1932

Abstract

Elastin-like polypeptides (ELPs) are stimulus-responsive biopolymers derived from human elastin. Their unique properties—including lower critical solution temperature phase behavior and minimal immunogenicity—make them attractive materials for a variety of biomedical applications. ELPs also benefit from recombinant synthesis and genetically encoded design; these enable control over the molecular weight and precise incorporation of peptides and pharmacological agents into the sequence. Because their size and sequence are defined, ELPs benefit from exquisite control over their structure and function, qualities that cannot be matched by synthetic polymers. As such, ELPs have been engineered to assemble into unique architectures and display bioactive agents for a variety of applications. This review discusses the design and representative biomedical applications of ELPs, focusing primarily on their use in tissue engineering and drug delivery.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-092419-061127
2020-06-04
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/22/1/annurev-bioeng-092419-061127.html?itemId=/content/journals/10.1146/annurev-bioeng-092419-061127&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abascal NC, Regan L. 2018. The past, present and future of protein-based materials. Open Biol 8:180113
    [Google Scholar]
  2. 2. 
    Yang YJ, Holmberg AL, Olsen BD 2017. Artificially engineered protein polymers. Annu. Rev. Chem. Biomol. Eng. 8:549–75
    [Google Scholar]
  3. 3. 
    Haider M, Leung V, Ferrari F, Crissman J, Powell J et al. 2005. Molecular engineering of silk-elastinlike polymers for matrix-mediated gene delivery: biosynthesis and characterization. Mol. Pharm. 2:139–50
    [Google Scholar]
  4. 4. 
    Mithieux SM, Weiss AS. 2005. Elastin. Adv. Protein Chem. 70:437–61
    [Google Scholar]
  5. 5. 
    Almine JF, Bax DV, Mithieux SM, Nivison-Smith L, Rnjak J et al. 2010. Elastin-based materials. Chem. Soc. Rev. 39:3371–79
    [Google Scholar]
  6. 6. 
    Wise SG, Yeo GC, Hiob MA, Rnjak-Kovacina J, Kaplan DL et al. 2014. Tropoelastin: a versatile, bioactive assembly module. Acta Biomater 10:1532–41
    [Google Scholar]
  7. 7. 
    MacEwan SR, Chilkoti A. 2010. Elastin-like polypeptides: biomedical applications of tunable biopolymers. Pept. Sci. 94:60–77
    [Google Scholar]
  8. 8. 
    Zhao B, Li NK, Yingling YG, Hall CK 2016. LCST behavior is manifested in a single molecule: elastin-like polypeptide (VPGVG)n. . Biomacromolecules 17:111–18
    [Google Scholar]
  9. 9. 
    Meyer DE, Chilkoti A. 2004. Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides. Biomacromolecules 5:846–51
    [Google Scholar]
  10. 10. 
    Chilkoti A, Christensen T, MacKay JA 2006. Stimulus responsive elastin biopolymers: applications in medicine and biotechnology. Curr. Opin. Chem. Biol. 10:652–57
    [Google Scholar]
  11. 11. 
    Hickey JW, Santos JL, Williford J-M, Mao H-Q 2015. Control of polymeric nanoparticle size to improve therapeutic delivery. J. Control. Release 219:536–47
    [Google Scholar]
  12. 12. 
    Simone EA, Dziubla TD, Muzykantov VR 2008. Polymeric carriers: role of geometry in drug delivery. Expert Opin. Drug Deliv. 5:1283–300
    [Google Scholar]
  13. 13. 
    Trabbic‐Carlson K, Meyer DE, Liu L, Piervincenzi R, Nath N et al. 2004. Effect of protein fusion on the transition temperature of an environmentally responsive elastin‐like polypeptide: a role for surface hydrophobicity. Protein Eng. Des. Sel. 17:57–66
    [Google Scholar]
  14. 14. 
    Christensen T, Hassouneh W, Trabbic-Carlson K, Chilkoti A 2013. Predicting transition temperatures of elastin-like polypeptide fusion proteins. Biomacromolecules 14:1514–19
    [Google Scholar]
  15. 15. 
    Nair LS, Laurencin CT. 2007. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32:762–98
    [Google Scholar]
  16. 16. 
    Amiram M, Garcia Quiroz F, Callahan DJ, Chilkoti A 2011. A highly parallel method for synthesizing DNA repeats enables the discovery of ‘smart’ protein polymers. Nat. Mater. 10:141–48
    [Google Scholar]
  17. 17. 
