1932

Abstract

The success of anticancer therapies is often limited by heterogeneity within and between tumors. While much attention has been devoted to understanding the intrinsic molecular diversity of tumor cells, the surrounding tissue microenvironment is also highly complex and coevolves with tumor cells to drive clinical outcomes. Here, we propose that diverse types of solid tumors share common physical motifs that change in time and space, serving as universal regulators of malignancy. We use breast cancer and glioblastoma as instructive examples and highlight how invasion in both diseases is driven by the appropriation of structural guidance cues, contact-dependent heterotypic interactions with stromal cells, and elevated interstitial fluid pressure and flow. We discuss how engineering strategies show increasing value for measuring and modeling these physical propertiesfor mechanistic studies. Moreover, engineered systems offer great promise for developing and testing novel therapies that improve patient prognosis by normalizing the physical tumor microenvironment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110220-115419
2022-06-06
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/24/1/annurev-bioeng-110220-115419.html?itemId=/content/journals/10.1146/annurev-bioeng-110220-115419&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Vogelstein B, Kinzler KW. 1993. The multistep nature of cancer. Trends Genet 9:4138–41
    [Google Scholar]
  2. 2.
    Fidler IJ, Poste G. 2008. The “seed and soil” hypothesis revisited. Lancet Oncol 9:8808
    [Google Scholar]
  3. 3.
    Kenny PA, Lee GY, Bissell MJ. 2007. Targeting the tumor microenvironment. Front. Biosci. 12:3468–74
    [Google Scholar]
  4. 4.
    Joyce JA. 2005. Therapeutic targeting of the tumor microenvironment. Cancer Cell 7:6513–20
    [Google Scholar]
  5. 5.
    Nia HT, Munn LL, Jain RK. 2020. Physical traits of cancer. Science 370:6516eaaz0868
    [Google Scholar]
  6. 6.
    Butcher DT, Alliston T, Weaver VM. 2009. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9:2108–22
    [Google Scholar]
  7. 7.
    Seano G, Nia HT, Emblem KE, Datta M, Ren J et al. 2019. Solid stress in brain tumours causes neuronal loss and neurological dysfunction and can be reversed by lithium. Nat. Biomed. Eng. 3:3230–45
    [Google Scholar]
  8. 8.
    Stylianopoulos T, Martin JD, Snuderl M, Mpekris F, Jain SR, Jain RK. 2013. Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res 73:133833–41
    [Google Scholar]
  9. 9.
    Stylianopoulos T, Martin JD, Chauhan VP, Jain SR, Diop-Frimpong B et al. 2012. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. PNAS 109:3815101–8
    [Google Scholar]
  10. 10.
    Dagogo-Jack I, Shaw AT 2018. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15:281–94
    [Google Scholar]
  11. 11.
    Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N et al. 2019. Breast cancer.. Nat. Rev. Dis. Primers 5:66
    [Google Scholar]
  12. 12.
    Weller M, Wick W, Aldape K, Brada M, Berger M et al. 2015. Glioma.. Nat. Rev. Dis. Primers 1:15017
    [Google Scholar]
  13. 13.
    Zhang H, Yuan F, Qi Y, Liu B, Chen Q. 2021. Circulating tumor cells for glioma. Front. Oncol. 11:607150
    [Google Scholar]
  14. 14.
    Riching KM, Cox BL, Salick MR, Pehlke C, Riching AS et al. 2014. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys. J. 107:112546–58
    [Google Scholar]
  15. 15.
    Cuddapah VA, Robel S, Watkins S, Sontheimer H. 2014. A neurocentric perspective on glioma invasion. Nat. Rev. Neurosci. 15:7455–65
    [Google Scholar]
  16. 16.
    Wolf KJ, Lee S, Kumar S 2018. A 3D topographical model of parenchymal infiltration and perivascular invasion in glioblastoma. APL Bioeng 2:3031903
    [Google Scholar]
  17. 17.
    Labernadie A, Kato T, Brugués A, Serra-Picamal X, Derzsi S et al. 2017. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat. Cell Biol. 19:3224–37
    [Google Scholar]
  18. 18.
    Venkataramani V, Tanev DI, Strahle C, Studier-Fischer A, Fankhauser L et al. 2019. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573:7775532–38
    [Google Scholar]
  19. 19.
    Sirka OK, Shamir ER, Ewald AJ. 2018. Myoepithelial cells are a dynamic barrier to epithelial dissemination. J. Cell Biol. 217:103368–81
    [Google Scholar]
  20. 20.
