1932

Abstract

mRNA vaccines have brought about a great revolution in the vaccine fields owing to their simplicity and adaptability in antigen design, potential to induce both humoral and cell-mediated immune responses and demonstrated high efficacy, and rapid and low-cost production by using the same manufacturing platform for different mRNA vaccines. Multiple mRNA vaccines have been investigated for both infectious diseases and cancers, showing significant superiority to other types of vaccines. Although great success of mRNA vaccines has been achieved in the control of the coronavirus disease 2019 pandemic, there are still multiple challenges for the future development of mRNA vaccines. In this review, the most recent developments of mRNA vaccines against both infectious diseases and cancers are summarized for an overview of this field. Moreover, the challenges are also discussed on the basis of these developments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110220-031722
2022-06-06
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/24/1/annurev-bioeng-110220-031722.html?itemId=/content/journals/10.1146/annurev-bioeng-110220-031722&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Teo SP. 2021. Review of COVID-19 mRNA vaccines: BNT162b2 and mRNA-1273. J. Pharm. Pract. https://doi.org/10.1177/08971900211009650
    [Crossref] [Google Scholar]
  2. 2.
    Heine A, Juranek S, Brossart P 2021. Clinical and immunological effects of mRNA vaccines in malignant diseases. Mol. Cancer 20:52
    [Google Scholar]
  3. 3.
    Xu S, Yang K, Li R, Zhang L. 2020. mRNA vaccine era—mechanisms, drug platform and clinical prospection. Int. J. Mol. Sci. 21:6582
    [Google Scholar]
  4. 4.
    Aldosari BN, Alfagih IM, Almurshedi AS. 2021. Lipid nanoparticles as delivery systems for RNA-based vaccines. Pharmaceutics 13:206
    [Google Scholar]
  5. 5.
    Jackson NAC, Kester KE, Casimiro D, Gurunathan S, DeRosa F 2020. The promise of mRNA vaccines: a biotech and industrial perspective. NPJ Vaccines 5:11
    [Google Scholar]
  6. 6.
    Iavarone C, O'hagan DT, Yu D, Delahaye NF, Ulmer JB 2017. Mechanism of action of mRNA-based vaccines. Expert Rev. Vaccines 16:871–81
    [Google Scholar]
  7. 7.
    Hacisuleyman E, Hale C, Saito Y, Blachere NE, Bergh M et al. 2021. Vaccine breakthrough infections with SARS-CoV-2 variants. N. Engl. J. Med. 384:2212–18
    [Google Scholar]
  8. 8.
    Crommelin DJA, Anchordoquy TJ, Volkin DB, Jiskoot W, Mastrobattista E 2021. Addressing the cold reality of mRNA vaccine stability. J. Pharm. Sci. 110:997–1001
    [Google Scholar]
  9. 9.
    Rusnock A. 2009. Catching cowpox: the early spread of smallpox vaccination, 1798–1810. Bull. Hist. Med. 83:17–36
    [Google Scholar]
  10. 10.
    Feldmann H, Czub M, Jones S, Dick D, Garbutt M et al. 2002. Emerging and re-emerging infectious diseases. Med. Microbiol. Immunol. 191:63–74
    [Google Scholar]
  11. 11.
    Ura T, Yamashita A, Mizuki N, Okuda K, Shimada M. 2021. New vaccine production platforms used in developing SARS-CoV-2 vaccine candidates. Vaccine 39:197–201
    [Google Scholar]
  12. 12.
    Yang W, Elankumaran S, Marr LC 2012. Relationship between humidity and influenza A viability in droplets and implications for influenza's seasonality. PLOS ONE 7:e46789
    [Google Scholar]
  13. 13.
    Anderson RM, Vegvari C, Truscott J, Collyer BS 2020. Challenges in creating herd immunity to SARS-CoV-2 infection by mass vaccination. Lancet 396:1614–16
    [Google Scholar]
  14. 14.
    Rauch S, Roth N, Schwendt K, Fotin-Mleczek M, Mueller SO, Petsch B. 2021. mRNA-based SARS-CoV-2 vaccine candidate CVnCoV induces high levels of virus-neutralising antibodies and mediates protection in rodents. NPJ Vaccines 6:57
    [Google Scholar]
  15. 15.
    Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S et al. 2020. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586:567–71
    [Google Scholar]
  16. 16.
    Vogel AB, Kanevsky I, Che Y, Swanson KA, Muik A et al. 2020. A prefusion SARS-CoV-2 spike RNA vaccine is highly immunogenic and prevents lung infection in non-human primates. bioRxiv 2020.09.08.280818. https://doi.org/10.1101/2020.09.08.280818
    [Crossref]
  17. 17.