    Rosano GL, Ceccarelli EA. 2014. Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5:172
    [Google Scholar]
  18. 18. 
    Tang NC, Chilkoti A. 2016. Combinatorial codon scrambling enables scalable gene synthesis and amplification of repetitive proteins. Nat. Mater. 15:419–24
    [Google Scholar]
  19. 19. 
    White MJ, Fristensky BW, Falconet D, Childs LC, Watson JC et al. 1992. Expression of the chlorophyll-a/b-protein multigene family in pea (Pisum sativum L.). Planta 188:190–98
    [Google Scholar]
  20. 20. 
    McMillan RA, Conticello VP. 2000. Synthesis and characterization of elastin-mimetic protein gels derived from a well-defined polypeptide precursor. Macromolecules 33:4809–21
    [Google Scholar]
  21. 21. 
    McMillan RA, Lee TAT, Conticello VP 1999. Rapid assembly of synthetic genes encoding protein polymers. Macromolecules 32:3643–48
    [Google Scholar]
  22. 22. 
    Meyer DE, Chilkoti A. 2002. Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules 3:357–67
    [Google Scholar]
  23. 23. 
    Christensen T, Amiram M, Dagher S, Trabbic-Carlson K, Shamji MF et al. 2009. Fusion order controls expression level and activity of elastin-like polypeptide fusion proteins. Protein Sci 18:1377–87
    [Google Scholar]
  24. 24. 
    McDaniel JR, Mackay JA, Garcia Quiroz F, Chilkoti A 2010. Recursive directional ligation by plasmid reconstruction allows rapid and seamless cloning of oligomeric genes. Biomacromolecules 11:944–52
    [Google Scholar]
  25. 25. 
    Meyer DE, Chilkoti A. 1999. Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat. Biotechnol. 17:1112–15
    [Google Scholar]
  26. 26. 
    Christensen T, Trabbic-Carlson K, Liu W, Chilkoti A 2007. Purification of recombinant proteins from Escherichia coli at low expression levels by inverse transition cycling. Anal. Biochem. 360:166–68
    [Google Scholar]
  27. 27. 
    Banki MR, Feng L, Wood DW 2005. Simple bioseparations using self-cleaving elastin-like polypeptide tags. Nat. Methods 2:659–62
    [Google Scholar]
  28. 28. 
    Shen Y, Ai H-X, Song R, Liang Z-N, Li J-F, Zhang S-Q 2010. Expression and purification of moricin CM4 and human β-defensins 4 in Escherichia coli using a new technology. Microbiol. Res. 165:713–18
    [Google Scholar]
  29. 29. 
    Trabbic-Carlson K, Liu L, Kim B, Chilkoti A 2004. Expression and purification of recombinant proteins from Escherichia coli: comparison of an elastin-like polypeptide fusion with an oligohistidine fusion. Protein Sci 13:3274–84
    [Google Scholar]
  30. 30. 
    Hassouneh W, MacEwan SR, Chilkoti A 2012. Fusions of elastin-like polypeptides to pharmaceutical proteins. Methods Enzymol 502:215–37
    [Google Scholar]
  31. 31. 
    Gilroy CA, Roberts S, Chilkoti A 2018. Fusion of fibroblast growth factor 21 to a thermally responsive biopolymer forms an injectable depot with sustained anti-diabetic action. J. Control. Release 277:154–64
    [Google Scholar]
  32. 32. 
    Hassouneh W, Christensen T, Chilkoti A 2010. Elastin-like polypeptides as a purification tag for recombinant proteins. Curr. Protoc. Protein Sci. 61:6.11.1–6.11.16
    [Google Scholar]
  33. 33. 
    Ge X, Yang DSC, Trabbic-Carlson K, Kim B, Chilkoti A, Filipe CDM 2005. Self-cleavable stimulus responsive tags for protein purification without chromatography. J. Am. Chem. Soc. 127:11228–29
    [Google Scholar]
  34. 34. 
    Wu W-Y, Mee C, Califano F, Banki R, Wood DW 2006. Recombinant protein purification by self-cleaving aggregation tag. Nat. Protoc. 1:2257
    [Google Scholar]
  35. 35. 
