–58
    [Google Scholar]
  36. 36. 
    Garcia P. 2011. Telemedicine for the battlefield: present and future technologies. Surgical Robotics J Rosen, B Hannaford, RM Satava 33–68 Boston, MA: Springer
    [Google Scholar]
  37. 37. 
    Kirkpatrick AW, McKee JL, McBeth PB, Ball CG, LaPorta A et al. 2017. The Damage Control Surgery in Austere Environments Research Group (DCSAERG): a dynamic program to facilitate real-time telementoring/telediagnosis to address exsanguination in extreme and austere environments. J. Trauma Acute Care Surg. 83:Suppl156–63
    [Google Scholar]
  38. 38. 
    Hung AJ, Chen J, Shah A, Gill IS. 2018. Telementoring and telesurgery for minimally invasive procedures. J. Urol. 199:2355–69
    [Google Scholar]
  39. 39. 
    Neisse J. 2010. InTouch Health launches RP-Vantage™ telementoring system as foundation for new healthcare enterprise business unit Business Wire, July 20. https://www.fiercehealthcare.com/healthcare/intouch-health-launches-rp-vantage-tm-telementoring-system-as-foundation-for-new
    [Google Scholar]
  40. 40. 
    Rafiq A, Moore JA, Zhao X, Doarn CR, Merrell RC. 2004. Digital video capture and synchronous consultation in open surgery. Ann. Surg. 239:4567–73
    [Google Scholar]
  41. 41. 
    Ricci MA, Caputo M, Amour J, Rogers FB, Sartorelli K et al. 2003. Telemedicine reduces discrepancies in rural trauma care. Telemed. e-Health 9:13–11
    [Google Scholar]
  42. 42. 
    Lewis ER, Thomas CA, Wilson ML, Mbarika VWA. 2012. Telemedicine in acute-phase injury management: a review of practice and advancements. Telemed. e-Health 18:6434–45
    [Google Scholar]
  43. 43. 
    Bilgic E, Turkdogan S, Watanabe Y, Madani A, Landry T et al. 2017. Effectiveness of telementoring in surgery compared with on-site mentoring: a systematic review. Surg. Innov. 24:4379–85
    [Google Scholar]
  44. 44. 
    Glenn IC, Bruns NE, Hayek D, Hughes T, Ponsky TA. 2017. Rural surgeons would embrace surgical telementoring for help with difficult cases and acquisition of new skills. Surg. Endosc. Other Interv. Tech. 31:31264–68
    [Google Scholar]
  45. 45. 
    Bhatia PD, Bottoni DA, Malthaner RA. 2011. Telesurgical evaluation of stable thoracic trauma patients: a feasibility study. Eur. J. Trauma Emerg. Surg. 37:3297–303
    [Google Scholar]
  46. 46. 
    Mendez I, Hill R, Clarke D, Kolyvas G, Walling S. 2005. Robotic long-distance telementoring in neurosurgery. Neurosurgery 56:3434–39
    [Google Scholar]
  47. 47. 
    Rodas EB. 2002. Telesurgical presence and consultation for open surgery. Arch. Surg. 137:121360–63
    [Google Scholar]
  48. 48. 
    Tisherman SA, Puche AC, Pugh KR, Agandi LA. 2020. Emergency, just-in-time refreshing of combat trauma surgical skills, via video review or telementoring, dramatically improves surgeon performance of extremity fasciotomies Annu. Rep., Prep. for US Army Med. Res. Mater. Command, Fort Detrick, Md .
    [Google Scholar]
  49. 49. 
    Satava RM, Jones SB. 1996. Virtual reality and telemedicine: exploring advanced concepts. Telemed. J. 2:3195–200
    [Google Scholar]
  50. 50. 
    Riva G, Gamberini L. 2000. Virtual reality in telemedicine. Telemed. e-Health 6:3327–40
    [Google Scholar]
  51. 51. 