    Zhang N-N, Li X-F, Deng Y-Q, Zhao H, Huang Y-J et al. 2020. A thermostable mRNA vaccine against COVID-19. Cell 182:1271–83.e16
    [Google Scholar]
  18. 18.
    Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM et al. 2020. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 586:594–99
    [Google Scholar]
  19. 19.
    Lu J, Lu G, Tan S, Xia J, Xiong H et al. 2020. A COVID-19 mRNA vaccine encoding SARS-CoV-2 virus-like particles induces a strong antiviral-like immune response in mice. Cell Res 30:936–39
    [Google Scholar]
  20. 20.
    Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M et al. 2020. An mRNA vaccine against SARS-CoV-2—preliminary report. N. Engl. J. Med. 383:1920–31
    [Google Scholar]
  21. 21.
    Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A et al. 2020. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 586:589–93
    [Google Scholar]
  22. 22.
    Chu L, McPhee R, Huang W, Bennett H, Pajon R et al. 2021. A preliminary report of a randomized controlled phase 2 trial of the safety and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine. Vaccine 39:2791–99
    [Google Scholar]
  23. 23.
    Walsh EE, Frenck RW, Falsey AR, Kitchin N, Absalon J et al. 2020. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N. Engl. J. Med. 383:2439–50
    [Google Scholar]
  24. 24.
    Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S et al. 2020. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384:403–16
    [Google Scholar]
  25. 25.
    Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A et al. 2020. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383:2603–15
    [Google Scholar]
  26. 26.
    Benenson S, Oster Y, Cohen MJ, Nir-Paz R. 2021. BNT162b2 mRNA Covid-19 vaccine effectiveness among health care workers. N. Engl. J. Med. 384:1775–77
    [Google Scholar]
  27. 27.
    Hyams C, Marlow R, Maseko Z, King J, Ward L et al. 2021. Effectiveness of BNT162b2 and ChAdOx1nCoV-19 COVID-19 vaccination at preventing hospitalisations in people aged at least 80 years: a test-negative, case-control study. Lancet Infect. Dis. 21:1539–48
    [Google Scholar]
  28. 28.
    Müller L, Andrée M, Moskorz W, Drexler I, Walotka L et al. 2021. Age-dependent immune response to the Biontech/Pfizer BNT162b2 COVID-19 vaccination. Clin. Infect. Dis. 73:206572
    [Google Scholar]
  29. 29.
    Terpos E, Trougakos IP, Apostolakou F, Charitaki I, Sklirou AD et al. 2021. Age-dependent and gender-dependent antibody responses against SARS-CoV-2 in health workers and octogenarians after vaccination with the BNT162b2 mRNA vaccine. Am. J. Hematol. 96:E257–59
    [Google Scholar]
  30. 30.
    Canaday DH, Carias L, Oyebanji OA, Keresztesy D, Wilk D et al. 2021. Reduced BNT162b2 messenger RNA vaccine response in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-naive nursing home residents. Clin. Infect. Dis. 73:2112–15
    [Google Scholar]
  31. 31.
    Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC et al. 2020. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N. Engl. J. Med. 383:2427–38
    [Google Scholar]
  32. 32.
    Widge AT, Rouphael NG, Jackson LA, Anderson EJ, Roberts PC et al. 2020. Durability of responses after SARS-CoV-2 mRNA-1273 vaccination. N. Engl. J. Med. 384:80–82
    [Google Scholar]
  33. 33.
    Chagla Z. 2021. In high-risk adults, the Moderna vaccine had 94% efficacy against COVID-19 ≥14 d after the 2nd dose. Ann. Intern. Med. 174:JC28
    [Google Scholar]
  34. 34.
    Jones NK, Rivett L, Seaman S, Samworth RJ, Warne B et al. 2021. Single-dose BNT162b2 vaccine protects against asymptomatic SARS-CoV-2 infection. eLife 10:e68808
    [Google Scholar]
  35. 35.
    Lustig Y, Nemet I, Kliker L, Zuckerman N, Yishai R et al. 2021. Neutralizing response against variants after SARS-CoV-2 infection and one dose of BNT162b2. N. Engl. J. Med. 384:2453–54
    [Google Scholar]
  36. 36.
    Kontopoulou K, Ainatzoglou A, Ifantidou A, Nakas CT, Gkounti G et al. 2021. Immunogenicity after the first dose of the BNT162b2 mRNA Covid-19 vaccine: real-world evidence from Greek healthcare workers. J. Med. Microbiol. 70:001387
    [Google Scholar]
  37. 37.
    Torreggiani M, Blanchi S, Fois A, Fessi H, Piccoli GB. 2021. Neutralizing SARS-CoV-2 antibody response in dialysis patients after the first dose of the BNT162b2 mRNA COVID-19 vaccine: the war is far from being won. Kidney Int. 99:1494–96
    [Google Scholar]
  38. 38.
