1932

Abstract

Penetrating neural electrodes provide a powerful approach to decipher brain circuitry by allowing for time-resolved electrical detections of individual action potentials. This unique capability has contributed tremendously to basic and translational neuroscience, enabling both fundamental understandings of brain functions and applications of human prosthetic devices that restore crucial sensations and movements. However, conventional approaches are limited by the scarce number of available sensing channels and compromised efficacy over long-term implantations. Recording longevity and scalability have become the most sought-after improvements in emerging technologies. In this review, we discuss the technological advances in the past 5–10 years that have enabled larger-scale, more detailed, and longer-lasting recordings of neural circuits at work than ever before. We present snapshots of the latest advances in penetration electrode technology, showcase their applications in animal models and humans, and outline the underlying design principles and considerations to fuel future technological development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-090622-050507
2023-06-08
2024-07-19
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/25/1/annurev-bioeng-090622-050507.html?itemId=/content/journals/10.1146/annurev-bioeng-090622-050507&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Petsche H, Pockberger H, Rappelsberger P. 1984. On the search for the sources of the electroencephalogram. Neuroscience 11:1–27
    [Google Scholar]
  2. 2.
    Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW. 2004. A brain-computer interface using electrocorticographic signals in humans. J. Neural Eng. 1:63–71
    [Google Scholar]
  3. 3.
    Hubel DH, Wiesel TN. 1959. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. 148:574–91
    [Google Scholar]
  4. 4.
    Kipke DR, Shain W, Buzsaki G, Fetz E, Henderson JM et al. 2008. Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J. Neurosci. 28:11830–38
    [Google Scholar]
  5. 5.
    Luan L, Robinson JT, Aazhang B, Chi T, Yang K et al. 2020. Recent advances in electrical neural interface engineering: minimal invasiveness, longevity, and scalability. Neuron 108:302–21
    [Google Scholar]
  6. 6.
    Nurmikko A. 2020. Challenges for large-scale cortical interfaces. Neuron 108:259–69
    [Google Scholar]
  7. 7.
    Drake KL, Wise KD, Farraye J, Anderson DJ, BeMent SL. 1988. Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Trans. Biomed. Eng. 35:719–32
    [Google Scholar]
  8. 8.
    Buzsaki G. 2004. Large-scale recording of neuronal ensembles. Nat. Neurosci. 7:446–51
    [Google Scholar]
  9. 9.
    Sinnamon HM, Woodward DJ. 1977. Microdrive and method for single unit recording in the active rat. Physiol. Behav. 19:451–53
    [Google Scholar]
  10. 10.
    McNaughton BL, O'Keefe J, Barnes CA. 1983. The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J. Neurosci. Methods 8:391–97
    [Google Scholar]
  11. 11.
    Wilson MA, McNaughton BL. 1993. Dynamics of the hippocampal ensemble code for space. Science 261:1055–58
    [Google Scholar]
  12. 12.
    Kipke DR, Vetter RJ, Williams JC, Hetke JF. 2003. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans. Neural Syst. Rehabil. Eng. 11:151–55
    [Google Scholar]
  13. 13.
    Buzsaki G, Stark E, Berenyi A, Khodagholy D, Kipke DR et al. 2015. Tools for probing local circuits: high-density silicon probes combined with optogenetics. Neuron 86:92–105
    [Google Scholar]
  14. 14.
    Kleinfeld D, Luan L, Mitra PP, Robinson JT, Sarpeshkar R et al. 2019. Can one concurrently record electrical spikes from every neuron in a mammalian brain?. Neuron 103:1005–15
    [Google Scholar]
  15. 15.
    Stringer C, Michaelos M, Tsyboulski D, Lindo SE, Pachitariu M. 2021. High-precision coding in visual cortex. Cell 184:2767–78.e15
    [Google Scholar]
  16. 16.
    Stringer C, Pachitariu M, Steinmetz N, Carandini M, Harris KD. 2019. High-dimensional geometry of population responses in visual cortex. Nature 571:361–65
    [Google Scholar]
  17. 17.
    Roy DS, Park Y-G, Kim ME, Zhang Y, Ogawa SK et al. 2022. Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions. Nature Commun. 13:1799
    [Google Scholar]
  18. 18.
    Steinmetz NA, Zatka-Haas P, Carandini M, Harris KD. 2019. Distributed coding of choice, action and engagement across the mouse brain. Nature 576:266–73
    [Google Scholar]
  19. 19.