    Bellucci JJ, Amiram M, Bhattacharyya J, McCafferty D, Chilkoti A 2013. Three-in-one chromatography-free purification, tag removal, and site-specific modification of recombinant fusion proteins using sortase A and elastin-like polypeptides. Angew. Chem. Int. Ed. 52:3703–8
    [Google Scholar]
  36. 36. 
    Bellucci JJ, Bhattacharyya J, Chilkoti A 2015. A noncanonical function of sortase enables site-specific conjugation of small molecules to lysine residues in proteins. Angew. Chem. Int. Ed. 54:441–45
    [Google Scholar]
  37. 37. 
    Qi Y, Amiram M, Gao W, McCafferty DG, Chilkoti A 2013. Sortase-catalyzed initiator attachment enables high yield growth of a stealth polymer from the C terminus of a protein. Macromol. Rapid Commun. 34:1256–60
    [Google Scholar]
  38. 38. 
    Gräslund S, Nordlund P, Weigelt J, Hallberg M, Bray J et al. 2008. Protein production and purification. Nat. Methods 5:135–46
    [Google Scholar]
  39. 39. 
    O'Brien FJ. 2011. Biomaterials & scaffolds for tissue engineering. Mater. Today 14:88–95
    [Google Scholar]
  40. 40. 
    Khan F, Tanaka M. 2017. Designing smart biomaterials for tissue engineering. Int. J. Mol. Sci. 19:17
    [Google Scholar]
  41. 41. 
    Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS 2011. Polymeric scaffolds in tissue engineering application: a review. Int. J. Polym. Sci. 2011:290602
    [Google Scholar]
  42. 42. 
    Petsch D, Anspach FB. 2000. Endotoxin removal from protein solutions. J. Biotechnol. 76:97–119
    [Google Scholar]
  43. 43. 
    Urry DW, Haynes B, Harris RD 1986. Temperature dependence of length of elastin and its polypentapeptide. Biochem. Biophys. Res. Commun. 141:749–55
    [Google Scholar]
  44. 44. 
    Zhang Q, Weber C, Schubert US, Hoogenboom R 2017. Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions. Mater. Horiz. 4:109–16
    [Google Scholar]
  45. 45. 
    Li NK, Garcia Quiroz F, Hall CK, Chilkoti A, Yingling YG 2014. Molecular description of the LCST behavior of an elastin-like polypeptide. Biomacromolecules 15:3522–30
    [Google Scholar]
  46. 46. 
    Kammer H-W. 1989. Upper and lower critical solution temperature behaviour in polymer blends and its thermodynamic interpretation. Polymer 30:888–92
    [Google Scholar]
  47. 47. 
    McDaniel JR, Radford DC, Chilkoti A 2013. A unified model for de novo design of elastin-like polypeptides with tunable inverse transition temperatures. Biomacromolecules 14:2866–72
    [Google Scholar]
  48. 48. 
    Nettles DL, Chilkoti A, Setton LA 2010. Applications of elastin-like polypeptides in tissue engineering. Adv. Drug Deliv. Rev. 62:1479–85
    [Google Scholar]
  49. 49. 
    Coenen AMJ, Bernaerts KV, Harings JAW, Jockenhoevel S, Ghazanfari S 2018. Elastic materials for tissue engineering applications: natural, synthetic, and hybrid polymers. Acta Biomater 79:60–82
    [Google Scholar]
  50. 50. 
    McHale MK, Setton LA, Chilkoti A 2005. Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue Eng 11:1768–79
    [Google Scholar]
  51. 51. 
    Le DHT, Sugawara-Narutaki A. 2019. Elastin-like polypeptides as building motifs toward designing functional nanobiomaterials. Mol. Syst. Des. Eng. 4:545–65
    [Google Scholar]
  52. 52. 
    Betre H, Setton LA, Meyer DE, Chilkoti A 2002. Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair. Biomacromolecules 3:910–16
    [Google Scholar]
  53. 53. 
    Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA 2006. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials 27:91–99
    [Google Scholar]
  54. 54. 
    Betre H, Chilkoti A, Setton LA 2002. A two-step chondrocyte recovery system based on thermally sensitive elastin-like polypeptide scaffolds for cartilage tissue engineering. Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society829–30 New York: IEEE
    [Google Scholar]
  55. 55. 
    Urry DW, Haynes B, Zhang H, Harris RD, Prasad KU 1988. Mechanochemical coupling in synthetic polypeptides by modulation of an inverse temperature transition. PNAS 85:3407–11
    [Google Scholar]
  56. 56. 