    Herishanu Y, Avivi I, Aharon A, Shefer G, Levi S et al. 2021. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia. Blood 137:3165–73
    [Google Scholar]
  39. 39.
    Monin L, Laing AG, Muñoz-Ruiz M, McKenzie DR, del Molino del Barrio I et al. 2021. Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: interim analysis of a prospective observational study. Lancet Oncol 22:765–78
    [Google Scholar]
  40. 40.
    Jahn M, Korth J, Dorsch O, Anastasiou OE, Sorge-Hädicke B et al. 2021. Humoral response to SARS-CoV-2-vaccination with BNT162b2 (Pfizer-BioNTech) in patients on hemodialysis. Vaccines 9:360
    [Google Scholar]
  41. 41.
    Korth J, Jahn M, Dorsch O, Anastasiou OE, Sorge-Hädicke B et al. 2021. Impaired humoral response in renal transplant recipients to SARS-CoV-2 vaccination with BNT162b2 (Pfizer-BioNTech). Viruses 13:756
    [Google Scholar]
  42. 42.
    Marinaki S, Adamopoulos S, Degiannis D, Roussos S, Pavlopoulou ID et al. 2021. Immunogenicity of SARS-CoV-2 BNT162b2 vaccine in solid organ transplant recipients. Am. J. Transplantat. 21:2913–15
    [Google Scholar]
  43. 43.
    Terpos E, Trougakos IP, Gavriatopoulou M, Papassotiriou I, Sklirou AD et al. 2021. Low neutralizing antibody responses against SARS-CoV-2 in elderly myeloma patients after the first BNT162b2 vaccine dose. Blood 137:3674–76
    [Google Scholar]
  44. 44.
    Benotmane I, Gautier-Vargas G, Cognard N, Olagne J, Heibel F et al. 2021. Low immunization rates among kidney transplant recipients who received 2 doses of the mRNA-1273 SARS-CoV-2 vaccine. Kidney Int 99:1498–1500
    [Google Scholar]
  45. 45.
    Boyarsky BJ, Werbel WA, Avery RK, Tobian AAR, Massie AB et al. 2021. Immunogenicity of a single dose of SARS-CoV-2 messenger RNA vaccine in solid organ transplant recipients. JAMA 325:1784–86
    [Google Scholar]
  46. 46.
    Alexander JL, Moran GW, Gaya DR, Raine T, Hart A et al. 2021. SARS-CoV-2 vaccination for patients with inflammatory bowel disease: a British Society of Gastroenterology Inflammatory Bowel Disease section and IBD Clinical Research Group position statement. Lancet Gastroenterol. Hepatol. 6:218–24
    [Google Scholar]
  47. 47.
    Krammer F, Srivastava K, Alshammary H, Amoako AA, Awawda MH et al. 2021. Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N. Engl. J. Med. 384:1372–74
    [Google Scholar]
  48. 48.
    Garcia-Beltran WF, Lam EC, St. Denis K, Nitido AD, Garcia ZH et al. 2021. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 184:2372–83.e9
    [Google Scholar]
  49. 49.
    Shen X, Tang H, Pajon R, Smith G, Glenn GM et al. 2021. Neutralization of SARS-CoV-2 variants B.1.429 and B.1.351. N. Engl. J. Med. 384:2352–54
    [Google Scholar]
  50. 50.
    Pierson TC, Diamond MS 2020. The continued threat of emerging flaviviruses. Nat. Microbiol. 5:796–812
    [Google Scholar]
  51. 51.
    Samanovic MI, Cornelius AR, Gray-Gaillard SL, Allen JR, Karmacharya T et al. 2021. Robust immune responses after one dose of BNT162b2 mRNA vaccine dose in SARS-CoV-2 experienced individuals. medRxiv 2021.02.07.21251311. https://doi.org/10.1101/2021.02.07.21251311
    [Crossref]
  52. 52.
    Blain H, Tuaillon E, Gamon L, Pisoni A, Miot S et al. 2021. Spike antibody levels of nursing home residents with or without prior COVID-19 3 weeks after a single BNT162b2 vaccine dose. JAMA 325:1898–99
    [Google Scholar]
  53. 53.
    Bradley T, Grundberg E, Selvarangan R 2021. Antibody responses boosted in seropositive healthcare workers after single dose of SARS-CoV-2 mRNA vaccine. medRxiv 2021.02.03.21251078. https://www.medrxiv.org/content/10.1101/2021.02.03.21251078
  54. 54.
    Bournazos S, Gupta A, Ravetch JV. 2020. The role of IgG Fc receptors in antibody-dependent enhancement. Nat. Rev. Immunol. 20:633–43
    [Google Scholar]
  55. 55.