    Marr B. 2019. The important difference between virtual reality, augmented reality and mixed reality Forbes, July 19. https://www.forbes.com/sites/bernardmarr/2019/07/19/the-important-difference-between-virtual-reality-augmented-reality-and-mixed-reality/#16066df935d3
    [Google Scholar]
  52. 52. 
    Huang K-T, Ball C, Francis J, Ratan R, Boumis J, Fordham J. 2019. Augmented versus virtual reality in education: an exploratory study examining science knowledge retention when using augmented reality/virtual reality mobile applications. Cyberpsychol. Behav. Soc. Netw. 22:2105–10
    [Google Scholar]
  53. 53. 
    Chou W, Wang T, Zhang Y. 2004. Augmented reality based preoperative planning for robot assisted tele-neurosurgery. IEEE International Conference on Systems, Man and Cybernetics, Vol. 32901–6 Piscataway, NJ: IEEE
    [Google Scholar]
  54. 54. 
    Shenai MB, Tubbs RS, Guthrie BL, Cohen-Gadol AA. 2014. Virtual interactive presence for real-time, long-distance surgical collaboration during complex microsurgical procedures. J. Neurosurg. 121:2277–84
    [Google Scholar]
  55. 55. 
    Schulam PG, Docimo SG, Saleh W, Breitenbach C, Moore RG, Kavoussi L. 1997. Telesurgical mentoring. Surg. Endosc. 11:101001–5
    [Google Scholar]
  56. 56. 
    Rojas-Muñoz E, Lin C, Sanchez-Tamayo N, Cabrera ME, Andersen D et al. 2020. Evaluation of an augmented reality platform for austere surgical telementoring: a randomized controlled crossover study in cricothyroidotomies. npj Digit. Med. 3:175
    [Google Scholar]
  57. 57. 
    Weibel N, Gasques D, Johnson J, Sharkey T, Xu ZR et al. 2020. ARTEMIS: mixed-reality environment for immersive surgical telementoring. CHI EA '20: Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–4 New York: Assoc. Comput. Mach.
    [Google Scholar]
  58. 58. 
    Rojas-Muñoz E, Cabrera ME, Andersen D, Popescu V, Marley S et al. 2019. Surgical telementoring without encumbrance. Ann. Surg. 270:2384–89
    [Google Scholar]
  59. 59. 
    Bogen EM. 2014. Telementoring in education of laparoscopic surgeons: an emerging technology. World J. Gastrointest. Endosc. 6:5148
    [Google Scholar]
  60. 60. 
    Budrionis A, Augestad KM, Patel HRH, Bellika JG. 2013. An evaluation framework for defining the contributions of telestration in surgical telementoring. Interact. J. Med. Res. 2:2e14
    [Google Scholar]
  61. 61. 
    Hinata N, Miyake H, Kurahashi T, Ando M, Furukawa J et al. 2014. Novel telementoring system for robot-assisted radical prostatectomy: impact on the learning curve. Urology 83:51088–92
    [Google Scholar]
  62. 62. 
    Shin DH, Dalag L, Azhar RA, Santomauro M, Satkunasivam R et al. 2015. A novel interface for the telementoring of robotic surgery. BJU Int 116:2302–8
    [Google Scholar]
  63. 63. 
    Ali MR, Loggins JP, Fuller WD, Miller BE, Hasser CJ et al. 2008. 3-D telestration: a teaching tool for robotic surgery. J. Laparoendosc. Adv. Surg. Tech. 18:1107–12
    [Google Scholar]
  64. 64. 
    Azuma RT. 1997. A survey of augmented reality. Presence Teleoper. Virtual Environ. 6:4355–85
    [Google Scholar]
  65. 65. 
    Shuhaiber JH. 2004. Augmented reality in surgery. Arch. Surg. 139:2170–74
    [Google Scholar]
  66. 66. 
    Bernhardt S, Nicolau SA, Soler L, Doignon C. 2017. The status of augmented reality in laparoscopic surgery as of 2016. Med. Image Anal. 37:66–90
    [Google Scholar]
  67. 67. 
