1932

Abstract

Low-field magnetic resonance imaging (MRI) has recently experienced a renaissance that is largely attributable to the numerous technological advancements made in MRI, including optimized pulse sequences, parallel receive and compressed sensing, improved calibrations and reconstruction algorithms, and the adoption of machine learning for image postprocessing. This new attention on low-field MRI originates from a lack of accessibility to traditional MRI and the need for affordable imaging. Low-field MRI provides a viable option due to its lack of reliance on radio-frequency shielding rooms, expensive liquid helium, and cryogen quench pipes. Moreover, its relatively small size and weight allow for easy and affordable installation in most settings. Rather than replacing conventional MRI, low-field MRI will provide new opportunities for imaging both in developing and developed countries. This article discusses the history of low-field MRI, low-field MRI hardware and software, current devices on the market, advantages and disadvantages, and low-field MRI's global potential.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110122-022903
2024-07-03
2024-12-11
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/26/1/annurev-bioeng-110122-022903.html?itemId=/content/journals/10.1146/annurev-bioeng-110122-022903&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Int. Soc. Magn. Reson. Med. (ISMRM). 2021.. List of accepted abstracts. 2021 ISMRM & SMRT Annu. Meet., ISMRM, Concord, CA:. https://www.ismrm.org/21/accepted_abstracts.pdf
    [Google Scholar]
  2. 2.
    Int. Soc. Magn. Reson. Med. (ISMRM). 2023.. List of accepted abstracts. 2023 ISMRM & ISMRT Annu. Meet., ISMRM, Concord, CA:. https://www.ismrm.org/23/accepted_abstracts.pdf
    [Google Scholar]
  3. 3.
    Geethanath S, Vaughan JT Jr. 2019.. Accessible magnetic resonance imaging: a review. . J. Magn. Reson. Imaging 49::e6577
    [Crossref] [Google Scholar]
  4. 4.
    Ai T, Morelli JN, Hu X, Hao D, Goerner FL, et al. 2012.. A historical overview of magnetic resonance imaging, focusing on technological innovations. . Investig. Radiol. 47::72541
    [Crossref] [Google Scholar]
  5. 5.
    Frija G, Blažić I, Frush DP, Hierath M, Kawooya M, et al. 2021.. How to improve access to medical imaging in low-and middle-income countries?. EClinicalMedicine 38::101034
    [Crossref] [Google Scholar]
  6. 6.
    O'Reilly T, Webb A. 2019.. Deconstructing and reconstructing MRI hardware. . J. Magn. Reson. 306::13438
    [Crossref] [Google Scholar]
  7. 7.
    Mahesh M, Barker PB. 2016.. The MRI helium crisis: past and future. . J. Am. Coll. Radiol. 13::153637
    [Crossref] [Google Scholar]
  8. 8.
    Teplensky JD, Kimberly JR, Hillman AL, Schwartz JS. 1993.. Scope, timing and strategic adjustment in emerging markets: manufacturer strategies and the case of MRI. . Strateg. Manag. J. 14::50527
    [Crossref] [Google Scholar]
  9. 9.
    Ren ZH, Mu WC, Huang SY. 2018.. Design and optimization of a ring-pair permanent magnet array for head imaging in a low-field portable MRI system. . IEEE Trans. Magn. 55::18
    [Crossref] [Google Scholar]
  10. 10.
    Sarracanie M, LaPierre CD, Salameh N, Waddington DE, Witzel T, Rosen MS. 2015.. Low-cost high-performance MRI. . Sci. Rep. 5::15177
    [Crossref] [Google Scholar]
  11. 11.
    Selvaganesan K, Wan Y, Ha Y, Wu B, Hancock K, et al. 2023.. Magnetic resonance imaging using a nonuniform B0 (NuBo) field-cycling magnet. . PLOS ONE 18::e0287344
    [Crossref] [Google Scholar]
  12. 12.
    Miyasaka T, Kajiwara M, Kawasaki A, Okamoto Y, Terada Y. 2023.. Development of a car-mounted mobile MR imaging system for diagnosis of sports-related wrist injury. . Magn. Reson. Med. Sci. 22::37987
    [Crossref] [Google Scholar]
  13. 13.
    Nakagomi M, Kajiwara M, Matsuzaki J, Tanabe K, Hoshiai S, et al. 2019.. Development of a small car-mounted magnetic resonance imaging system for human elbows using a 0.2 T permanent magnet. . J. Magn. Reson. 304::16
    [Crossref] [Google Scholar]
  14. 14.