    Watkins S, Robel S, Kimbrough IF, Robert SM, Ellis-Davies G, Sontheimer H. 2014. Disruption of astrocyte–vascular coupling and the blood–brain barrier by invading glioma cells. Nat. Commun. 5:4196
    [Google Scholar]
  21. 21.
    Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA 2007. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11:6526–38
    [Google Scholar]
  22. 22.
    Munson JM, Bellamkonda RV, Swartz MA. 2013. Interstitial flow in a 3D microenvironment increases glioma invasion by a CXCR4-dependent mechanism. Cancer Res 73:51536–46
    [Google Scholar]
  23. 23.
    Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK. 2004. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64:113731–36
    [Google Scholar]
  24. 24.
    Hoffman BD, Crocker JC. 2009. Cell mechanics: dissecting the physical responses of cells to force. Annu. Rev. Biomed. Eng. 11:259–88
    [Google Scholar]
  25. 25.
    DuFort CC, Paszek MJ, Weaver VM. 2011. Balancing forces: architectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol. 12:5308–19
    [Google Scholar]
  26. 26.
    Huang H, Kamm RD, Lee RT. 2004. Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am. J. Physiol. Cell Physiol. 287:1C1–11
    [Google Scholar]
  27. 27.
    Seetharaman S, Etienne-Manneville S. 2019. Microtubules at focal adhesions – a double-edged sword. J. Cell Sci. 132:19jcs232843
    [Google Scholar]
  28. 28.
    Leube RE, Moch M, Windoffer R. 2015. Intermediate filaments and the regulation of focal adhesion. Curr. Opin. Cell Biol. 32:13–20
    [Google Scholar]
  29. 29.
    Seetharaman S, Vianay B, Roca V, Farrugia AJ, De Pascalis C et al. 2022. Microtubules tune mechanosensitive cell responses. Nat. Mater. 21:36677
    [Google Scholar]
  30. 30.
    Borghi N, Sorokina M, Shcherbakova OG, Weis WI, Pruitt BL et al. 2012. E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch. PNAS 109:3112568–73
    [Google Scholar]
  31. 31.
    Broussard JA, Yang R, Huang C, Nathamgari SSP, Beese AM et al. 2017. The desmoplakin-intermediate filament linkage regulates cell mechanics. Mol. Biol. Cell 28:233156–64
    [Google Scholar]
  32. 32.
    Price AJ, Cost A-L, Ungewiß H, Waschke J, Dunn AR, Grashoff C. 2018. Mechanical loading of desmosomes depends on the magnitude and orientation of external stress. Nat. Commun. 9:5284
    [Google Scholar]
  33. 33.
    Jaalouk DE, Lammerding J. 2009. Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10:163–73
    [Google Scholar]
  34. 34.
    Kirby TJ, Lammerding J. 2018. Emerging views of the nucleus as a cellular mechanosensor. Nat. Cell Biol. 20:4373–81
    [Google Scholar]
  35. 35.
    Elosegui-Artola A, Andreu I, Beedle AEM, Lezamiz A, Uroz M et al. 2017. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171:61397–410.e14
    [Google Scholar]
  36. 36.
    Wang JH-C, Thampatty BP. 2006. An introductory review of cell mechanobiology. Biomech. Model. Mechanobiol. 5:11–16
    [Google Scholar]
  37. 37.
    Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S et al. 2010. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:600055–60
    [Google Scholar]
  38. 38.
    Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC. 2003. Mechanotransduction and flow across the endothelial glycocalyx. PNAS 100:137988–95
    [Google Scholar]
  39. 39.
    Qazi H, Palomino R, Shi Z-D, Munn LL, Tarbell JM. 2013. Cancer cell glycocalyx mediates mechanotransduction and flow-regulated invasion. Integr. Biol. 5:111334–43
    [Google Scholar]
  40. 40.
    Le Roux A-L, Quiroga X, Walani N, Arroyo M, Roca-Cusachs P 2019. The plasma membrane as a mechanochemical transducer. Philos. Trans. R. Soc. B 374:177920180221
    [Google Scholar]
  41. 41.
    Sinha B, Köster D, Ruez R, Gonnord P, Bastiani M et al. 2011. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144:3402–13
    [Google Scholar]
  42. 42.
    Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJG et al. 2004. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303:5657495–99
    [Google Scholar]
  43. 43.
    Miermont A, Waharte F, Hu S, McClean MN, Bottani S et al. 2013. Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding. PNAS 110:145725–30
    [Google Scholar]
  44. 44.