    Wollner CJ, Richner JM. 2021. mRNA vaccines against flaviviruses. Vaccines 9:148
    [Google Scholar]
  56. 56.
    Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW et al. 2013. The global distribution and burden of dengue. Nature 496:504–7
    [Google Scholar]
  57. 57.
    Katzelnick LC, Gresh L, Halloran ME, Mercado JC, Kuan G et al. 2017. Antibody-dependent enhancement of severe dengue disease in humans. Science 358:929–32
    [Google Scholar]
  58. 58.
    Sridhar S, Luedtke A, Langevin E, Zhu M, Bonaparte M et al. 2018. Effect of dengue serostatus on dengue vaccine safety and efficacy. N. Engl. J. Med. 379:327–40
    [Google Scholar]
  59. 59.
    Roth C, Cantaert T, Colas C, Prot M, Casadémont I et al. 2019. A modified mRNA vaccine targeting immunodominant NS epitopes protects against dengue virus infection in HLA class I transgenic mice. Front. Immunol. 10:1424
    [Google Scholar]
  60. 60.
    Wollner CJ, Richner M, Hassert MA, Pinto AK, Brien JD et al. 2021. A dengue virus serotype 1 mRNA-LNP vaccine elicits protective immune responses. J. Virol. 95:e02482–20
    [Google Scholar]
  61. 61.
    Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V et al. 2017. Modified mRNA vaccines protect against Zika virus infection. Cell 168:1114–25.e10
    [Google Scholar]
  62. 62.
    Pardi N, Hogan MJ, Pelc RS, Muramatsu H, Andersen H et al. 2017. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 543:248–51
    [Google Scholar]
  63. 63.
    Stettler K, Beltramello M, Espinosa DA, Graham V, Cassotta A et al. 2016. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353:823–26
    [Google Scholar]
  64. 64.
    Zhong Z, Portela Catani JP, Mc Cafferty S, Couck L, Van Den Broeck W et al. 2019. Immunogenicity and protection efficacy of a naked self-replicating mRNA-based Zika virus vaccine. Vaccines 7:96
    [Google Scholar]
  65. 65.
    Luisi K, Morabito KM, Burgomaster KE, Sharma M, Kong W-P et al. 2020. Development of a potent Zika virus vaccine using self-amplifying messenger RNA. Sci. Adv. 6:eaba5068
    [Google Scholar]
  66. 66.
    Erasmus JH, Khandhar AP, Guderian J, Granger B, Archer J et al. 2018. A nanostructured lipid carrier for delivery of a replicating viral RNA provides single, low-dose protection against Zika. Mol. Ther. 26:2507–22
    [Google Scholar]
  67. 67.
    Harding AT, Heaton NS. 2018. Efforts to improve the seasonal influenza vaccine. Vaccines 6:19
    [Google Scholar]
  68. 68.
    Nachbagauer R, Palese P. 2020. Is a universal influenza virus vaccine possible?. Annu. Rev. Med. 71:315–27
    [Google Scholar]
  69. 69.
    Bahl K, Senn JJ, Yuzhakov O, Bulychev A, Brito LA et al. 2017. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther. 25:1316–27
    [Google Scholar]
  70. 70.
    Feldman RA, Fuhr R, Smolenov I, Ribeiro A, Panther L et al. 2019. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 37:3326–34
    [Google Scholar]
  71. 71.
    Zhuang X, Qi Y, Wang M, Yu N, Nan F et al. 2020. mRNA vaccines encoding the HA protein of influenza A H1N1 virus delivered by cationic lipid nanoparticles induce protective immune responses in mice. Vaccines 8:123
    [Google Scholar]
  72. 72.
    De Groot AS, Ardito M, Terry F, Levitz L, Ross T et al. 2013. Low immunogenicity predicted for emerging avian-origin H7N9: implication for influenza vaccine design. Hum. Vaccin. Immunother. 9:950–56
    [Google Scholar]
  73. 73.
    Freyn AW, Ramos da Silva J, Rosado VC, Bliss CM, Pine M et al. 2020. A multi-targeting, nucleoside-modified mRNA influenza virus vaccine provides broad protection in mice. Mol. Ther. 28:1569–84
    [Google Scholar]
  74. 74.
    Armbruster N, Jasny E, Petsch B. 2019. Advances in RNA vaccines for preventive indications: a case study of a vaccine against rabies. Vaccines 7:132
    [Google Scholar]
  75. 75.
    Hicks DJ, Fooks AR, Johnson N. 2012. Developments in rabies vaccines. Clin. Exp. Immunol. 169:199–204
    [Google Scholar]
  76. 76.
    Lavan RP, King AIM, Sutton DJ, Tunceli K. 2017. Rationale and support for a One Health program for canine vaccination as the most cost-effective means of controlling zoonotic rabies in endemic settings. Vaccine 35:1668–74
    [Google Scholar]
  77. 77.