    Edelman RR. 2014.. The history of MR imaging as seen through the pages of radiology. . Radiology 273::S181200
    [Crossref] [Google Scholar]
  15. 15.
    Rutt BK, Lee DH. 1996.. The impact of field strength on image quality in MRI. . J. Magn. Reson. Imaging 6::5762
    [Crossref] [Google Scholar]
  16. 16.
    Allard J, Amadon A, Aubert G. 2022.. Progress on the commissioning of the Iseult 11.7 T whole-body MRI: first images. . In Proceedings of the 31st Annual Meeting of ISMRM, London, May 7–12, 2022, Abstr. 0382 . Concord, CA:: Int. Soc. Magn. Reson. Med.
    [Google Scholar]
  17. 17.
    Schick F, Pieper CC, Kupczyk P, Almansour H, Keller G, et al. 2021.. 1.5 versus 3 Tesla magnetic resonance imaging: a review of favorite clinical applications for both field strengths—part 1. . Investig. Radiol. 56::68091
    [Crossref] [Google Scholar]
  18. 18.
    Hennig J, Nauerth A, Friedburg H. 1986.. RARE imaging: a fast imaging method for clinical MR. . Magn. Reson. Med. 3::82333
    [Crossref] [Google Scholar]
  19. 19.
    Oshio K, Feinberg DA. 1991.. GRASE (gradient- and spin-echo) imaging: a novel fast MRI technique. . Magn. Reson. Med. 20::34449
    [Crossref] [Google Scholar]
  20. 20.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. 1999.. SENSE: sensitivity encoding for fast MRI. . Magn. Reson. Med. 42::95262
    [Crossref] [Google Scholar]
  21. 21.
    Sodickson DK, Manning WJ. 1997.. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. . Magn. Reson. Med. 38::591603
    [Crossref] [Google Scholar]
  22. 22.
    Lustig M, Donoho D, Pauly JM. 2007.. Sparse MRI: The application of compressed sensing for rapid MR imaging. . Magn. Reson. Med. 58::118295
    [Crossref] [Google Scholar]
  23. 23.
    Lee NG, Ramasawmy R, Lim Y, Campbell-Washburn AE, Nayak KS. 2022.. MaxGIRF: image reconstruction incorporating concomitant field and gradient impulse response function effects. . Magn. Reson. Med. 88::691710
    [Crossref] [Google Scholar]
  24. 24.
    Li S, Chan C, Stockmann JP, Tagare H, Adluru G, et al. 2015.. Algebraic reconstruction technique for parallel imaging reconstruction of undersampled radial data: application to cardiac cine. . Magn. Reson. Med. 73::164353
    [Crossref] [Google Scholar]
  25. 25.
    Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. 2018.. Image reconstruction by domain-transform manifold learning. . Nature 555::48792
    [Crossref] [Google Scholar]
  26. 26.
    Campbell-Washburn AE, Jiang Y, Körzdörfer G, Nittka M, Griswold MA. 2021.. Feasibility of MR fingerprinting using a high-performance 0.55 T MRI system. . Magn. Reson. Imaging 81::8893
    [Crossref] [Google Scholar]
  27. 27.
    Campbell-Washburn AE, Ramasawmy R, Restivo MC, Bhattacharya I, Basar B, et al. 2019.. Opportunities in interventional and diagnostic imaging by using high-performance low-field-strength MRI. . Radiology 293::38493
    [Crossref] [Google Scholar]
  28. 28.
    Siemens Healthineers. 2023.. MAGNETOM Free.Max – open bore MRI scanner. . Siemens Medical Solutions. https://www.siemens-healthineers.com/en-us/magnetic-resonance-imaging/high-v-mri/magnetom-free-max
    [Google Scholar]
  29. 29.
    Laskaris E, Ackermann R, Dorri B, Gross D, Herd K, Minas C. 1995.. A cryogen-free open superconducting magnet for interventional MRI applications. . IEEE Trans. Appl. Supercond. 5::16368
    [Crossref] [Google Scholar]
  30. 30.
    Bertora L. 2016.. MRI magnets based on MgB2. . In MgB2 Superconducting Wires, World Scientific Series in Applications of Superconductivity and Related Phenomena, ed. R. Flükiger , pp. 485536. Singapore:: World Scientific. https://doi.org/10.1142/9789814725590_0018
    [Google Scholar]
  31. 31.
    Cooley CZ, Haskell MW, Cauley SF, Sappo C, Lapierre CD, et al. 2017.. Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm. . IEEE Trans. Magn. 54::5100112
    [Google Scholar]
  32. 32.