    Nicol A, Gowda DC, Urry DW 1992. Cell adhesion and growth on synthetic elastomeric matrices containing ARG-GLY–ASP–SER–3. J. Biomed. Mater. Res. 26:393–413
    [Google Scholar]
  57. 57. 
    Trabbic-Carlson K, Setton LA, Chilkoti A 2003. Swelling and mechanical behaviors of chemically cross-linked hydrogels of elastin-like polypeptides. Biomacromolecules 4:572–80
    [Google Scholar]
  58. 58. 
    Lim DW, Nettles DL, Setton LA, Chilkoti A 2007. Rapid cross-linking of elastin-like polypeptides with (hydroxymethyl)phosphines in aqueous solution. Biomacromolecules 8:1463–70
    [Google Scholar]
  59. 59. 
    Nettles DL, Kitaoka K, Hanson NA, Flahiff CM, Mata BA et al. 2008. In situ crosslinking elastin-like polypeptide gels for application to articular cartilage repair in a goat osteochondral defect model. Tissue Eng. Part A 14:1133–40
    [Google Scholar]
  60. 60. 
    Hrabchak C, Rouleau J, Moss I, Woodhouse K, Akens M et al. 2010. Assessment of biocompatibility and initial evaluation of genipin cross-linked elastin-like polypeptides in the treatment of an osteochondral knee defect in rabbits. Acta Biomater 6:2108–15
    [Google Scholar]
  61. 61. 
    Moss IL, Gordon L, Woodhouse KA, Whyne C, Yee AJ 2008. Nucleus pulposus tissue repair in intervertebral disc degeneration: biochemical and mechanical evaluation of a novel human disc cell – hyaluronan/elastin polypeptide scaffold composite Poster 1495 presented at the 54th Annual Meeting of the Orthopaedic Research Society San Francisco:
  62. 62. 
    Lim DW, Nettles DL, Setton LA, Chilkoti A 2008. In situ cross-linking of elastin-like polypeptide block copolymers for tissue repair. Biomacromolecules 9:222–30
    [Google Scholar]
  63. 63. 
    Glassman MJ, Avery RK, Khademhosseini A, Olsen BD 2016. Toughening of thermoresponsive arrested networks of elastin-like polypeptides to engineer cytocompatible tissue scaffolds. Biomacromolecules 17:415–26
    [Google Scholar]
  64. 64. 
    Hochkoeppler A. 2013. Expanding the landscape of recombinant protein production in Escherichia coli. Biotechnol. . Lett 35:1971–81
    [Google Scholar]
  65. 65. 
    Mozhdehi D, Luginbuhl KM, Simon JR, Dzuricky M, Berger R et al. 2018. Genetically encoded lipid–polypeptide hybrid biomaterials that exhibit temperature-triggered hierarchical self-assembly. Nat. Chem. 10:496–505
    [Google Scholar]
  66. 66. 
    Hendricks MP, Sato K, Palmer LC, Stupp SI 2017. Supramolecular assembly of peptide amphiphiles. Acc. Chem. Res. 50:2440–48
    [Google Scholar]
  67. 67. 
    Qiu F, Chen Y, Tang C, Zhao X 2018. Amphiphilic peptides as novel nanomaterials: design, self-assembly and application. Int. J. Nanomed. 13:5003–22
    [Google Scholar]
  68. 68. 
    Roberts S, Harmon TS, Schaal JL, Miao V, Li K et al. 2018. Injectable tissue integrating networks from recombinant polypeptides with tunable order. Nat. Mater. 17:1154–63
    [Google Scholar]
  69. 69. 
    Roberts EG, Rim N-G, Huang W, Tarakanova A, Yeo J et al. 2018. Fabrication and characterization of recombinant silk-elastin-like-protein (SELP) fiber. Macromol. Biosci. 18:1800265
    [Google Scholar]
  70. 70. 
    Cappello J, Crissman J, Dorman M, Mikolajczak M, Textor G et al. 1990. Genetic engineering of structural protein polymers. Biotechnol. Prog. 6:198–202
    [Google Scholar]
  71. 71. 
    Haider M, Cappello J, Ghandehari H, Leong KW 2008. In vitro chondrogenesis of mesenchymal stem cells in recombinant silk-elastinlike hydrogels. Pharm. Res. 25:692–99
    [Google Scholar]
  72. 72. 