    Maruggi G, Zhang C, Li J, Ulmer JB, Yu D. 2019. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol. Ther. 27:757–72
    [Google Scholar]
  78. 78.
    Aldrich C, Leroux–Roels I, Huang KB, Bica MA, Loeliger E et al. 2021. Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers: a phase 1 trial. Vaccine 39:1310–18
    [Google Scholar]
  79. 79.
    Lutz J, Lazzaro S, Habbeddine M, Schmidt KE, Baumhof P et al. 2017. Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines. NPJ Vaccines 2:29
    [Google Scholar]
  80. 80.
    Abdel-Hakeem MS, Shoukry NH 2014. Protective immunity against hepatitis C: many shades of gray. Front. Immunol. 5:274
    [Google Scholar]
  81. 81.
    Lopez Angel CJ, Tomaras GD 2020. Bringing the path toward an HIV-1 vaccine into focus. PLOS Pathogens 16:e1008663
    [Google Scholar]
  82. 82.
    Barouch DH. 2008. Challenges in the development of an HIV-1 vaccine. Nature 455:613–19
    [Google Scholar]
  83. 83.
    Leal L, Guardo AC, Morón-López S, Salgado M, Mothe B et al. 2018. Phase I clinical trial of an intranodally administered mRNA-based therapeutic vaccine against HIV-1 infection. AIDS 32:2533–45
    [Google Scholar]
  84. 84.
    de Jong W, Leal L, Buyze J, Pannus P, Guardo A et al. 2019. Therapeutic vaccine in chronically HIV-1-infected patients: a randomized, double-blind, placebo-controlled phase IIa trial with HTI-TriMix. Vaccines 7:209
    [Google Scholar]
  85. 85.
    Pardi N, LaBranche CC, Ferrari G, Cain DW, Tombácz I et al. 2019. Characterization of HIV-1 nucleoside-modified mRNA vaccines in rabbits and rhesus macaques. Mol. Ther. Nucleic Acids 15:36–47
    [Google Scholar]
  86. 86.
    Saunders KO, Pardi N, Parks R, Santra S, Mu Z et al. 2021. Lipid nanoparticle encapsulated nucleoside-modified mRNA vaccines elicit polyfunctional HIV-1 antibodies comparable to proteins in nonhuman primates. NPJ Vaccines 6:50
    [Google Scholar]
  87. 87.
    Esteban I, Pastor-Quiñones C, Usero L, Plana M, García F, Leal L. 2021. In the era of mRNA vaccines, is there any hope for HIV functional cure?. Viruses 13:501
    [Google Scholar]
  88. 88.
    Sharifnia Z, Bandehpour M, Kazemi B, Zarghami N 2019. Design and development of modified mRNA encoding core antigen of hepatitis C virus: a possible application in vaccine production. Iran. Biomed. J. 23:57–67
    [Google Scholar]
  89. 89.
    Yu H, Babiuk LA, Van Drunen Littel-van den Hurk S. 2008. Strategies for loading dendritic cells with hepatitis C NS5a antigen and inducing protective immunity. J. Viral Hepat. 15:459–70
    [Google Scholar]
  90. 90.
    Kovalakova P, Cizmas L, McDonald TJ, Marsalek B, Feng M, Sharma VK 2020. Occurrence and toxicity of antibiotics in the aquatic environment: a review. Chemosphere 251:126351
    [Google Scholar]
  91. 91.
    Wang Q, Xue Q, Chen T, Li J, Liu Y et al. 2021. Recent advances in electrochemical sensors for antibiotics and their applications. Chin. Chem. Lett. 32:609–19
    [Google Scholar]
  92. 92.
    Maruggi G, Chiarot E, Giovani C, Buccato S, Bonacci S et al. 2017. Immunogenicity and protective efficacy induced by self-amplifying mRNA vaccines encoding bacterial antigens. Vaccine 35:361–68
    [Google Scholar]
  93. 93.
    Mallory KL, Taylor JA, Zou X, Waghela IN, Schneider CG et al. 2021. Messenger RNA expressing PfCSP induces functional, protective immune responses against malaria in mice. NPJ Vaccines 6:84
    [Google Scholar]
  94. 94.
    Handy CE, Antonarakis ES. 2018. Sipuleucel-T for the treatment of prostate cancer: novel insights and future directions. Future Oncol 14:907–17
    [Google Scholar]
  95. 95.
    Song Q, Zhang C-D, Wu X-H. 2018. Therapeutic cancer vaccines: from initial findings to prospects. Immunol. Lett. 196:11–21
    [Google Scholar]
  96. 96.