    O'Reilly T, Teeuwisse WM, de Gans D, Koolstra K, Webb AG. 2021.. In vivo 3D brain and extremity MRI at 50 mT using a permanent magnet Halbach array. . Magn. Reson. Med. 85::495505
    [Crossref] [Google Scholar]
  33. 33.
    Guallart-Naval T, Algarín JM, Pellicer-Guridi R, Galve F, Vives-Gilabert Y, et al. 2022.. Portable magnetic resonance imaging of patients indoors, outdoors and at home. . Sci. Rep. 12::13147
    [Crossref] [Google Scholar]
  34. 34.
    Wenzel K, Alhamwey H, O'Reilly T, Riemann LT, Silemek B, Winter L. 2021.. B0-shimming methodology for affordable and compact low-field magnetic resonance imaging magnets. . Front. Phys. 9::704566
    [Crossref] [Google Scholar]
  35. 35.
    Cooley CZ, Stockmann JP, Armstrong BD, Sarracanie M, Lev MH, et al. 2015.. Two-dimensional imaging in a lightweight portable MRI scanner without gradient coils. . Magn. Reson. Med. 73::87283
    [Crossref] [Google Scholar]
  36. 36.
    Algarín JM, Díaz-Caballero E, Borreguero J, Galve F, Grau-Ruiz D, et al. 2020.. Simultaneous imaging of hard and soft biological tissues in a low-field dental MRI scanner. . Sci. Rep. 10::21470
    [Crossref] [Google Scholar]
  37. 37.
    McGinley JV, Ristic M, Young IR. 2016.. A permanent MRI magnet for magic angle imaging having its field parallel to the poles. . J. Magn. Reson. 271::6067
    [Crossref] [Google Scholar]
  38. 38.
    Lother S, Schiff SJ, Neuberger T, Jakob PM, Fidler F. 2016.. Design of a mobile, homogeneous, and efficient electromagnet with a large field of view for neonatal low-field MRI. . Magn. Reson. Mater. Phys. Biol. Med. 29::69198
    [Crossref] [Google Scholar]
  39. 39.
    Overweg J. 2008.. MRI main field magnets. . Physics 38::2563
    [Google Scholar]
  40. 40.
    Matter NI, Scott GC, Grafendorfer T, Macovski A, Conolly SM. 2005.. Rapid polarizing field cycling in magnetic resonance imaging. . IEEE Trans. Med. Imaging 25::8493
    [Crossref] [Google Scholar]
  41. 41.
    Noack F. 1986.. NMR field-cycling spectroscopy: principles and applications. . Progress Nuclear Magn. Reson. Spectrosc. 18::171276
    [Crossref] [Google Scholar]
  42. 42.
    Borreguero Morata J, González JM, Pallás E, Rigla JP, Algarín JM, et al. 2022.. Prepolarized MRI of hard tissues and solid-state matter. . NMR Biomed. 35::e4737
    [Crossref] [Google Scholar]
  43. 43.
    Broche LM, Ross PJ, Davies GR, MacLeod M-J, Lurie DJ. 2019.. A whole-body fast field-cycling scanner for clinical molecular imaging studies. . Sci. Rep. 9::10402
    [Crossref] [Google Scholar]
  44. 44.
    Bödenler M, Maier O, Stollberger R, Broche LM, Ross PJ, et al. 2021.. Joint multi-field T1 quantification for fast field-cycling MRI. . Magn. Reson. Med. 86::204963
    [Crossref] [Google Scholar]
  45. 45.
    Shen S, Koonjoo N, Kong X, Rosen MS, Xu Z. 2022.. Gradient coil design and optimization for an ultra-low-field MRI system. . Appl. Magn. Reson. 53::895914
    [Crossref] [Google Scholar]
  46. 46.
    O'Reilly T, Teeuwisse W, Webb A. 2019.. Three-dimensional MRI in a homogenous 27 cm diameter bore Halbach array magnet. . J. Magn. Reson. 307::106578
    [Crossref] [Google Scholar]
  47. 47.
    De Vos B, Fuchs P, O'Reilly T, Webb A, Remis R. 2020.. Gradient coil design and realization for a Halbach-based MRI system. . IEEE Trans. Magn. 56::5100208
    [Crossref] [Google Scholar]
  48. 48.
    Cooley CZ, McDaniel PC, Stockmann JP, Srinivas SA, Cauley SF, et al. 2021.. A portable scanner for magnetic resonance imaging of the brain. . Nat. Biomed. Eng. 5::22939
    [Crossref] [Google Scholar]
  49. 49.