    Citardi MJ, Agbetoba A, Bigcas J-L, Luong A. 2016. Augmented reality for endoscopic sinus surgery with surgical navigation: a cadaver study. Int. Forum Allergy Rhinol. 6:5523–28
    [Google Scholar]
  68. 68. 
    Nguyen NQ, Ramjist JM, Jivraj J, Jakubovic R, Deorajh R, Yang VXD. 2017. Preliminary development of augmented reality systems for spinal surgery. Proc. SPIE, Vol. 10050 Bellingham, WA: SPIE
    [Google Scholar]
  69. 69. 
    Andersen D, Popescu V, Cabrera ME, Shanghavi A, Gomez G et al. 2016. Medical telementoring using an augmented reality transparent display. Surgery 159:61646–53
    [Google Scholar]
  70. 70. 
    Shenai MB, Dillavou M, Shum C, Ross D, Tubbs RS et al. 2011. Virtual interactive presence and augmented reality (VIPAR) for remote surgical assistance. Neurosurgery 68:Suppl. 1200–7
    [Google Scholar]
  71. 71. 
    Vera AM, Russo M, Mohsin A, Tsuda S. 2014. Augmented reality telementoring (ART) platform: a randomized controlled trial to assess the efficacy of a new surgical education technology. Surg. Endosc. 28:123467–72
    [Google Scholar]
  72. 72. 
    Maslen S. 2017. Layers of sense: the sensory work of diagnostic sensemaking in digital health. Digit. Health 3:205520761770910
    [Google Scholar]
  73. 73. 
    Gibbs RW Jr. 2005. Embodiment and Cognitive Science Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  74. 74. 
    Kelm DJ, Morrow MM, Kennedy CC, Beckman TJ. 2020. Feasibility and utility of an eye-tracking device for assessing teachers of invasive bedside procedures. Mayo Clin. Proc. Innov. Qual. Outcomes 4:3339–44
    [Google Scholar]
  75. 75. 
    Kang X, Azizian M, Wilson E, Wu K, Martin AD et al. 2014. Stereoscopic augmented reality for laparoscopic surgery. Surg. Endosc. 28:72227–35
    [Google Scholar]
  76. 76. 
    Bernhardt S, Nicolau SA, Agnus V, Soler L, Doignon C, Marescaux J 2016. Automatic localization of endoscope in intraoperative CT image: a simple approach to augmented reality guidance in laparoscopic surgery. Med. Image Anal. 30:130–143
    [Google Scholar]
  77. 77. 
    Bichlmeier C, Heining SM, Rustaee M, Navab N. 2007. Laparoscopic virtual mirror for understanding vessel structure evaluation study by twelve surgeons. IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR)125–28 Piscataway, NJ: IEEE
    [Google Scholar]
  78. 78. 
    Lerotic M, Chung AJ, Mylonas G, Yang GZ 2007. pq-space based non-photorealistic rendering for augmented reality. Medical Image Computing and Computer-Assisted Intervention N Ayache, S Ourselin, A Maeder 102–9 Berlin/Heidelberg, Ger: Springer
    [Google Scholar]
  79. 79. 
    Bichlmeier C, Wimmer F, Heining SM, Navab N. 2007. Contextual anatomic mimesis hybrid in-situ visualization method for improving multi-sensory depth perception in medical augmented reality. IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR)129–38 Piscataway, NJ: IEEE
    [Google Scholar]
  80. 80. 
    Hansen C, Wieferich J, Ritter F, Rieder C, Peitgen H-O. 2010. Illustrative visualization of 3D planning models for augmented reality in liver surgery. Int. J. Comput. Assist. Radiol. Surg. 5:2133–41
    [Google Scholar]
  81. 81. 
    Pauly O, Diotte B, Fallavollita P, Weidert S, Euler E, Navab N. 2015. Machine learning–based augmented reality for improved surgical scene understanding. Comput. Med. Imaging Graph. 41:55–60
    [Google Scholar]
  82. 82. 