    Zhang H, You X, Wang X, Cui L, Wang Z et al. 2021. Delivery of mRNA vaccine with a lipid-like material potentiates antitumor efficacy through Toll-like receptor 4 signaling. PNAS 118:e2005191118
    [Google Scholar]
  97. 97.
    Miao L, Zhang Y, Huang L. 2021. mRNA vaccine for cancer immunotherapy. Mol. Cancer 20:41
    [Google Scholar]
  98. 98.
    Santos PM, Butterfield LH. 2018. Dendritic cell–based cancer vaccines. J. Immunol. 200:443–49
    [Google Scholar]
  99. 99.
    Dörrie J, Schaft N, Schuler G, Schuler-Thurner B. 2020. Therapeutic cancer vaccination with ex vivo RNA-transfected dendritic cells—an update. Pharmaceutics 12:92
    [Google Scholar]
  100. 100.
    Gerer KF, Hoyer S, Dörrie J, Schaft N 2017. Electroporation of mRNA as universal technology platform to transfect a variety of primary cells with antigens and functional proteins. RNA Vaccines: Methods and Protocols T Kramps, K Elbers 165–78 New York: Springer
    [Google Scholar]
  101. 101.
    McCullough KC, Bassi I, Milona P, Suter R, Thomann-Harwood L et al. 2014. Self-replicating replicon-RNA delivery to dendritic cells by chitosan-nanoparticles for translation in vitro and in vivo. Mol. Ther. Nucleic Acids 3:e173
    [Google Scholar]
  102. 102.
    Dewitte H, Van Lint S, Heirman C, Thielemans K, De Smedt SC et al. 2014. The potential of antigen and TriMix sonoporation using mRNA-loaded microbubbles for ultrasound-triggered cancer immunotherapy. J. Control. Release 194:28–36
    [Google Scholar]
  103. 103.
    Tateshita N, Miura N, Tanaka H, Masuda T, Ohtsuki S et al. 2019. Development of a lipoplex-type mRNA carrier composed of an ionizable lipid with a vitamin E scaffold and the KALA peptide for use as an ex vivo dendritic cell-based cancer vaccine. J. Control. Release 310:36–46
    [Google Scholar]
  104. 104.
    Dannull J, Haley NR, Archer G, Nair S, Boczkowski D et al. 2013. Melanoma immunotherapy using mature DCs expressing the constitutive proteasome. J. Clin. Investig. 123:3135–45
    [Google Scholar]
  105. 105.
    Kongsted P, Borch TH, Ellebaek E, Iversen TZ, Andersen R et al. 2017. Dendritic cell vaccination in combination with docetaxel for patients with metastatic castration-resistant prostate cancer: a randomized phase II study. Cytotherapy 19:500–13
    [Google Scholar]
  106. 106.
    Chiang CL-L, Coukos G, Kandalaft LE. 2015. Whole tumor antigen vaccines: Where are we?. Vaccines 3:344–72
    [Google Scholar]
  107. 107.
    Arance Fernandez AM, Baurain J-F, Vulsteke C, Rutten A, Soria A et al. 2019. A phase I study (E011-MEL) of a TriMix-based mRNA immunotherapy (ECI-006) in resected melanoma patients: analysis of safety and immunogenicity. Am. Soc. Clin. Oncol. 37:2641
    [Google Scholar]
  108. 108.
    Jansen Y, Kruse V, Corthals J, Schats K, van Dam P-J et al. 2020. A randomized controlled phase II clinical trial on mRNA electroporated autologous monocyte-derived dendritic cells (TriMixDC-MEL) as adjuvant treatment for stage III/IV melanoma patients who are disease-free following the resection of macrometastases. Cancer Immunol. Immunother. 69:2589–98
    [Google Scholar]
  109. 109.
    Chung DJ, Carvajal RD, Postow MA, Sharma S, Pronschinske KB et al. 2018. Langerhans-type dendritic cells electroporated with TRP-2 mRNA stimulate cellular immunity against melanoma: results of a phase I vaccine trial. Oncoimmunology 7:e1372081
    [Google Scholar]
  110. 110.
    Wilgenhof S, Van Nuffel A, Benteyn D, Corthals J, Aerts C et al. 2013. A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann. Oncol. 24:2686–93
    [Google Scholar]
  111. 111.
    De Keersmaecker B, Claerhout S, Carrasco J, Bar I, Corthals J et al. 2020. TriMix and tumor antigen mRNA electroporated dendritic cell vaccination plus ipilimumab: link between T-cell activation and clinical responses in advanced melanoma. J. Immunother. Cancer 8:e000329
    [Google Scholar]
  112. 112.
    Gu Y-Z, Zhao X, Song X-R. 2020. Ex vivo pulsed dendritic cell vaccination against cancer. Acta Pharmacol. Sin. 41:959–69
    [Google Scholar]
  113. 113.