    Volegov PL, Mosher JC, Espy MA, Kraus RH. 2005.. On concomitant gradients in low-field MRI. . J. Magn. Reson. 175::10313
    [Crossref] [Google Scholar]
  50. 50.
    Chandarana H, Bagga B, Huang C, Dane B, Petrocelli R, et al. 2021.. Diagnostic abdominal MR imaging on a prototype low-field 0.55 T scanner operating at two different gradient strengths. . Abdom. Radiol. 46::577280
    [Crossref] [Google Scholar]
  51. 51.
    Negnevitsky V, Vives-Gilabert Y, Algarín JM, Craven-Brightman L, Pellicer-Guridi R, et al. 2023.. MaRCoS, an open-source electronic control system for low-field MRI. . J. Magn. Reson. 350::107424
    [Crossref] [Google Scholar]
  52. 52.
    Zimmerman Cooley C, Stockmann JP, Witzel T, LaPierre C, Mareyam A, et al. 2020.. Design and implementation of a low-cost, tabletop MRI scanner for education and research prototyping. . J. Magn. Res. 310::106625
    [Crossref] [Google Scholar]
  53. 53.
    Open Source Imaging Initiat. 2016.. Open source magnetic resonance imaging: from the community to the community. . Open Source Imaging Initiative (OSI²). https://www.opensourceimaging.org/
    [Google Scholar]
  54. 54.
    Shen S, Xu Z, Koonjoo N, Rosen MS. 2020.. Optimization of a close-fitting volume RF coil for brain imaging at 6.5 mT using linear programming. . IEEE Trans. Biomed. Eng. 68::110614
    [Crossref] [Google Scholar]
  55. 55.
    Martin JB, Srinivas SA, Vaughn CE, Sun H, Griswold MA, Grissom WA. 2022.. Selective excitation localized by the Bloch–Siegert shift and a B1+ gradient. . Magn. Reson. Med. 88::108197
    [Crossref] [Google Scholar]
  56. 56.
    de Vos B, Parsa J, Abdulrazaq Z, Teeuwisse WM, Van Speybroeck CD, et al. 2021.. Design, characterisation and performance of an improved portable and sustainable low-field MRI system. . Front. Phys. 9::701157
    [Crossref] [Google Scholar]
  57. 57.
    Shen S, Kong X, Wu J, He Y, Guo P, Xu Z. 2022.. An optimized quadrature RF receive coil for very-low-field (50.4 mT) magnetic resonance brain imaging. . J. Magn. Reson. 342::107269
    [Crossref] [Google Scholar]
  58. 58.
    Torres E, Froelich T, Wang P, DelaBarre L, Mullen M, et al. 2022.. B1-gradient–based MRI using frequency-modulated Rabi-encoded echoes. . Magn. Reson. Med. 87::67485
    [Crossref] [Google Scholar]
  59. 59.
    Coffey AM, Truong ML, Chekmenev EY. 2013.. Low-field MRI can be more sensitive than high-field MRI. . J. Magn. Reson. 237::16974
    [Crossref] [Google Scholar]
  60. 60.
    Hoult DI, Richards R. 1976.. The signal-to-noise ratio of the nuclear magnetic resonance experiment. . J. Magn. Reson. 24::7185
    [Google Scholar]
  61. 61.
    Peshkovsky AS, Forguez J, Cerioni L, Pusiol DJ. 2005.. RF probe recovery time reduction with a novel active ringing suppression circuit. . J. Magn. Reson. 177::6773
    [Crossref] [Google Scholar]
  62. 62.
    Ha Y, Selvaganesan K, Wu B, Hancock K, Rogers C III, et al. 2022.. Practical method for RF pulse distortion compensation using multiple square pulses for low-field MRI. . PLOS ONE 17::e0273432
    [Crossref] [Google Scholar]
  63. 63.
    Voigt T, Homann H, Katscher U, Doessel O. 2012.. Patient-individual local SAR determination: in vivo measurements and numerical validation. . Magn. Reson. Med. 68::111726
    [Crossref] [Google Scholar]
  64. 64.
    Sharp JC, King SB. 2010.. MRI using radiofrequency magnetic field phase gradients. . Magn. Reson. Med. 63::15161
    [Crossref] [Google Scholar]
  65. 65.
    Stockmann JP, Cooley CZ, Guerin B, Rosen MS, Wald LL. 2016.. Transmit array spatial encoding (TRASE) using broadband WURST pulses for RF spatial encoding in inhomogeneous B0 fields. . J. Magn. Reson. 268::3648
    [Crossref] [Google Scholar]
  66. 66.