    Pinto L, Rajan K, DePasquale B, Thiberge SY, Tank DW, Brody CD. 2019. Task-dependent changes in the large-scale dynamics and necessity of cortical regions. Neuron 104:810–24.e9
    [Google Scholar]
  20. 20.
    Clancy KB, Orsolic I, Mrsic-Flogel TD. 2019. Locomotion-dependent remapping of distributed cortical networks. Nat. Neurosci. 22:778–86
    [Google Scholar]
  21. 21.
    Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M, Harris KD. 2019. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364:eaav7893
    [Google Scholar]
  22. 22.
    Chen X, Sun Y-C, Zhan H, Kebschull JM, Fischer S et al. 2019. High-throughput mapping of long-range neuronal projection using in situ sequencing. Cell 179:772–86.e19
    [Google Scholar]
  23. 23.
    Huang L, Kebschull JM, Fürth D, Musall S, Kaufman MT et al. 2020. BRICseq bridges brain-wide interregional connectivity to neural activity and gene expression in single animals. Cell 182:177–88.e27
    [Google Scholar]
  24. 24.
    Sun Q, Li X, Ren M, Zhao M, Zhong Q et al. 2019. A whole-brain map of long-range inputs to GABAergic interneurons in the mouse medial prefrontal cortex. Nat. Neurosci. 22:1357–70
    [Google Scholar]
  25. 25.
    Winnubst J, Bas E, Ferreira TA, Wu Z, Economo MN et al. 2019. Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain. Cell 179:268–81.e13
    [Google Scholar]
  26. 26.
    Zhang S, Xu M, Chang W-C, Ma C, Hoang Do JP et al. 2016. Organization of long-range inputs and outputs of frontal cortex for top-down control. Nat. Neurosci. 19:1733–42
    [Google Scholar]
  27. 27.
    Gao L, Liu S, Gou L, Hu Y, Liu Y et al. 2022. Single-neuron projectome of mouse prefrontal cortex. Nat. Neurosci. 25:515–29
    [Google Scholar]
  28. 28.
    Han Y, Kebschull JM, Campbell RA, Cowan D, Imhof F et al. 2018. The logic of single-cell projections from visual cortex. Nature 556:51–56
    [Google Scholar]
  29. 29.
    Oh SW, Harris JA, Ng L, Winslow B, Cain N et al. 2014. A mesoscale connectome of the mouse brain. Nature 508:207–14
    [Google Scholar]
  30. 30.
    Harris JA, Mihalas S, Hirokawa KE, Whitesell JD, Choi H et al. 2019. Hierarchical organization of cortical and thalamic connectivity. Nature 575:195–202
    [Google Scholar]
  31. 31.
    Henze DA, Borhegyi Z, Csicsvari J, Mamiya A, Harris KD, Buzsaki G. 2000. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 84:390–400
    [Google Scholar]
  32. 32.
    Suner S, Fellows MR, Vargas-Irwin C, Nakata GK, Donoghue JP. 2005. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. IEEE Trans. Neural Syst. Rehabil. Eng. 13:524–41
    [Google Scholar]
  33. 33.
    Dickey AS, Suminski A, Amit Y, Hatsopoulos NG. 2009. Single-unit stability using chronically implanted multielectrode arrays. J. Neurophysiol. 102:1331–39
    [Google Scholar]
  34. 34.
    Nicolelis MA, Dimitrov D, Carmena JM, Crist R, Lehew G et al. 2003. Chronic, multisite, multielectrode recordings in macaque monkeys. PNAS 100:11041–46
    [Google Scholar]
  35. 35.
    Dotson NM, Goodell B, Salazar RF, Hoffman SJ, Gray CM. 2015. Methods, caveats and the future of large-scale microelectrode recordings in the non-human primate. Front. Syst. Neurosci. 9:149
    [Google Scholar]
  36. 36.
    Stevenson IH, Kording KP. 2011. How advances in neural recording affect data analysis. Nat. Neurosci. 14:139
    [Google Scholar]
  37. 37.
    Urai AE, Doiron B, Leifer AM, Churchland AK. 2022. Large-scale neural recordings call for new insights to link brain and behavior. Nat. Neurosci. 25:11–19
    [Google Scholar]
  38. 38.