    Jahanafrooz Z, Baradaran B, Mosafer J, Hashemzaei M, Rezaei T et al. 2020. Comparison of DNA and mRNA vaccines against cancer. Drug Discov. Today 25:552–60
    [Google Scholar]
  114. 114.
    Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A et al. 2018. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci. Transl. Med. 10:eaao5931
    [Google Scholar]
  115. 115.
    Snell LM, McGaha TL, Brooks DG. 2017. Type I interferon in chronic virus infection and cancer. Trends Immunol 38:542–57
    [Google Scholar]
  116. 116.
    Islam MA, Rice J, Reesor E, Zope H, Tao W et al. 2021. Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice. Biomaterials 266:120431
    [Google Scholar]
  117. 117.
    Kallen K-J, Heidenreich R, Schnee M, Petsch B, Schlake T et al. 2013. A novel, disruptive vaccination technology: self-adjuvanted RNActive® vaccines. Hum. Vaccin. Immunother. 9:2263–76
    [Google Scholar]
  118. 118.
    Miao L, Li L, Huang Y, Delcassian D, Chahal J et al. 2019. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37:1174–85
    [Google Scholar]
  119. 119.
    Luo M, Wang H, Wang Z, Cai H, Lu Z et al. 2017. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 12:648–54
    [Google Scholar]
  120. 120.
    Yarchoan M, Johnson BA III, Lutz ER, Laheru DA, Jaffee EM. 2017. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 17:209–22
    [Google Scholar]
  121. 121.
    Sahin U, Derhovanessian E, Miller M, Kloke B-P, Simon P et al. 2017. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547:222–26
    [Google Scholar]
  122. 122.
    Braiteh F, LoRusso P, Balmanoukian A, Klempner S, Camidge D et al. 2020. A phase Ia study to evaluate RO7198457, an individualized neoantigen specific immunotherapy (iNeST), in patients with locally advanced or metastatic solid tumors. Proceedings of the Annual Meeting of the American Association for Cancer Research 2020, Philadelphia, April 27–28 and June 22–24, 2020 Abstract CT169 Philadelphia: Am. Assoc. Cancer Res.
    [Google Scholar]
  123. 123.
    Linares-Fernández S, Lacroix C, Exposito J-Y, Verrier B. 2020. Tailoring mRNA vaccine to balance innate/adaptive immune response. Trends Mol. Med. 26:311–23
    [Google Scholar]
  124. 124.
    Nelson J, Sorensen EW, Mintri S, Rabideau AE, Zheng W et al. 2020. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci. Adv. 6:eaaz6893
    [Google Scholar]
  125. 125.
    Cohen J. 2021. What went wrong with CureVac's mRNA vaccine?. Science 372:65491381
    [Google Scholar]
  126. 126.
    Roth N, Schoen J, Hoffmann D, Thran M, Thess A et al. 2021. CV2CoV, an enhanced mRNA-based SARS-CoV-2 vaccine candidate, supports higher protein expression and improved immunogenicity in rats. bioRxiv 2021.05.13.443734. https://doi.org/10.1101/2021.05.13.443734
    [Crossref]
  127. 127.
    Ndeupen S, Qin Z, Jacobsen S, Estanbouli H, Bouteau A, Igyártó BZ. 2021. The mRNA-LNP platform's lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. bioRxiv 2021.03.04.430128. https://doi.org/10.1101/2021.03.04.430128
    [Crossref]
  128. 128.
    Sato Y, Matsui H, Yamamoto N, Sato R, Munakata T et al. 2017. Highly specific delivery of siRNA to hepatocytes circumvents endothelial cell-mediated lipid nanoparticle-associated toxicity leading to the safe and efficacious decrease in the hepatitis B virus. J. Control. Release 266:216–25
    [Google Scholar]
  129. 129.
    Cott E, deBruyn E, Corum J. 2021. How Pfizer makes its Covid-19 vaccine. New York Times Apr. 28. https://www.nytimes.com/interactive/2021/health/pfizer-coronavirus-vaccine.html
    [Google Scholar]
  130. 130.
    Rosa SS, Prazeres DMF, Azevedo AM, Marques MPC. 2021. mRNA vaccines manufacturing: challenges and bottlenecks. Vaccine 39:2190–200
    [Google Scholar]
  131. 131.
    Lin Q, Zhao Q, Lev B. 2020. Cold chain transportation decision in the vaccine supply chain. Eur. J. Oper. Res. 283:182–95
    [Google Scholar]
  132. 132.
    Holm MR, Poland GA. 2021. Critical aspects of packaging, storage, preparation, and administration of mRNA and adenovirus-vectored COVID-19 vaccines for optimal efficacy. Vaccine 39:457–59
    [Google Scholar]
  133. 133.