    Robinson MD, Branham AR, Locklear A, Robertson S, Gridley T. 2016. Measuring satisfaction and usability of FaceTime for virtual visits in patients with uncontrolled diabetes. Telemed. e-Health 22:2138–43
    [Google Scholar]
  83. 83. 
    Singer MB, O'Keeffe T 2017. Care under austere conditions: unlimited restraints. Penetrating Trauma GC Velmahos, E Degiannis, D Doll 573–79 Berlin/Heidelberg, Ger: Springer
    [Google Scholar]
  84. 84. 
    Sharma SK, Woungang I, Anpalagan A, Chatzinotas S. 2020. Toward tactile Internet in beyond 5G era: recent advances, current issues, and future directions. IEEE Access 8:56948–91
    [Google Scholar]
  85. 85. 
    Asbeck AT, Dyer RJ, Larusson AF, Walsh CJ. 2013. Biologically-inspired soft exosuit. IEEE Int. Conf. Rehabil. Robot. 2013.6650455
    [Google Scholar]
  86. 86. 
    Wehner M, Park Y-L, Walsh C, Nagpal R, Wood RJ et al. 2012. Experimental characterization of components for active soft orthotics. IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)1586–92 Piscataway, NJ: IEEE
    [Google Scholar]
  87. 87. 
    Wehner M, Quinlivan B, Aubin PM, Martinez-Villalpando E, Baumann M et al. 2013. A lightweight soft exosuit for gait assistance. IEEE International Conference on Robotics and Automation (ICRA)3347–54 Piscataway, NJ: IEEE
    [Google Scholar]
  88. 88. 
    Gafford J, Ding Y, Harris A, McKenna T, Polygerinos P et al. 2015. Shape deposition manufacturing of a soft, atraumatic, and deployable surgical grasper. J. Mech. Robot. 7:2021006
    [Google Scholar]
  89. 89. 
    Polygerinos P, Lyne S, Wang Z, Nicolini LF, Mosadegh B et al. 2013. Towards a soft pneumatic glove for hand rehabilitation. IEEE/RSJ International Conference on Intelligent Robots and Systems1512–17 Piscataway, NJ: IEEE
    [Google Scholar]
  90. 90. 
    Polygerinos P, Correll N, Morin SA, Mosadegh B, Onal CD et al. 2017. Soft robotics: review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Adv. Eng. Mater 19:121700016
    [Google Scholar]
  91. 91. 
    Borboni A, Mor M, Faglia R. 2016. Gloreha—hand robotic rehabilitation: design, mechanical model, and experiments. J. Dyn. Syst. Meas. Control 138:11111003
    [Google Scholar]
  92. 92. 
    Coevoet E, Morales-Bieze T, Largilliere F, Zhang Z, Thieffry M et al. 2017. Software toolkit for modeling, simulation, and control of soft robots. Adv. Robot. 31:221208–24
    [Google Scholar]
  93. 93. 
    Bishop-Moser J, Kota S. 2015. Design and modeling of generalized fiber-reinforced pneumatic soft actuators. IEEE Trans. Robot. 31:3536–45
    [Google Scholar]
  94. 94. 
    Connolly F, Polygerinos P, Walsh CJ, Bertoldi K. 2015. Mechanical programming of soft actuators by varying fiber angle. Soft Robot 2:126–32
    [Google Scholar]
  95. 95. 
    Asbeck AT, De Rossi SMM, Holt KG, Walsh CJ. 2015. A biologically inspired soft exosuit for walking assistance. Int. J. Robot. Res. 34:6744–62
    [Google Scholar]
  96. 96. 
    Kirkpatrick AW, McKee JL, Netzer I, McBeth PB, D'Amours S et al. 2019. Transoceanic telementoring of tube thoracostomy insertion: a randomized controlled trial of telementored versus unmentored insertion of tube thoracostomy by military medical technicians. Telemed. e-Health 25:8730–39
    [Google Scholar]
  97. 97. 