    Sun H, Yong S, Sharp JC. 2019.. The twisted solenoid RF phase gradient transmit coil for TRASE imaging. . J. Magn. Reson. 299::13550
    [Crossref] [Google Scholar]
  67. 67.
    Sun H, AlZubaidi A, Purchase A, Sharp JC. 2020.. A geometrically decoupled, twisted solenoid single-axis gradient coil set for TRASE. . Magn. Reson. Med. 83::148498
    [Crossref] [Google Scholar]
  68. 68.
    Sedlock CJ, Purchase AR, Tomanek B, Sharp JC. 2023.. A truncated twisted solenoid RF phase gradient transmit coil for TRASE MRI. . J. Magn. Reson. 347::107361
    [Crossref] [Google Scholar]
  69. 69.
    Froelich T, DelaBarre L, Wang P, Radder J, Torres E, Garwood M. 2023.. Fast spin-echo approach for accelerated B1 gradient–based MRI. . Magn. Reson. Med. 89::220416
    [Crossref] [Google Scholar]
  70. 70.
    Sacolick LI, Wiesinger F, Hancu I, Vogel MW. 2010.. B1 mapping by Bloch-Siegert shift. . Magn. Reson. Med. 63::131522
    [Crossref] [Google Scholar]
  71. 71.
    Kartäusch R, Driessle T, Kampf T, Basse-Lüsebrink TC, Hoelscher UC, et al. 2014.. Spatial phase encoding exploiting the Bloch–Siegert shift effect. . Magn. Reson. Mater. Phys. Biol. Med. 27::36371
    [Crossref] [Google Scholar]
  72. 72.
    Wan Y, Qiu M, Galiana G, Constable RT. 2017.. Phase encoding with Bloch-Siegert effect using parallel transmit. . In Proceedings of the 25th Annual Meeting of ISMRM, Honolulu, HI, April 22–24, 2017, Abstr. 1498 . Concord, CA:: Int. Soc. Magn. Reson. Med.
    [Google Scholar]
  73. 73.
    Hasselwander CJ, Grissom WA. 2017.. Bloch-Siegert phase-encoded MRI with a single RF coil and frequency-swept pulses. . In Proceedings of the 25th Annual Meeting of ISMRM, Honolulu, HI, April 22–24, 2017, Abstr. 5047 . Concord, CA:: Int. Soc. Magn. Reson. Med.
    [Google Scholar]
  74. 74.
    Samardzija A, Selvaganesan K, Ha Y, Zhang Z, Sun C, Sun H, Galiana G, Constable T. 2023. Stop-motion RF for improving spatial resolution in non-linear gradient-free low-field MRI. . In Proceedings of the 32nd Annual Meeting of ISMRM, Toronto, Canada, June 3–8, 2023, Abstr. 1761 . Concord, CA:: Int. Soc. Magn. Reson. Med.
    [Google Scholar]
  75. 75.
    Anand S, Stockmann JP, Wald LL, Witzel T. 2018.. A low-cost (<$500 USD) FPGA-based console capable of real-time control. . Proc. Intl. Soc. Mag. Reson. Med. 26::0948
    [Google Scholar]
  76. 76.
    Guallart-Naval T, O'Reilly T, Algarín JM, Pellicer-Guridi R, Vives-Gilabert Y, et al. 2023.. Benchmarking the performance of a low-cost magnetic resonance control system at multiple sites in the open MaRCoS community. . NMR Biomed. 36::e4825
    [Crossref] [Google Scholar]
  77. 77.
    Dixon WT. 1984.. Simple proton spectroscopic imaging. . Radiology 153::18994
    [Crossref] [Google Scholar]
  78. 78.
    Zi R, Chandarana H, Block KT. 2022.. Fat-separated radial 3D bSSFP imaging at low field using frequency-sweep RF saturation and XD-GRASP reconstruction. . In Proceedings of the 31st Annual Meeting of ISMRM, London, UK, May 7–12, 2022, Abstr. 0318 . Concord, CA:: Int. Soc. Magn. Reson. Med.
    [Google Scholar]
  79. 79.
    Kegler C, Seton H, Hutchison J. 2007.. Prepolarized fast spin-echo pulse sequence for low-field MRI. . Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 57::118084
    [Crossref] [Google Scholar]
  80. 80.