    Nettles DL, Vail TP, Flahiff CM, Walkenhorst J, Carter AJ, Setton LA 2005. Injectable silk-elastin for articular cartilage defect repair Poster presented at the 51st Annual Meeting of the Orthopaedic Research Society Washington, DC:
  73. 73. 
    Machado R, Costa A, Sencadas V, Garcia-Arévalo C, Costa CM et al. 2013. Electrospun silk-elastin-like fibre mats for tissue engineering applications. Biomed. Mater. 8:065009
    [Google Scholar]
  74. 74. 
    Xia X-X, Xu Q, Hu X, Qin G, Kaplan DL 2011. Tunable self-assembly of genetically engineered silk–elastin-like protein polymers. Biomacromolecules 12:3844–50
    [Google Scholar]
  75. 75. 
    Willems L, Roberts S, Weitzhandler I, Chilkoti A, Mastrobattista E et al. 2019. Inducible fibril formation of silk–elastin diblocks. ACS Omega 4:9135–43
    [Google Scholar]
  76. 76. 
    Zeng L, Jiang L, Teng W, Cappello J, Zohar Y, Wu X 2014. Engineering aqueous fiber assembly into silk-elastin-like protein polymers. Macromol. Rapid Commun. 35:1273–79
    [Google Scholar]
  77. 77. 
    Johnson S, Ko YK, Varongchayakul N, Lee S, Cappello J et al. 2012. Directed patterning of the self-assembled silk-elastin-like nanofibers using a nanomechanical stimulus. Chem. Commun. 48:10654–56
    [Google Scholar]
  78. 78. 
    MacEwan SR, Chilkoti A. 2014. Applications of elastin-like polypeptides in drug delivery. J. Control. Release 190:314–30
    [Google Scholar]
  79. 79. 
    Liu W, Dreher MR, Chow DC, Zalutsky MR, Chilkoti A 2006. Tracking the in vivo fate of recombinant polypeptides by isotopic labeling. J. Control. Release 114:184–92
    [Google Scholar]
  80. 80. 
    Liu W, Dreher MR, Furgeson DY, Peixoto KV, Yuan H et al. 2006. Tumor accumulation, degradation and pharmacokinetics of elastin-like polypeptides in nude mice. J. Control. Release 116:170–78
    [Google Scholar]
  81. 81. 
    Despanie J, Dhandhukia JP, Hamm-Alvarez SF, MacKay JA 2016. Elastin-like polypeptides: therapeutic applications for an emerging class of nanomedicines. J. Control. Release 240:93–108
    [Google Scholar]
  82. 82. 
    McDaniel JR, Callahan DJ, Chilkoti A 2010. Drug delivery to solid tumors by elastin-like polypeptides. Adv. Drug Deliv. Rev. 62:1456–67
    [Google Scholar]
  83. 83. 
    Saxena R, Nanjan MJ. 2015. Elastin-like polypeptides and their applications in anticancer drug delivery systems: a review. Drug Deliv 22:156–67
    [Google Scholar]
  84. 84. 
    Gilroy CA, Luginbuhl KM, Chilkoti A 2016. Controlled release of biologics for the treatment of type 2 diabetes. J. Control. Release 240:151–64
    [Google Scholar]
  85. 85. 
    Booth JJ, Abbott S, Shimizu S 2012. Mechanism of hydrophobic drug solubilization by small molecule hydrotropes. J. Phys. Chem. B 116:14915–21
    [Google Scholar]
  86. 86. 
    Veronese FM, Mero A. 2008. The impact of PEGylation on biological therapies. BioDrugs 22:315–29
    [Google Scholar]
  87. 87. 
    Patel J, Zhu H, Menassa R, Gyenis L, Richman A, Brandle J 2007. Elastin-like polypeptide fusions enhance the accumulation of recombinant proteins in tobacco leaves. Transgenic Res 16:239–49
    [Google Scholar]
  88. 88. 
    Kaldis A, Ahmad A, Reid A, McGarvey B, Brandle J et al. 2013. High-level production of human interleukin-10 fusions in tobacco cell suspension cultures. Plant Biotechnol. J. 11:535–45
    [Google Scholar]
  89. 89. 