    Jamniczky HA, McLaughlin K, Kaminska ME, Raman M, Somayaji R et al. 2015. Cognitive load imposed by knobology may adversely affect learners’ perception of utility in using ultrasonography to learn physical examination skills, but not anatomy. Anat. Sci. Educ. 8:3197–204
    [Google Scholar]
  98. 98. 
    Chen H-E, Sonntag CC, Pepley DF, Prabhu RS, Han DC et al. 2019. Looks can be deceiving: gaze pattern differences between novices and experts during placement of central lines. Am. J. Surg. 217:2362–67
    [Google Scholar]
  99. 99. 
    Brass P, Hellmich M, Kolodziej L, Schick G, Smith AF. 2015. Ultrasound guidance versus anatomical landmarks for internal jugular vein catheterization. Cochrane Database Syst. Rev. 1:1CD006962
    [Google Scholar]
  100. 100. 
    Kirkpatrick AW, McKee I, McKee JL, Ma I, McBeth PB et al. 2016. Remote just-in-time telementored trauma ultrasound: a double-factorial randomized controlled trial examining fluid detection and remote knobology control through an ultrasound graphic user interface display. Am. J. Surg. 211:5894–902.e1
    [Google Scholar]
  101. 101. 
    Cheung G, Ortega A, Cheung NM. 2011. Interactive streaming of stored multiview video using redundant frame structures. IEEE Trans. Image Process. 20:3744–61
    [Google Scholar]
  102. 102. 
    Ozbek N, Murat Tekalp A 2006. Scalable multi-view video coding for interactive 3DTV. IEEE International Conference on Multimedia and Expo213–16 Piscataway, NJ: IEEE
    [Google Scholar]
  103. 103. 
    Cheung G, Velisavljević V, Ortega A. 2011. On dependent bit allocation for multiview image coding with depth-image-based rendering. IEEE Trans. Image Process. 20:113179–94
    [Google Scholar]
  104. 104. 
    Chakareski J. 2014. Transmission policy selection for multi-view content delivery over bandwidth constrained channels. IEEE Trans. Image Process. 23:2931–42
    [Google Scholar]
  105. 105. 
    Chakareski J. 2015. Uplink scheduling of visual sensors: when view popularity matters. IEEE Trans. Commun. 63:2510–19
    [Google Scholar]
  106. 106. 
    Yu M, Lakshman H, Girod B. 2015. A framework to evaluate omnidirectional video coding schemes. IEEE International Symposium on Mixed and Augmented Reality (ISMAR)31–36 Piscataway, NJ: IEEE
    [Google Scholar]
  107. 107. 
    Ochi D, Kunita Y, Kameda A, Kojima A, Iwaki S. 2015. Live streaming system for omnidirectional video. IEEE Virtual Reality (VR)349–50 Piscataway, NJ: IEEE
    [Google Scholar]
  108. 108. 
    Sullivan GJ, Ohm JR, Han WJ, Wiegand T. 2012. Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22:121649–68
    [Google Scholar]
  109. 109. 
    Corbillon X, Simon G, Devlic A, Chakareski J. 2017. Viewport-adaptive navigable 360-degree video delivery. IEEE International Conference on Communications (ICC)1–7 Piscataway, NJ: IEEE
    [Google Scholar]
  110. 110. 
    Geng N, Xie X, Zhang Z. 2019. Addressing healthcare operational deficiencies using stochastic and dynamic programming. Int. J. Prod. Res. 57:144371–90
    [Google Scholar]
  111. 111. 
    Willemink MJ, Koszek WA, Hardell C, Wu J, Fleischmann D et al. 2020. Preparing medical imaging data for machine learning. Radiology 295:14–15
    [Google Scholar]
  112. 112. 
    de Araújo Novaes M, Basu A 2019. Disruptive technologies: present and future. Fundamentals of Telemedicine and Telehealth S Gogia 305–30 London: Elsevier
    [Google Scholar]
  113. 113. 