    Keerthivasan MB, Bruno M, Solomon E, Benkert T, Grodzki D, Bhat H, Block KT, Chandarana H. 2022.. A free-breathing hybrid technique for simultaneous T2w, T1w, PDFF, and R2* imaging at 0.55T. . In Proceedings of the 31st Annual Meeting of ISMRM, London, UK, May 7–12, 2022, Abstr. 3932 . Concord, CA:: Int. Soc. Magn. Reson. Med.
    [Google Scholar]
  81. 81.
    Vaughn C, Griswold M, Grissom W. 2020.. MR barcoding: gradient-free MRI using B1-selective parallel transmission. . Proc. Intl. Soc. Mag. Reson. Med. 28::0620
    [Google Scholar]
  82. 82.
    Carr HY, Purcell EM. 1954.. Effects of diffusion on free precession in nuclear magnetic resonance experiments. . Phys. Rev. 94::63038
    [Crossref] [Google Scholar]
  83. 83.
    Meiboom S, Gill D. 1958.. Modified spin-echo method for measuring nuclear relaxation times. . Rev. Sci. Instrum. 29::68891
    [Crossref] [Google Scholar]
  84. 84.
    Javed A, Ramasawmy R, O'Brien K, Mancini C, Su P, et al. 2022.. Self-gated 3D stack-of-spirals UTE pulmonary imaging at 0.55 T. . Magn. Reson. Med. 87::178498
    [Crossref] [Google Scholar]
  85. 85.
    Ayde R, Senft T, Salameh N, Sarracanie M. 2022.. Deep learning for fast low-field MRI acquisitions. . Sci. Rep. 12::11394
    [Crossref] [Google Scholar]
  86. 86.
    de Leeuw den Bouter M, Ippolito G, O'Reilly T, Remis R, van Gijzen M, Webb A. 2022.. Deep learning-based single image super-resolution for low-field MR brain images. . Sci. Rep. 12::6362
    [Crossref] [Google Scholar]
  87. 87.
    Koonjoo N, Zhu B, Bagnall GC, Bhutto D, Rosen M. 2021.. Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction. . Sci. Rep. 11::8248
    [Crossref] [Google Scholar]
  88. 88.
    Zhang Z, Selvaganesan K, Ha Y, Sun C, Samardzija A, Sun H, Galiana G, Constable RT. 2023.. SVD compression for nonlinear encoding imaging with model-based deep learning reconstruction. . In Proceedings of the 32nd Annual Meeting of ISMRM, Toronto, Canada, June 3–8, 2023, Abstr. 0833 . Concord, CA:: Int. Soc. Magn. Reson. Med.
    [Google Scholar]
  89. 89.
    McDaniel PC, Cooley CZ, Stockmann JP, Wald LL. 2019.. The MR cap: a single-sided MRI system designed for potential point-of-care limited field-of-view brain imaging. . Magn. Reson. Med. 82::194660
    [Crossref] [Google Scholar]
  90. 90.
    Radic T. 2006.. Improving the signal-to-noise ratio of surface NMR data due to the remote reference technique. . In Near Surface 200612th EAGE European Meeting of Environmental and Engineering Geophysics. Bunnik, The Netherlands:: Eur. Assoc. Geosci. Eng. https://doi.org/10.3997/2214-4609.201402690
    [Google Scholar]
  91. 91.
    Mueller-Petke M, Yaramanci U. 2010.. Improving the signal-to-noise ratio of surface-NMR measurements by reference channel based noise cancellation. . In Near Surface 201016th EAGE European Meeting of Environmental and Engineering Geophysics. Bunnik, The Netherlands:: Eur. Assoc. Geosci. Eng. https://doi.org/10.3997/2214-4609.20144767
    [Google Scholar]
  92. 92.
    Srinivas SA, Cauley SF, Stockmann JP, Sappo CR, Vaughn CE, et al. 2022.. External dynamic interference estimation and removal (EDITER) for low field MRI. . Magn. Reson. Med. 87::61428
    [Crossref] [Google Scholar]
  93. 93.
    Larsen JJ, Dalgaard E, Auken E. 2014.. Noise cancelling of MRS signals combining model-based removal of powerline harmonics and multichannel Wiener filtering. . Geophys. J. Int. 196::82836
    [Crossref] [Google Scholar]
  94. 94.
    Hoult D, Lauterbur PC. 1979.. The sensitivity of the zeugmatographic experiment involving human samples. . J. Magn. Reson. 34::42533
    [Google Scholar]
  95. 95.
    Marques JP, Simonis FF, Webb AG. 2019.. Low-field MRI: an MR physics perspective. . J. Magn. Reson. Imaging 49::152842
    [Crossref] [Google Scholar]
  96. 96.