    Conley AJ, Joensuu JJ, Jevnikar AM, Menassa R, Brandle JE 2009. Optimization of elastin-like polypeptide fusions for expression and purification of recombinant proteins in plants. Biotechnol. Bioeng. 103:562–73
    [Google Scholar]
  90. 90. 
    Floss DM, Sack M, Arcalis E, Stadlmann J, Quendler H et al. 2009. Influence of elastin-like peptide fusions on the quantity and quality of a tobacco-derived human immunodeficiency virus-neutralizing antibody. Plant Biotechnol. J. 7:899–913
    [Google Scholar]
  91. 91. 
    Conrad U, Plagmann I, Malchow S, Sack M, Floss DM et al. 2011. ELPylated anti-human TNF therapeutic single-domain antibodies for prevention of lethal septic shock. Plant Biotechnol. J. 9:22–31
    [Google Scholar]
  92. 92. 
    Yeboah A, Cohen RI, Rabolli C, Yarmush ML, Berthiaume F 2016. Elastin-like polypeptides: a strategic fusion partner for biologics. Biotechnol. Bioeng. 113:1617–27
    [Google Scholar]
  93. 93. 
    Liu W, MacKay JA, Dreher MR, Chen M, McDaniel JR et al. 2010. Injectable intratumoral depot of thermally responsive polypeptide-radionuclide conjugates delays tumor progression in a mouse model. J. Control. Release 144:2–9
    [Google Scholar]
  94. 94. 
    Liu W, McDaniel J, Li X, Asai D, Garcia Quiroz F et al. 2012. Brachytherapy using injectable seeds that are self-assembled from genetically encoded polypeptides in situ. Cancer Res 72:5956–65
    [Google Scholar]
  95. 95. 
    Asai D, Xu D, Liu W, Garcia Quiroz F, Callahan DJ et al. 2012. Protein polymer hydrogels by in situ, rapid and reversible self-gelation. Biomaterials 33:5451–58
    [Google Scholar]
  96. 96. 
    McDaniel JR, Weitzhandler I, Prevost S, Vargo KB, Appavou M-S et al. 2014. Noncanonical self-assembly of highly asymmetric genetically encoded polypeptide amphiphiles into cylindrical micelles. Nano Lett 14:6590–98
    [Google Scholar]
  97. 97. 
    Schaal JL, Li X, Mastria E, Bhattacharyya J, Zalutsky MR et al. 2016. Injectable polypeptide micelles that form radiation crosslinked hydrogels in situ for intratumoral radiotherapy. J. Control. Release 228:58–66
    [Google Scholar]
  98. 98. 
    Williams RF, Gleason RE, Soeldner JS 1968. The half-life of endogenous serum immunoreactive insulin in man. Metabolism 17:1025–29
    [Google Scholar]
  99. 99. 
    Hui H FL, Merkel P, Perfetti R 2002. The short half-life of glucagon-like peptide-1 in plasma does not reflect its long-lasting beneficial effects. Eur. J. Endocrinol. 146:863–69
    [Google Scholar]
  100. 100. 
    Varanko AK, Chilkoti A. 2019. Molecular and materials engineering for delivery of peptide drugs to treat type 2 diabetes. Adv. Healthcare Mater. 8:1801509
    [Google Scholar]
  101. 101. 
    Amiram M, Luginbuhl KM, Li X, Feinglos MN, Chilkoti A 2013. A depot-forming glucagon-like peptide-1 fusion protein reduces blood glucose for five days with a single injection. J. Control. Release 172:144–51
    [Google Scholar]
  102. 102. 
    Luginbuhl KM, Schaal JL, Umstead B, Mastria EM, Li X et al. 2017. One-week glucose control via zero-order release kinetics from an injectable depot of glucagon-like peptide-1 fused to a thermosensitive biopolymer. Nat. Biomed. Eng. 1:0078
    [Google Scholar]
  103. 103. 
    Amiram M, Luginbuhl KM, Li X, Feinglos MN, Chilkoti A 2013. Injectable protease-operated depots of glucagon-like peptide-1 provide extended and tunable glucose control. PNAS 110:2792–97
    [Google Scholar]
  104. 104. 
    Wang W, Jashnani A, Aluri SR, Gustafson JA, Hsueh P-Y et al. 2015. A thermo-responsive protein treatment for dry eyes. J. Control. Release 199:156–67
    [Google Scholar]
  105. 105. 
    Rizvi SAA, Saleh AM. 2018. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J. 26:64–70
    [Google Scholar]
  106. 106. 