    Xie K, Fox GE, Liu J, Tsien JZ. 2016. 512-channel and 13-region simultaneous recordings coupled with optogenetic manipulation in freely behaving mice. Front. Syst. Neurosci. 10:48
    [Google Scholar]
  39. 39.
    Chen X, Wang F, Fernandez E, Roelfsema PR. 2020. Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex. Science 370:1191–96
    [Google Scholar]
  40. 40.
    Patel PR, Popov P, Caldwell CM, Welle EJ, Egert D et al. 2020. High density carbon fiber arrays for chronic electrophysiology, fast scan cyclic voltammetry, and correlative anatomy. J. Neural Eng. 17:056029
    [Google Scholar]
  41. 41.
    Kollo M, Racz R, Hanna M-E, Obaid A, Angle MR et al. 2020. CHIME: CMOS-hosted in vivo microelectrodes for massively scalable neuronal recordings. Front. Neurosci. 14:834
    [Google Scholar]
  42. 42.
    Obaid A, Hanna M-E, Wu Y-W, Kollo M, Racz R et al. 2020. Massively parallel microwire arrays integrated with CMOS chips for neural recording. Sci. Adv. 6:eaay2789
    [Google Scholar]
  43. 43.
    Sahasrabuddhe K, Khan AA, Singh AP, Stern TM, Ng Y et al. 2020. The Argo: a high channel count recording system for neural recording in vivo. J. Neural Eng. 18:015002
    [Google Scholar]
  44. 44.
    Lee SH, Thunemann M, Lee K, Cleary DR, Tonsfeldt KJ et al. 2022. Scalable thousand channel penetrating microneedle arrays on flex for multimodal and large area coverage brainmachine interfaces. Adv. Funct. Mater. 32:2112045
    [Google Scholar]
  45. 45.
    Berényi A, Somogyvári Z, Nagy AJ, Roux L, Long JD et al. 2014. Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals. J. Neurophysiol. 111:1132–49
    [Google Scholar]
  46. 46.
    Shobe JL, Claar LD, Parhami S, Bakhurin KI, Masmanidis SC 2015. Brain activity mapping at multiple scales with silicon microprobes containing 1,024 electrodes. J. Neurophysiol 114:204–52
    [Google Scholar]
  47. 47.
    Rios G, Lubenov EV, Chi D, Roukes ML, Siapas AG 2016. Nanofabricated neural probes for dense 3-D recordings of brain activity. Nano Lett 16:685–62
    [Google Scholar]
  48. 48.
    Scholvin J, Kinney JP, Bernstein JG, Moore-Kochlacs C, Kopell N et al. 2016. Close-packed silicon microelectrodes for scalable spatially oversampled neural recording. IEEE Trans. Biomed. Eng. 63:120–30
    [Google Scholar]
  49. 49.
    Egert D, Pettibone JR, Lemke S, Patel PR, Caldwell CM et al. 2020. Cellular-scale silicon probes for high-density, precisely localized neurophysiology. J. Neurophysiol. 124:1578–87
    [Google Scholar]
  50. 50.
    van Daal RJJ, Sun J-J, Ceyssens F, Michon F, Kraft M et al. 2020. System for recording from multiple flexible polyimide neural probes in freely behaving animals. J. Neural Eng. 17:016046
    [Google Scholar]
  51. 51.
    Chung JE, Joo HR, Fan JL, Liu DF, Barnett AH et al. 2019. High-density, long-lasting, and multi-region electrophysiological recordings using polymer electrode arrays. Neuron 101:21–31.e5
    [Google Scholar]
  52. 52.
    Luan L, Wei X, Zhao Z, Siegel JJ, Potnis O et al. 2017. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Sci. Adv. 3:e1601966
    [Google Scholar]
  53. 53.
    Zhao Z, Zhu H, Li X, Sun L, He F et al. 2022. Ultraflexible electrode arrays for months-long high-density electrophysiological mapping of thousands of neurons in rodents. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-022-00941-y
    [Google Scholar]
  54. 54.
    Musk E. 2019. An integrated brain-machine interface platform with thousands of channels. J. Med. Internet Res. 21:e16194
    [Google Scholar]
  55. 55.
    Zhao Z, Li X, He F, Wei X, Lin S, Xie C. 2019. Parallel, minimally-invasive implantation of ultra-flexible neural electrode arrays. J. Neural Eng. 16:035001
    [Google Scholar]
  56. 56.