    Liu Y, Leong AT, Zhao Y, Xiao L, Mak HK, et al. 2021.. A low-cost and shielding-free ultra-low-field brain MRI scanner. . Nat. Commun. 12::7238
    [Crossref] [Google Scholar]
  97. 97.
    Breit H-C, Vosshenrich J, Hofmann V, Rusche T, Kovacs BK, et al. 2023.. Image quality of lumbar spine imaging at 0.55 T low-field MRI is comparable to conventional 1.5 T MRI–initial observations in healthy volunteers. . Acad. Radiol. 30::244046
    [Crossref] [Google Scholar]
  98. 98.
    Rusche T, Vosshenrich J, Winkel DJ, Donners R, Segeroth M, et al. 2022.. More space, less noise—new-generation low-field magnetic resonance imaging systems can improve patient comfort: a prospective 0.55 T–1.5 T-scanner comparison. . J. Clin. Med. 11::6705
    [Crossref] [Google Scholar]
  99. 99.
    Paramed MRI Unit. 2020.. MROpen EVO: MRI that makes the difference. . ASG Superconductors. https://www.mropenevo.com/uniqueness/
    [Google Scholar]
  100. 100.
    Paramed MRI Unit. 2020.. MROpen EVO: The “open sky” upright MRI with MgB2 superconducting magnet. . ASG Superconductors. https://www.mropenevo.com/mropen-evo/
    [Google Scholar]
  101. 101.
    Stainsby JA, Bindseil GA, Connell IR, Thevathasan G, Curtis AT, et al. 2019.. Imaging at 0.5 T with high-performance system components. . In Proceedings of the 27th Annual Meeting of ISMRM, Montreal, Canada, May 10–13, 2019, Abstr. 1194 . Concord, CA:: Int. Soc. Magn. Reson. Med.
    [Google Scholar]
  102. 102.
    Sheth KN, Mazurek MH, Yuen MM, Cahn BA, Shah JT, et al. 2021.. Assessment of brain injury using portable, low-field magnetic resonance imaging at the bedside of critically ill patients. . JAMA Neurol. 78::4147
    [Crossref] [Google Scholar]
  103. 103.
    Nasri J. 2021.. Office-based, point-of-care, low-field MRI system to guide prostate interventions: recent developments. . Urology 9::8390
    [Google Scholar]
  104. 104.
    Bhat SS, Fernandes TT, Poojar P, da Silva Ferreira M, Rao PC, et al. 2021.. Low-field MRI of stroke: challenges and opportunities. . J. Magn. Reson. Imaging 54::37290
    [Crossref] [Google Scholar]
  105. 105.
    Hovis G, Langdorf M, Dang E, Chow D, Langdorf MI. 2021.. MRI at the bedside: a case report comparing fixed and portable magnetic resonance imaging for suspected stroke. . Cureus 13::e16904
    [Google Scholar]
  106. 106.
    Yuen MM, Prabhat AM, Mazurek MH, Chavva IR, Crawford A, et al. 2022.. Portable, low-field magnetic resonance imaging enables highly accessible and dynamic bedside evaluation of ischemic stroke. . Sci. Adv. 8::eabm3952
    [Crossref] [Google Scholar]
  107. 107.
    Sien ME, Robinson AL, Hu HH, Nitkin CR, Hall AS, et al. 2023.. Feasibility of and experience using a portable MRI scanner in the neonatal intensive care unit. . Arch. Dis. Child. Fetal Neonatal Ed. 108::4550
    [Crossref] [Google Scholar]
  108. 108.
    Campbell-Washburn AE, Malayeri AA, Jones EC, Moss J, Fennelly KP, et al. 2021.. T2-weighted lung imaging using a 0.55-T MRI system. . Radiol. Cardiothorac. Imaging 3::e200611
    [Crossref] [Google Scholar]
  109. 109.
    Tkach JA, Hillman NH, Jobe AH, Loew W, Pratt RG, et al. 2012.. An MRI system for imaging neonates in the NICU: initial feasibility study. . Pediatr. Radiol. 42::134756
    [Crossref] [Google Scholar]
  110. 110.
    Burdjalov V, Srinivasan P, Baumgart S, Spitzer AR. 2002.. Handheld, portable ultrasound in the neonatal intensive care nursery: a new, inexpensive tool for the rapid diagnosis of common neonatal problems. . J. Perinatol. 22::47883
    [Crossref] [Google Scholar]
  111. 111.