    Cortés U, Annicchiarico R, Urdiales C 2008. Agents and healthcare: usability and acceptance. Agent Technology and e-Health R Annicchiarico, U Cortés, C Urdiales 1–4 Basel: Birkhäuser
    [Google Scholar]
  114. 114. 
    Patel V, Khan MN, Shrivastava A, Sadiq K, Ali SA et al. 2020. Artificial intelligence applied to gastrointestinal diagnostics: a review. J. Pediatr. Gastroenterol. Nutr. 70:14–11
    [Google Scholar]
  115. 115. 
    Mishra S, Banerjee M 2020. Automatic caption generation of retinal diseases with self-trained RNN merge model. Advanced Computing and Systems for Security (Advances in Intelligent Systems and Computing, Vol. 1136) R Chaki, A Cortesi, K Saeed, N Chaki 1–10 Singapore: Springer
    [Google Scholar]
  116. 116. 
    Mirchi N, Bissonnette V, Yilmaz R, Ledwos N, Winkler-Schwartz A, Del Maestro RF. 2020. The Virtual Operative Assistant: an explainable artificial intelligence tool for simulation-based training in surgery and medicine. PLOS ONE 15:2e0229596
    [Google Scholar]
  117. 117. 
    Bissonnette V, Mirchi N, Ledwos N, Alsidieri G, Winkler-Schwartz A, Del Maestro RF. 2019. Artificial intelligence distinguishes surgical training levels in a virtual reality spinal task. J. Bone Jt. Surg. 101:23e127
    [Google Scholar]
  118. 118. 
    Auloge P, Cazzato RL, Ramamurthy N, de Marini P, Rousseau C et al. 2020. Augmented reality and artificial intelligence–based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial. Eur. Spine J. 29:71580–89
    [Google Scholar]
  119. 119. 
    Liu Y, Tang P. 2018. The prospect for the application of the surgical navigation system based on artificial intelligence and augmented reality. IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)244–46 Piscataway, NJ: IEEE
    [Google Scholar]
  120. 120. 
    Kisilev P, Sason E, Barkan E, Hashoul S. 2016. Medical image captioning: learning to describe medical image findings using multi-task-loss CNN. Deep Learning for Precision Medicine Riva del Garda Italy:
    [Google Scholar]
  121. 121. 
    Singh S, Karimi S, Ho-Shon K, Hamey L. 2019. From chest X-rays to radiology reports: a multimodal machine learning approach. Digital Imaging Computing: Techniques and Applications (DICTA)1–8 Piscataway, NJ: IEEE
    [Google Scholar]
  122. 122. 
    Alsharid M, Sharma H, Drukker L, Chatelain P, Papageorghiou AT, Noble JA 2019. Captioning ultrasound images automatically. Medical Image Computing and Computer Assisted Intervention–MICCAI 2019 (Lecture Notes in Computer Science, Vol. 11,767) D Shen, T Liu, TM Peters, LH Staib, C Essert et al.338–46 Cham, Switz: Springer
    [Google Scholar]
  123. 123. 
    Pavlopoulos J, Kougia V, Androutsopoulos I. 2019. A survey on biomedical image captioning arXiv:1905.13302
    [Google Scholar]
  124. 124. 
    Müller H, Kalpathy-Cramer J, Kahn CE, Hatt W, Bedrick S, Hersh W 2009. Overview of the ImageCLEFmed 2008 medical image retrieval task. Evaluating Systems for Multilingual and Multimodel Information Access (Lecture Notes in Computer Science, Vol. 5706) C Peters, T Deselaers, N Ferro, J Gonzalo, GJF Jones et al.512–22 Berlin/Heidelberg, Ger: Springer
    [Google Scholar]
  125. 125. 