    Wei X, Luan L, Zhao Z, Li X, Zhu H et al. 2018. Nanofabricated ultraflexible electrode arrays for high-density intracortical recording. Adv. Sci. 5:1700625
    [Google Scholar]
  57. 57.
    Kaiju T, Inoue M, Hirata M, Suzuki T. 2021. High-density mapping of primate digit representations with a 1152-channel μECoG array. J. Neural Eng. 18:036025
    [Google Scholar]
  58. 58.
    Tchoe Y, Bourhis AM, Cleary DR, Stedelin B, Lee J et al. 2022. Human brain mapping with multithousand-channel PtNRGrids resolves spatiotemporal dynamics. Sci. Transl. Med. 14:eabj1441
    [Google Scholar]
  59. 59.
    Sperry ZJ, Na K, Jun J, Madden LR, Socha A et al. 2021. High-density neural recordings from feline sacral dorsal root ganglia with thin-film array. J. Neural Eng. 18:046005
    [Google Scholar]
  60. 60.
    Guimerà-Brunet A, Masvidal-Codina E, Cisneros-Fernández J, Serra-Graells F, Garrido JA. 2021. Novel transducers for high-channel-count neuroelectronic recording interfaces. Curr. Opin. Biotechnol. 72:39–47
    [Google Scholar]
  61. 61.
    Lopez CM, Putzeys J, Raducanu BC, Ballini M, Wang S et al. 2017. A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS. IEEE Trans. Biomed. Circuits Syst. 11:510–22
    [Google Scholar]
  62. 62.
    Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M et al. 2017. Fully integrated silicon probes for high-density recording of neural activity. Nature 551:232
    [Google Scholar]
  63. 63.
    Steinmetz NA, Aydin C, Lebedeva A, Okun M, Pachitariu M et al. 2021. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372:eabf4588
    [Google Scholar]
  64. 64.
    Wang S, Garakoui SK, Chun H, Salinas DG, Sijbers W et al. 2019. A compact quad-shank CMOS neural probe with 5,120 addressable recording sites and 384 fully differential parallel channels. IEEE Trans. Biomed. Circuits Syst. 13:1625–34
    [Google Scholar]
  65. 65.
    Siegle JH, Jia X, Durand S, Gale S, Bennett C et al. 2021. Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592:86–92
    [Google Scholar]
  66. 66.
    Luo TZ, Bondy AG, Gupta D, Elliott VA, Kopec CD, Brody CD. 2020. An approach for long-term, multi-probe Neuropixels recordings in unrestrained rats. eLife 9:e59716
    [Google Scholar]
  67. 67.
    Juavinett AL, Bekheet G, Churchland AK. 2019. Chronically implanted Neuropixels probes enable high-yield recordings in freely moving mice. eLife 8:e47188
    [Google Scholar]
  68. 68.
    Paulk AC, Kfir Y, Khanna AR, Mustroph ML, Trautmann EM et al. 2022. Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex. Nat. Neurosci. 25:252–63
    [Google Scholar]
  69. 69.
    Chung JE, Sellers KK, Leonard MK, Gwilliams L, Xu D et al. 2022. High-density single-unit human cortical recordings using the Neuropixels probe. Neuron 110:2409–21.e3
    [Google Scholar]
  70. 70.
    Gao Z, Wu G, Song Y, Li H, Zhang Y et al. 2022. Multiplexed monitoring of neurochemicals via electrografting-enabled site-selective functionalization of aptamers on field-effect transistors. Anal. Chem. 94:8605–17
    [Google Scholar]
  71. 71.
    Garcia-Cortadella R, Schwesig G, Jeschke C, Illa X, Gray AL et al. 2021. Graphene active sensor arrays for long-term and wireless mapping of wide frequency band epicortical brain activity. Nat. Commun. 12:211
    [Google Scholar]
  72. 72.
    Raducanu BC, Yazicioglu RF, Lopez CM, Ballini M, Putzeys J et al. 2017. Time multiplexed active neural probe with 1356 parallel recording sites. Sensors 17:2388
    [Google Scholar]
  73. 73.
    Boi F, Perentos N, Lecomte A, Schwesig G, Zordan S et al. 2020. Multi-shanks SiNAPS active pixel sensor CMOS probe: 1024 simultaneously recording channels for high-density intracortical brain mapping. bioRxiv 749911. https://doi.org/10.1101/749911
  74. 74.