    Stitz L, Vogel A, Schnee M, Voss D, Rauch S et al. 2017. A thermostable messenger RNA based vaccine against rabies. PLOS Negl. Trop. Dis. 11:e0006108
    [Google Scholar]
  134. 134.
    Zhao P, Hou X, Yan J, Du S, Xue Y et al. 2020. Long-term storage of lipid-like nanoparticles for mRNA delivery. Bioact. Mater. 5:358–63
    [Google Scholar]
  135. 135.
    Shimabukuro TT, Cole M, Su JR 2021. Reports of anaphylaxis after receipt of mRNA COVID-19 vaccines in the US—December 14, 2020–January 18, 2021. JAMA 325:1101–2
    [Google Scholar]
  136. 136.
    Blumenthal KG, Robinson LB, Camargo CA Jr., Shenoy ES, Banerji A et al. 2021. Acute allergic reactions to mRNA COVID-19 vaccines. JAMA 325:1562–65
    [Google Scholar]
  137. 137.
    Yang Q, Jacobs TM, McCallen JD, Moore DT, Huckaby JT et al. 2016. Analysis of pre-existing IgG and IgM antibodies against polyethylene glycol (PEG) in the general population. Anal. Chem. 88:11804–12
    [Google Scholar]
  138. 138.
    Abu Mouch S, Roguin A, Hellou E, Ishai A, Shoshan U et al. 2021. Myocarditis following COVID-19 mRNA vaccination. Vaccine 39:3790–93
    [Google Scholar]
  139. 139.
    Muthukumar A, Narasimhan M, Li Q-Z, Mahimainathan L, Hitto I et al. 2021. In depth evaluation of a case of presumed myocarditis following the second dose of COVID-19 mRNA vaccine. Circulation 144:487–98
    [Google Scholar]
  140. 140.
    Au L, Fendler A, Shepherd ST, Rzeniewicz K, Cerrone M et al. 2021. Cytokine release syndrome in a patient with colorectal cancer after vaccination with BNT162b2. Nat. Med. 27:1362–66
    [Google Scholar]
  141. 141.
    Dias L, Soares-dos-Reis R, Meira J, Ferrão D, Soares PR et al. 2021. Cerebral venous thrombosis after BNT162b2 mRNA SARS-CoV-2 vaccine. J. Stroke Cerebrovasc. Dis. 30:105906
    [Google Scholar]
  142. 142.
    Schieffelin JS, Norton EB, Kolls JK 2021. What should define a SARS-CoV-2 “breakthrough” infection?. J. Clin. Investig. 131:151186
    [Google Scholar]
  143. 143.
    Beatty GL, Gladney WL. 2015. Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 21:687–92
    [Google Scholar]
  144. 144.
    Duffy S. 2018. Why are RNA virus mutation rates so damn high?. PLOS Biol. 16:e3000003
    [Google Scholar]
  145. 145.
    Kupferschmidt K, Wadman M. 2021. Delta variant triggers new phase in the pandemic. Science 372:65491375–76
    [Google Scholar]
  146. 146.
    Choi A, Koch M, Wu K, Dixon G, Oestreicher J et al. 2021. Serum neutralizing activity of mRNA-1273 against SARS-CoV-2 variants. J. Virol. 95:e0131321
    [Google Scholar]
  147. 147.
    Nemet I, Kliker L, Lustig Y, Zuckerman N, Erster O et al. 2021. Third BNT162b2 vaccination neutralization of SARS-CoV-2 omicron infection. N. Engl. J. Med. 386:492–94
    [Google Scholar]
  148. 148.
    Wu K, Choi A, Koch M, Elbashir S, Ma L et al. 2021. Variant SARS-CoV-2 mRNA vaccines confer broad neutralization as primary or booster series in mice. Vaccine 39:7394–400
    [Google Scholar]
  149. 149.
    Carter B, Chen J, Kaseke C, Dimitrakakis A, Gaiha GD et al. 2021. Preliminary immunogenicity of a pan-COVID-19 T cell vaccine in HLA-A*02:01 mice. bioRxiv 2021.05.02.442052. https://doi.org/10.1101/2021.05.02.442052
    [Crossref]
  150. 150.
    Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA et al. 2019. Neoantigen-directed immune escape in lung cancer evolution. Nature 567:479–85
    [Google Scholar]
  151. 151.
    Wang Y, Zhang L, Xu Z, Miao L, Huang L. 2018. mRNA vaccine with antigen-specific checkpoint blockade induces an enhanced immune response against established melanoma. Mol. Ther. 26:420–34
    [Google Scholar]
  152. 152.
    Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA et al. 2016. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 7:10501
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110220-031722
Loading
/content/journals/10.1146/annurev-bioeng-110220-031722
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error