    Lyndon D, Kumar A, Kim J 2017. Neural captioning for the ImageCLEF 2017 medical image challenges. Working Notes of CLEF 2017, ed. L Cappellato, N Ferro, L Goeuriot, T Mandl Aachen Germany:CEUR–WS
    [Google Scholar]
  126. 126. 
    Xu J, Liu W, Liu C, Wang Y, Chi Y et al. 2019. Concept detection based on multi-label classification and image captioning approach—DAMO at ImageCLEF 2019. CLEF 2019 Working Notes, ed. L Cappellato, N Ferro, DE Losada, H Mueller Aachen, Germany:CEUR–WS
    [Google Scholar]
  127. 127. 
    Jing B, Xie P, Xing E. 2017. On the automatic generation of medical imaging reports. Proc. 56th Annu. Meet. Assoc. Comput. Linguist. (Vol. 1)2577–86 Melbourne, Australia: Assoc. Comput. Linguist.
    [Google Scholar]
  128. 128. 
    Hossain MZ, Sohel F, Shiratuddin MF, Laga H. 2019. A comprehensive survey of deep learning for image captioning. ACM Comput. Surv. 51:61–36
    [Google Scholar]
  129. 129. 
    Rojas-Muñoz E, Couperus K, Wachs JP. 2020. The AI-Medic: an artificial intelligent mentor for trauma surgery. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. http://doi.org/10.1080/21681163.2020.1835548
    [Google Scholar]
  130. 130. 
    Porretta AP, Alerci M, Wyttenbach R, Antonucci F, Cattaneo M et al. 2017. Long-term outcomes of a telementoring program for distant teaching of endovascular aneurysm repair. J. Endovasc. Ther. 24:6852–58
    [Google Scholar]
  131. 131. 
    Mackenzie CF, Shackelford SA, Tisherman SA, Yang S, Puche A et al. 2019. Critical errors in infrequently performed trauma procedures after training. Surgery 166:5835–43
    [Google Scholar]
  132. 132. 
    Kirkpatrick AW. 2019. Point-of-care resuscitation research: from extreme to mainstream: Trauma Association of Canada Fraser Gurd Lecture 2019. J. Trauma Acute Care Surg. 87:3571–81
    [Google Scholar]
  133. 133. 
    Lee BR, Bishoff JT, Janetschek G, Bunyaratevej P, Kamolpronwijit W et al. 1998. A novel method of surgical instruction: international telementoring. World J. Urol. 16:6367–70
    [Google Scholar]
  134. 134. 
    Lee BR, Caddedu JA, Janetschek G, Schulam P, Docimo SG et al. 1998. International surgical telementoring: our initial experience. Stud. Health Technol. Inform. 50:41–47
    [Google Scholar]
  135. 135. 
    Camara JG, Rodriguez RE. 1998. Real-time telementoring in ophthalmology. Telemed. J. 4:4375–77
    [Google Scholar]
  136. 136. 
    Rosser JC, Bell RL, Harnett B, Rodas E, Murayama M, Merrell R. 1999. Use of mobile low-bandwidth telemedical techniques for extreme telemedicine applications. J. Am. Coll. Surg. 189:4397–404
    [Google Scholar]
  137. 137. 
    Aguilera S, Quintana L, Khan T, Garcia R, Shoman H et al. 2020. Global health, global surgery and mass casualties. II. Mass casualty centre resources, equipment and implementation. BMJ Glob. Health 5:1e001945
    [Google Scholar]
  138. 138. 
    Jonasson O. 1995. Calculating the workforce in general surgery. JAMA 274:9731
    [Google Scholar]
  139. 139. 
    Tulloh B, Clifforth S, Miller I. 2001. Caseload in rural general surgical practice and implications for training. ANZ J. Surg. 71:4215–17
    [Google Scholar]
  140. 140. 
    Landercasper J, Bintz M, Cogbill TH, Bierman SL, Buan RR et al. 1997. Spectrum of general surgery in rural America. Arch. Surg. 132:5494–96
    [Google Scholar]
  141. 141. 