    Boi F, Locarno A, Ribeiro JF, Tonini R, Angotzi GN, Berdondini L. 2021. Coupling SiNAPS high-density neural recording CMOS-probes with optogenetic light stimulation. Proceedings of the 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS)1–4. New York: IEEE
    [Google Scholar]
  75. 75.
    Angotzi GN, Boi F, Lecomte A, Miele E, Malerba M et al. 2019. SiNAPS: an implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings. Biosens. Bioelectron. 126:355–64
    [Google Scholar]
  76. 76.
    Park SY, Na K, Vöröslakos M, Song H, Slager N et al. 2022. A miniaturized 256-channel neural recording interface with area-efficient hybrid integration of flexible probes and CMOS integrated circuits. IEEE Trans. Biomed. Eng. 69:334–46
    [Google Scholar]
  77. 77.
    Kim J, Fengel CV, Yu S, Minot ED, Johnston ML. 2021. Frequency-division multiplexing with graphene active electrodes for neurosensor applications. IEEE Trans. Circuits Syst. II Express Briefs 68:1735–39
    [Google Scholar]
  78. 77a.
    Garcia-Cortadella R, Schäfer N, Cisneros-Fernandez J, L, Illa Xet al 2020. Switchless multiplexing of graphene active sensor arrays for brain mapping. Nano Lett 20:3528–37
    [Google Scholar]
  79. 78.
    Schaefer N, Garcia-Cortadella R, Martínez-Aguilar J, Schwesig G, Illa X et al. 2020. Multiplexed neural sensor array of graphene solution-gated field-effect transistors. 2D Materials 7:025046
    [Google Scholar]
  80. 79.
    Wykes RC, Masvidal-Codina E, Guimerà-Brunet A, Garrido JA 2022. The advantages of mapping slow brain potentials using DC-coupled graphene micro-transistors: clinical and translational applications. Clin. Transl. Med. 12:e968
    [Google Scholar]
  81. 80.
    Sponheim C, Papadourakis V, Collinger JL, Downey J, Weiss J et al. 2021. Longevity and reliability of chronic unit recordings using the Utah, intracortical multi-electrode arrays. J. Neural Eng. 18:066044
    [Google Scholar]
  82. 81.
    Perge JA, Homer ML, Malik WQ, Cash S, Eskandar E et al. 2013. Intra-day signal instabilities affect decoding performance in an intracortical neural interface system. J. Neural Eng. 10:036004
    [Google Scholar]
  83. 82.
    Sharma G, Annetta N, Friedenberg D, Blanco T, Vasconcelos D et al. 2015. Time stability and coherence analysis of multiunit, single-unit and local field potential neuronal signals in chronically implanted brain electrodes. Bioelectronic Med. 2:63–71
    [Google Scholar]
  84. 83.
    Dunlap CF, Colachis SC IV, Meyers EC, Bockbrader MA, Friedenberg DA 2020. Classifying intracortical brain-machine interface signal disruptions based on system performance and applicable compensatory strategies: a review. Front. Neurorobot. 14:558987
    [Google Scholar]
  85. 84.
    Woeppel K, Hughes C, Herrera AJ, Eles JR, Tyler-Kabara EC et al. 2021. Explant analysis of Utah electrode arrays implanted in human cortex for brain-computer-interfaces. Front. Bioeng. Biotechnol. 9:759711
    [Google Scholar]
  86. 85.
    Barrese JC, Rao N, Paroo K, Triebwasser C, Vargas-Irwin C et al. 2013. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. J. Neural Eng. 10:066014
    [Google Scholar]
  87. 86.
    Karumbaiah L, Saxena T, Carlson D, Patil K, Patkar R et al. 2013. Relationship between intracortical electrode design and chronic recording function. Biomaterials 34:8061–74
    [Google Scholar]
  88. 87.
    Jorfi M, Skousen JL, Weder C, Capadona JR. 2015. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. J. Neural Eng. 12:011001
    [Google Scholar]
  89. 88.
    Barrese JC, Rao N, Paroo K, Triebwasser C, Vargas-Irwin C et al. 2013. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. J. Neural Eng. 10:066014
    [Google Scholar]
  90. 89.
    Rousche PJ, Normann RA 1992. A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann. Biomed. Eng. 20:413–22
    [Google Scholar]
  91. 90.