    Lee TAT, Cooper A, Apkarian RP, Conticello VP 2000. Thermo-reversible self-assembly of nanoparticles derived from elastin-mimetic polypeptides. Adv. Mater. 12:1105–10
    [Google Scholar]
  107. 107. 
    Wright ER, Conticello VP. 2002. Self-assembly of block copolymers derived from elastin-mimetic polypeptide sequences. Adv. Drug Deliv. Rev. 54:1057–73
    [Google Scholar]
  108. 108. 
    Wright ER, McMillan RA, Cooper A, Apkarian RP, Conticello VP 2002. Thermoplastic elastomer hydrogels via self-assembly of an elastin-mimetic triblock polypeptide. Adv. Funct. Mater. 12:149–54
    [Google Scholar]
  109. 109. 
    Dreher MR, Simnick AJ, Fischer K, Smith RJ, Patel A et al. 2008. Temperature triggered self-assembly of polypeptides into multivalent spherical micelles. J. Am. Chem. Soc. 130:687–94
    [Google Scholar]
  110. 110. 
    Simnick AJ, Valencia CA, Liu R, Chilkoti A 2010. Morphing low-affinity ligands into high-avidity nanoparticles by thermally triggered self-assembly of a genetically encoded polymer. ACS Nano 4:2217–27
    [Google Scholar]
  111. 111. 
    Shah M, Edman MC, Janga SR, Shi P, Dhandhukia J et al. 2013. A rapamycin-binding protein polymer nanoparticle shows potent therapeutic activity in suppressing autoimmune dacryoadenitis in a mouse model of Sjögren's syndrome. J. Control. Release 171:269–79
    [Google Scholar]
  112. 112. 
    Shi P, Aluri S, Lin Y-A, Shah M, Edman M et al. 2013. Elastin-based protein polymer nanoparticles carrying drug at both corona and core suppress tumor growth in vivo. J. Control. Release 171:330–38
    [Google Scholar]
  113. 113. 
    Sun G, Hsueh P-Y, Janib SM, Hamm-Alvarez S, MacKay JA 2011. Design and cellular internalization of genetically engineered polypeptide nanoparticles displaying adenovirus knob domain. J. Control. Release 155:218–26
    [Google Scholar]
  114. 114. 
    Hsueh P-Y, Edman MC, Sun G, Shi P, Xu S et al. 2015. Tear-mediated delivery of nanoparticles through transcytosis of the lacrimal gland. J. Control. Release 208:2–13
    [Google Scholar]
  115. 115. 
    Maeda Y, Mochiduki H, Ikeda I 2004. Hydration changes during thermosensitive association of a block copolymer consisting of LCST and UCST blocks. Macromol. Rapid Commun. 25:1330–34
    [Google Scholar]
  116. 116. 
    Arotçaréna M, Heise B, Ishaya S, Laschewsky A 2002. Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity. J. Am. Chem. Soc. 124:3787–93
    [Google Scholar]
  117. 117. 
    Shih Y-J, Chang Y, Deratani A, Quemener D 2012. “Schizophrenic” hemocompatible copolymers via switchable thermoresponsive transition of nonionic/zwitterionic block self-assembly in human blood. Biomacromolecules 13:2849–58
    [Google Scholar]
  118. 118. 
    Yuan W, Zou H, Guo W, Wang A, Ren J 2012. Supramolecular amphiphilic star-branched copolymer: from LCST–UCST transition to temperature–fluorescence responses. J. Mater. Chem. 22:24783–91
    [Google Scholar]
  119. 119. 
    Weitzhandler I, Dzuricky M, Hoffmann I, Garcia Quiroz F, Gradzielski M, Chilkoti A 2017. Micellar self-assembly of recombinant resilin-/elastin-like block copolypeptides. Biomacromolecules 18:2419–26
    [Google Scholar]
  120. 120. 
    Dzuricky M, Xiong S, Weber P, Chilkoti A 2019. Avidity and cell uptake of integrin-targeting polypeptide micelles is strongly shape-dependent. Nano Lett 9:6124–32
    [Google Scholar]
  121. 121. 
    McDaniel JR, Bhattacharyya J, Vargo KB, Hassouneh W, Hammer DA, Chilkoti A 2013. Self-assembly of thermally responsive nanoparticles of a genetically encoded peptide polymer by drug conjugation. Angew. Chem. Int. Ed. 52:1683–87
    [Google Scholar]
  122. 122. 