    Azour L, Condos R, Keerthivasan MB, Bruno M, Sood TP, et al. 2022.. Low-field 0.55 T MRI for assessment of pulmonary groundglass and fibrosis-like opacities: inter-reader and inter-modality concordance. . Eur. J. Radiol. 156::110515
    [Crossref] [Google Scholar]
  112. 112.
    Tsai L, Mair R, Rosen M, Patz S, Walsworth R. 2008.. An open-access, very-low-field MRI system for posture-dependent 3He human lung imaging. . J. Magn. Reson. 193::27485
    [Crossref] [Google Scholar]
  113. 113.
    Anazodo UC, Ng JJ, Ehiogu B, Obungoloch J, Fatade A, et al. 2023.. A framework for advancing sustainable magnetic resonance imaging access in Africa. . NMR Biomed. 36::e4846
    [Crossref] [Google Scholar]
  114. 114.
    Obungoloch J, Muhumuza I, Teeuwisse W, Harper J, Etoku I, et al. 2023.. On-site construction of a point-of-care low-field MRI system in Africa. . NMR Biomed. 36::e4917
    [Crossref] [Google Scholar]
  115. 115.
    Reeder SB, Jones D. 2023.. President's Corner #39: Africa & the ISMRM, plus the gates of opportunity. . ISMRM President's Corner, April 18. https://blog.ismrm.org/2023/04/18/presidents-corner-39-africa-and-the-ismrm/
    [Google Scholar]
  116. 116.
    Deoni SC, Medeiros P, Deoni AT, Burton P, Beauchemin J, et al. 2022.. Development of a mobile low-field MRI scanner. . Sci. Rep. 12::5690
    [Crossref] [Google Scholar]
  117. 117.
    Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, et al. 2018.. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. . Hepatology 67::32857
    [Crossref] [Google Scholar]
  118. 118.
    Katz JN. 2006.. Lumbar disc disorders and low-back pain: socioeconomic factors and consequences. . JBJS 88::2124
    [Google Scholar]
  119. 119.
    Zhang Q, Zeng L, Chen Y, Lian G, Qian C, et al. 2016.. Pancreatic cancer epidemiology, detection, and management. . Gastroenterol. Res. Pract. 2016::8962321
    [Google Scholar]
  120. 120.
    Ebell MH, Culp MB, Radke TJ. 2016.. A systematic review of symptoms for the diagnosis of ovarian cancer. . Am. J. Prev. Med. 50::38494
    [Crossref] [Google Scholar]
  121. 121.
    Mazurek MH, Cahn BA, Yuen MM, Prabhat AM, Chavva IR, et al. 2021.. Portable, bedside, low-field magnetic resonance imaging for evaluation of intracerebral hemorrhage. . Nat. Commun. 12::5119
    [Crossref] [Google Scholar]
  122. 122.
    De Mil R, Guillaume E, Launay L, Guittet L, Dejardin O, et al. 2019.. Cost-effectiveness analysis of a mobile mammography unit for breast cancer screening to reduce geographic and social health inequalities. . Value Health 22::111118
    [Crossref] [Google Scholar]
  123. 123.
    Siemens Healthineers. 2023.. MAGNETOM Free.Star. . Siemens Medical Solutions. https://www.siemens-healthineers.com/en-us/magnetic-resonance-imaging/high-v-mri/magnetom-free-star
    [Google Scholar]
  124. 124.
    Nimsky C, Ganslandt O, Tomandl B, Buchfelder M, Fahlbusch R. 2002.. Low-field magnetic resonance imaging for intraoperative use in neurosurgery: a 5-year experience. . Eur. Radiol. 12::2690703
    [Crossref] [Google Scholar]
  125. 125.
    García S, Reyes L, Roldán P, Torales J, Halperin I, et al. 2017.. Does low-field intraoperative magnetic resonance improve the results of endoscopic pituitary surgery? Experience of the implementation of a new device in a referral center. . World Neurosurg. 102::10210
    [Crossref] [Google Scholar]
  126. 126.
    Gach HM, Mackey SL, Hausman SE, Jackson DR, Benzinger TL, et al. 2019.. MRI safety risks in the obese: the case of the disposable lighter stored in the pannus. . Radiol. Case Rep. 14::63438
    [Crossref] [Google Scholar]
  127. 127.
    Strach K, Naehle CP, Mühlsteffen A, Hinz M, Bernstein A, et al. 2010.. Low-field magnetic resonance imaging: increased safety for pacemaker patients?. Europace 12::95260
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110122-022903
Loading
/content/journals/10.1146/annurev-bioeng-110122-022903
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error