    Szarowski DH, Andersen MD, Retterer S, Spence AJ, Isaacson M et al. 2003. Brain responses to micro-machined silicon devices. Brain Res. 983:23–35
    [Google Scholar]
  92. 91.
    Subbaroyan J, Martin DC, Kipke DR. 2005. A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex. J. Neural Eng. 2:103–13
    [Google Scholar]
  93. 92.
    A. Gilletti JM. 2006. Brain micromoation around implants in the rodent somatosensory cortex. J. Neural Eng. 3:189–95
    [Google Scholar]
  94. 93.
    Kozai TD, Catt K, Li X, Gugel ZV, Olafsson VT et al. 2015. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording. Biomaterials 37:25–39
    [Google Scholar]
  95. 94.
    Prasad A, Xue QS, Dieme R, Sankar V, Mayrand RC et al. 2014. Abiotic-biotic characterization of Pt/Ir microelectrode arrays in chronic implants. Front. Neuroeng. 7:2
    [Google Scholar]
  96. 95.
    Prasad A, Xue QS, Sankar V, Nishida T, Shaw G et al. 2012. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants. J. Neural Eng. 9:056015
    [Google Scholar]
  97. 96.
    Gilgunn PJ, Ong XC, Flesher SN, Schwartz AB, Gaunt RA. 2013. Structural analysis of explanted microelectrode arrays. Proceedings of the 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)719–22. New York: IEEE
    [Google Scholar]
  98. 97.
    Wellman SM, Eles JR, Ludwig KA, Seymour JP, Michelson NJ et al. 2018. A materials roadmap to functional neural interface design. Adv. Funct. Mater. 28:1701269
    [Google Scholar]
  99. 98.
    Muthuswamy J, Saha R, Gilletti A. 2005. Tissue micromotion induced stress around brain implants. Proceedings of the 2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology102–3. New York: IEEE
    [Google Scholar]
  100. 99.
    Xie C, Liu J, Fu T-M, Dai X, Zhou W, Lieber CM. 2015. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14:1286–92
    [Google Scholar]
  101. 100.
    He F, Lycke R, Ganji M, Xie C, Luan L. 2020. Ultraflexible neural electrodes for long-lasting intracortical recording. iScience 23:101387
    [Google Scholar]
  102. 101.
    Steif PS. 2012. Mechanics of Materials Upper Saddle River, NJ: Pearson
    [Google Scholar]
  103. 102.
    Fu T-M, Hong G, Zhou T, Schuhmann TG, Viveros RD, Lieber CM. 2016. Stable long-term chronic brain mapping at the single-neuron level. Nat. Methods 13:875–82
    [Google Scholar]
  104. 103.
    Hong G, Fu T-M, Qiao M, Viveros RD, Yang X et al. 2018. A method for single-neuron chronic recording from the retina in awake mice. Science 360:1447–51
    [Google Scholar]
  105. 104.
    Yang X, Zhou T, Zwang TJ, Hong G, Zhao Y et al. 2019. Bioinspired neuron-like electronics. Nat. Mater. 18:510–17
    [Google Scholar]
  106. 105.
    Gao L, Wang J, Zhao Y, Li H, Liu M et al. 2022. Free-standing nanofilm electrode arrays for long-term stable neural interfacings. Adv. Mater. 34:e2107343
    [Google Scholar]
  107. 106.
    Kozai TD, Langhals NB, Patel PR, Deng X, Zhang H et al. 2012. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 11:1065–73
    [Google Scholar]
  108. 107.
    Guitchounts G, Markowitz JE, Liberti WA, Gardner TJ. 2013. A carbon-fiber electrode array for long-term neural recording. J. Neural Eng. 10:046016
    [Google Scholar]
  109. 108.
    Patel PR, Zhang H, Robbins MT, Nofar JB, Marshall SP et al. 2016. Chronic in vivo stability assessment of carbon fiber microelectrode arrays. J. Neural Eng. 13:066002
    [Google Scholar]
  110. 109.
    Vitale F, Summerson SR, Aazhang B, Kemere C, Pasquali M. 2015. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano 9:4465–74
    [Google Scholar]
  111. 110.
    Fu X, Li G, Niu Y, Xu J, Wang P et al. 2021. Carbon-based fiber materials as implantable depth neural electrodes. Front. Neurosci. 15:771980
    [Google Scholar]
  112. 111.