    Sandrick K. 1994. Surgical practice in rural communities: the view from the trenches. Bull. Am. Coll. Surg. 79:411–21
    [Google Scholar]
  142. 142. 
    Entezami P, Franzblau LE, Chung KC. 2012. Mentorship in surgical training: a systematic review. HAND 7:130–36
    [Google Scholar]
  143. 143. 
    Pamplin JC, Davis KL, Mbuthia J, Cain S, Hipp SJ et al. 2019. Military telehealth: a model for delivering expertise to the point of need in austere and operational environments. Health Aff 38:81386–92
    [Google Scholar]
  144. 144. 
    Schreiber MA, Zink K, Underwood S, Sullenberger L, Kelly M, Holcomb JB. 2008. A comparison between patients treated at a combat support hospital in Iraq and a level I trauma center in the United States. J. Trauma Inj. Infect. Crit. Care 64:Suppl118–22
    [Google Scholar]
  145. 145. 
    Anagnostou E, Michas A, Giannou C. 2020. Practicing military medicine in truly austere environments: what to expect, how to prepare, when to improvise. Mil. Med. 185:5–6e656–61
    [Google Scholar]
  146. 146. 
    Nettesheim N, Powell D, Vasios W, Mbuthia J, Davis K et al. 2018. Telemedical support for military medicine. Mil. Med. 183:11–12e462–70
    [Google Scholar]
  147. 147. 
    Pamplin J, Nemeth CP, Serio-Melvin ML, Murray SJ, Rule GT et al. 2020. Improving clinician decisions and communication in critical care using novel information technology. Mil. Med. 185:1–2e254–61
    [Google Scholar]
  148. 148. 
    Bellamy RF. 1984. The causes of death in conventional land warfare: implications for combat casualty care research. Mil. Med. 149:255–62
    [Google Scholar]
  149. 149. 
    Eastridge BJ, Mabry RL, Seguin P, Cantrell J, Tops T et al. 2012. Death on the battlefield (2001–2011): implications for the future of combat casualty care. J. Trauma Acute Care Surg 73:6Suppl431–37
    [Google Scholar]
  150. 150. 
    Eastridge BJ, Holcomb JB, Shackelford S. 2019. Outcomes of traumatic hemorrhagic shock and the epidemiology of preventable death from injury. Transfusion 59:Suppl. 21423–28
    [Google Scholar]
  151. 151. 
    Gerhardt RT, Berry JA, Blackbourne LH. 2011. Analysis of life-saving interventions performed by out-of-hospital combat medical personnel. J. Trauma Inj. Infect. Crit. Care 71:Suppl109–13
    [Google Scholar]
  152. 152. 
    Gerhardt RT, Adams BD, De Lorenzo RA, Godinez F, Crawford DM et al. 2007. Panel synopsis: pre-hospital combat health support 2010: What should our azimuth be?. J. Trauma Inj. Infect. Crit. Care 62:Suppl15–16
    [Google Scholar]
  153. 153. 
    Pannell D, Brisebois R, Talbot M, Trottier V, Clement J et al. 2011. Causes of death in Canadian Forces members deployed to Afghanistan and implications on tactical combat casualty care provision. J. Trauma Inj. Infect. Crit. Care 71:Suppl401–7
    [Google Scholar]
  154. 154. 
    Jenkins DH, Rappold JF, Badloe JF, Berséus O, Blackbourne CL et al. 2014. Trauma hemostasis and oxygenation research position paper on remote damage control resuscitation. Shock 41:3–12
    [Google Scholar]
  155. 155. 
    Gerhardt R, Berry J, Mabry RL, Flournoy L, Arnold RG et al. 2014. Evaluation of contingency telemedical support to improve casualty care at a simulated military intermediate resuscitation facility: the EM-ANGEL study. J. Spec. Oper. Med. 14:150–57
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-083120-023315
Loading
/content/journals/10.1146/annurev-bioeng-083120-023315
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error