    Delarue M, Brittingham GP, Pfeffer S, Surovtsev IV, Pinglay S et al. 2018. mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding. Cell 174:2338–49.e20
    [Google Scholar]
  45. 45.
    Barcellos-Hoff MH, Ravani SA. 2000. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res 60:51254–60
    [Google Scholar]
  46. 46.
    Dolberg DS, Bissell MJ. 1984. Inability of Rous sarcoma virus to cause sarcomas in the avian embryo. Nature 309:5968552–56
    [Google Scholar]
  47. 47.
    Place AE, Jin Huh S, Polyak K 2011. The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Res 13:6227
    [Google Scholar]
  48. 48.
    Seyfried TN, Huysentruyt LC. 2013. On the origin of cancer metastasis. Crit. Rev. Oncog. 18:1–243–73
    [Google Scholar]
  49. 49.
    Sappino AP, Skalli O, Jackson B, Schürch W, Gabbiani G 1988. Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. Int. J. Cancer 41:5707–12
    [Google Scholar]
  50. 50.
    Rønnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ. 1995. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J. Clin. Investig. 95:2859–73
    [Google Scholar]
  51. 51.
    Chandler EM, Seo BR, Califano JP, Eguiluz RCA, Lee JS et al. 2012. Implanted adipose progenitor cells as physicochemical regulators of breast cancer. PNAS 109:259786–91
    [Google Scholar]
  52. 52.
    Quante M, Tu SP, Tomita H, Gonda T, Wang SSW et al. 2011. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19:2257–72
    [Google Scholar]
  53. 53.
    Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M et al. 2020. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20:3174–86
    [Google Scholar]
  54. 54.
    Boyd NF, Lockwood GA, Byng JW, Tritchler DL, Yaffe MJ. 1998. Mammographic densities and breast cancer risk. Cancer Epidemiol. Biomarkers Prev. 7:121133–44
    [Google Scholar]
  55. 55.
    Li T, Sun L, Miller N, Nicklee T, Woo J et al. 2005. The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol. Biomarkers Prev. 14:2343–49
    [Google Scholar]
  56. 56.
    Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. 2006. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4:138
    [Google Scholar]
  57. 57.
    Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW et al. 2011. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 178:31221–32
    [Google Scholar]
  58. 58.
    Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI et al. 2005. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:3241–54
    [Google Scholar]
  59. 59.
    Levental KR, Yu H, Kass L, Lakins JN, Egeblad M et al. 2009. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:5891–906
    [Google Scholar]
  60. 60.
    Arora PD, Narani N, McCulloch CA. 1999. The compliance of collagen gels regulates transforming growth factor-β induction of α-smooth muscle actin in fibroblasts. Am. J. Pathol. 154:3871–82
    [Google Scholar]
  61. 61.
    Hinz B, Dugina V, Ballestrem C, Wehrle-Haller B, Chaponnier C. 2003. α-Smooth muscle actin is crucial for focal adhesion maturation in myofibroblasts. Mol. Biol. Cell 14:62508–19
    [Google Scholar]
  62. 62.
    Ahmadzadeh H, Webster MR, Behera R, Valencia AMJ, Wirtz D et al. 2017. Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. PNAS 114:9E1617–26
    [Google Scholar]
  63. 63.
    Han YL, Ronceray P, Xu G, Malandrino A, Kamm RD et al. 2018. Cell contraction induces long-ranged stress stiffening in the extracellular matrix. PNAS 115:164075–80
    [Google Scholar]
  64. 64.
    Seo BR, Chen X, Ling L, Song YH, Shimpi AA et al. 2020. Collagen microarchitecture mechanically controls myofibroblast differentiation. PNAS 117:2111387–98
    [Google Scholar]
  65. 65.
    Pathak A, Kumar S. 2013. Transforming potential and matrix stiffness co-regulate confinement sensitivity of tumor cell migration. Integr. Biol. 5:81067–75
    [Google Scholar]
  66. 66.
    Lu Y-C, Chu T, Hall MS, Fu D-J, Shi Q et al. 2019. Physical confinement induces malignant transformation in mammary epithelial cells. Biomaterials 217:119307
    [Google Scholar]
  67. 67.
    Mosier JA, Rahman-Zaman A, Zanotelli MR, VanderBurgh JA, Bordeleau F et al. 2019. Extent of cell confinement in microtracks affects speed and results in differential matrix strains. Biophys. J. 117:91692–701
    [Google Scholar]
  68. 68.