    Lu Y-B, Franze K, Seifert G, Steinhäuser C, Kirchhoff F et al. 2006. Viscoelastic properties of individual glial cells and neurons in the CNS. PNAS 103:17759–64
    [Google Scholar]
  113. 112.
    Barrese JC, Aceros J, Donoghue JP. 2016. Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates. J. Neural Eng. 13:026003
    [Google Scholar]
  114. 113.
    Jiang Y, Zhang Z, Wang Y-X, Li D, Coen C-T et al. 2022. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375:1411–17
    [Google Scholar]
  115. 114.
    Tringides CM, Vachicouras N, de Lazaro I, Wang H, Trouillet A et al. 2021. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat. Nanotechnol. 16:1019–29
    [Google Scholar]
  116. 115.
    Park S, Yuk H, Zhao R, Yim YS, Woldeghebriel EW et al. 2021. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nat. Commun. 12:3435
    [Google Scholar]
  117. 116.
    Liu Y, Li J, Song S, Kang J, Tsao Y et al. 2020. Morphing electronics enable neuromodulation in growing tissue. Nat. Biotechnol. 38:1031–36
    [Google Scholar]
  118. 117.
    Stiller AM, Usoro JO, Lawson J, Araya B, Gonzalez-Gonzalez MA et al. 2020. Mechanically robust, softening shape memory polymer probes for intracortical recording. Micromachines 11:619
    [Google Scholar]
  119. 118.
    Le Floch P, Molinari N, Nan K, Zhang S, Kozinsky B et al. 2019. Fundamental limits to the electrochemical impedance stability of dielectric elastomers in bioelectronics. Nano Lett. 20:224–33
    [Google Scholar]
  120. 119.
    Carnicer-Lombarte A, Chen ST, Malliaras GG, Barone DG. 2021. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front. Bioeng. Biotechnol. 9:622524
    [Google Scholar]
  121. 120.
    Tsai PS, Kaufhold JP, Blinder P, Friedman B, Drew PJ et al. 2009. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. J. Neurosci. 29:14553–70
    [Google Scholar]
  122. 121.
    Lee HC, Gaire J, Currlin SW, McDermott MD, Park K, Otto KJ. 2017. Foreign body response to intracortical microelectrodes is not altered with dip-coating of polyethylene glycol (PEG). Front. Neurosci. 11:513
    [Google Scholar]
  123. 122.
    Yang Q, Wu B, Eles JR, Vazquez AL, Kozai TDY, Cui XT. 2020. Zwitterionic polymer coating suppresses microglial encapsulation to neural implants in vitro and in vivo. Adv. Biosyst. 4:e1900287
    [Google Scholar]
  124. 123.
    Zou Y, Wang J, Guan S, Zou L, Gao L et al. 2021. Anti-fouling peptide functionalization of ultraflexible neural probes for long-term neural activity recordings in the brain. Biosens. Bioelectron. 192:113477
    [Google Scholar]
  125. 124.
    Golabchi A, Woeppel KM, Li X, Lagenaur CF, Cui XT. 2020. Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain. Biosens. Bioelectron. 155:112096
    [Google Scholar]
  126. 125.
    Wong TS, Kang SH, Tang SK, Smythe EJ, Hatton BD et al. 2011. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–47
    [Google Scholar]
  127. 126.
    Lee Y, Shin H, Lee D, Choi S, Cho IJ, Seo J. 2021. A lubricated nonimmunogenic neural probe for acute insertion trauma minimization and long-term signal recording. Adv. Sci. 8:e2100231
    [Google Scholar]
  128. 127.
    Boehler C, Kleber C, Martini N, Xie Y, Dryg I et al. 2017. Actively controlled release of dexamethasone from neural microelectrodes in a chronic in vivo study. Biomaterials 129:176–87
    [Google Scholar]
  129. 128.
    Crisafulli U, Xavier AM, Dos Santos FB, Cambiaghi TD, Chang SY et al. 2018. Topical dexamethasone administration impairs protein synthesis and neuronal regeneration in the olfactory epithelium. Front. Mol. Neurosci. 11:50
    [Google Scholar]
  130. 129.
    Barone DG, Carnicer-Lombarte A, Tourlomousis P, Hamilton RS, Prater M et al. 2022. Prevention of the foreign body response to implantable medical devices by inflammasome inhibition. PNAS 119:e2115857119
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-090622-050507
Loading
/content/journals/10.1146/annurev-bioeng-090622-050507
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error