    MacKay JA, Chen M, McDaniel JR, Liu W, Simnick AJ, Chilkoti A 2009. Self-assembling chimeric polypeptide–doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat. Mater. 8:993–99
    [Google Scholar]
  123. 123. 
    Mastria EM, Cai LY, Kan MJ, Li X, Schaal JL et al. 2018. Nanoparticle formulation improves doxorubicin efficacy by enhancing host antitumor immunity. J. Control. Release 269:364–73
    [Google Scholar]
  124. 124. 
    Bhattacharyya J, Bellucci JJ, Weitzhandler I, McDaniel JR, Spasojevic I et al. 2015. A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models. Nat. Commun. 6:7939
    [Google Scholar]
  125. 125. 
    Bhattacharyya J, Ren X-R, Mook RA, Wang J, Spasojevic I et al. 2017. Niclosamide-conjugated polypeptide nanoparticles inhibit Wnt signaling and colon cancer growth. Nanoscale 9:12709–17
    [Google Scholar]
  126. 126. 
    Bhattacharyya J, Weitzhandler I, Ho SB, McDaniel JR, Li X et al. 2017. Encapsulating a hydrophilic chemotherapeutic into rod-like nanoparticles of a genetically encoded asymmetric triblock polypeptide improves its efficacy. Adv. Funct. Mater. 27:1605421
    [Google Scholar]
  127. 127. 
    Costa SA, Mozhdehi D, Dzuricky MJ, Isaacs FJ, Brustad EM, Chilkoti A 2019. Active targeting of cancer cells by nanobody decorated polypeptide micelle with bio-orthogonally conjugated drug. Nano Lett 19:247–54
    [Google Scholar]
  128. 128. 
    Huang W, Rollett A, Kaplan DL 2015. Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics. Expert Opin. Drug Deliv. 12:779–91
    [Google Scholar]
  129. 129. 
    Megeed Z, Cappello J, Ghandehari H 2002. Genetically engineered silk-elastinlike protein polymers for controlled drug delivery. Adv. Drug Deliv. Rev. 54:1075–91
    [Google Scholar]
  130. 130. 
    Xia X-X, Wang M, Lin Y, Xu Q, Kaplan DL 2014. Hydrophobic drug-triggered self-assembly of nanoparticles from silk-elastin-like protein polymers for drug delivery. Biomacromolecules 15:908–14
    [Google Scholar]
  131. 131. 
    Luginbuhl KM, Mozhdehi D, Dzuricky M, Yousefpour P, Huang FC et al. 2017. Recombinant synthesis of hybrid lipid–peptide polymer fusions that self-assemble and encapsulate hydrophobic drugs. Angew. Chem. Int. Ed. 56:13979–84
    [Google Scholar]
  132. 132. 
    Zheng L, Sundaram HS, Wei Z, Li C, Yuan Z 2017. Applications of zwitterionic polymers. React. Funct. Polym. 118:51–61
    [Google Scholar]
  133. 133. 
    Salmaso S, Caliceti P. 2013. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J. Drug Deliv. 2013:374252
    [Google Scholar]
  134. 134. 
    D'souza AA, Shegokar R. 2016. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv. 13:1257–75
    [Google Scholar]
  135. 135. 
    Harris JM, Chess RB. 2003. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2:214
    [Google Scholar]
  136. 136. 
    Veronese FM, Pasut G. 2005. PEGylation, successful approach to drug delivery. Drug Discov. Today 10:1451–58
    [Google Scholar]
  137. 137. 
    Banskota S, Yousefpour P, Kirmani N, Li X, Chilkoti A 2019. Long circulating genetically encoded intrinsically disordered zwitterionic polypeptides for drug delivery. Biomaterials 192:475–85
    [Google Scholar]
  138. 138. 
    Cao Z, Jiang S. 2012. Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles. Nano Today 7:404–13
    [Google Scholar]
  139. 139. 
    Ladd J, Zhang Z, Chen S, Hower JC, Jiang S 2008. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 9:1357–61
    [Google Scholar]
  140. 140. 
    Yin J, Li G, Ren X, Herrler G 2007. Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. J. Biotechnol. 127:3335–47
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-092419-061127
Loading
/content/journals/10.1146/annurev-bioeng-092419-061127
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error