    Ilina O, Gritsenko PG, Syga S, Lippoldt J, La Porta CAM et al. 2020. Cell-cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion. Nat. Cell Biol. 22:91103–15
    [Google Scholar]
  69. 69.
    Talkenberger K, Cavalcanti-Adam EA, Voss-Böhme A, Deutsch A. 2017. Amoeboid-mesenchymal migration plasticity promotes invasion only in complex heterogeneous microenvironments. Sci. Rep. 7:9237
    [Google Scholar]
  70. 70.
    Wisdom KM, Adebowale K, Chang J, Lee JY, Nam S et al. 2018. Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. Nat. Commun. 9:4144
    [Google Scholar]
  71. 71.
    Kaukonen R, Mai A, Georgiadou M, Saari M, De Franceschi N et al. 2016. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. Nat. Commun. 7:12237
    [Google Scholar]
  72. 72.
    Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF et al. 2007. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9:121392–400
    [Google Scholar]
  73. 73.
    Glentis A, Oertle P, Mariani P, Chikina A, El Marjou F et al. 2017. Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat. Commun. 8:924
    [Google Scholar]
  74. 74.
    Seo BR, Bhardwaj P, Choi S, Gonzalez J, Eguiluz RCA et al. 2015. Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci. Transl. Med. 7:301301ra130
    [Google Scholar]
  75. 75.
    Ling L, Mulligan JA, Ouyang Y, Shimpi AA, Williams RM et al. 2020. Obesity-associated adipose stromal cells promote breast cancer invasion through direct cell contact and ECM remodeling. Adv. Funct. Mater. 30:481910650
    [Google Scholar]
  76. 76.
    Runswick SK, O'Hare MJ, Jones L, Streuli CH, Garrod DR 2001. Desmosomal adhesion regulates epithelial morphogenesis and cell positioning. Nat. Cell Biol. 3:9823–30
    [Google Scholar]
  77. 77.
    Gudjonsson T, Rønnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW. 2002. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J. Cell Sci. 115:139–50
    [Google Scholar]
  78. 78.
    Allen MD, Thomas GJ, Clark S, Dawoud MM, Vallath S et al. 2014. Altered microenvironment promotes progression of preinvasive breast cancer: myoepithelial expression of αvβ6 integrin in DCIS identifies high-risk patients and predicts recurrence. Clin. Cancer Res. 20:2344–57
    [Google Scholar]
  79. 79.
    Nathanson SD, Nelson L. 1994. Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma. Ann. Surg. Oncol. 1:4333–38
    [Google Scholar]
  80. 80.
    Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK. 2004. Cancer cells compress intratumour vessels. Nature 427:6976695
    [Google Scholar]
  81. 81.
    Auvinen P, Tammi R, Parkkinen J, Tammi M, Agren U et al. 2000. Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am. J. Pathol. 156:2529–36
    [Google Scholar]
  82. 82.
    Polacheck WJ, Charest JL, Kamm RD. 2011. Interstitial flow influences direction of tumor cell migration through competing mechanisms. PNAS 108:2711115–20
    [Google Scholar]
  83. 83.
    Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD. 2014. Mechanotransduction of fluid stresses governs 3D cell migration. PNAS 111:72447–52
    [Google Scholar]
  84. 84.
    Piotrowski-Daspit AS, Tien J, Nelson CM 2016. Interstitial fluid pressure regulates collective invasion in engineered human breast tumors via Snail, vimentin, and E-cadherin. Integrat. Biol. 8:3319–31
    [Google Scholar]
  85. 85.
    Ng CP, Hinz B, Swartz MA. 2005. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell Sci. 118:204731–39
    [Google Scholar]
  86. 86.
    Shieh AC, Rozansky HA, Hinz B, Swartz MA. 2011. Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Res 71:3790–800
    [Google Scholar]
  87. 87.
    Boardman KC, Swartz MA. 2003. Interstitial flow as a guide for lymphangiogenesis. Circ. Res. 92:7801–8
    [Google Scholar]
  88. 88.
    D'Alessio A, Proietti G, Sica G, Scicchitano BM. 2019. Pathological and molecular features of glioblastoma and its peritumoral tissue. Cancers 11:4E469
    [Google Scholar]
  89. 89.
    Zong H, Verhaak RGW, Canoll P. 2012. The cellular origin for malignant glioma and prospects for clinical advancements. Expert Rev. Mol. Diagn. 12:4383–94
    [Google Scholar]
  90. 90.
    Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y et al. 2010. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:198–110
    [Google Scholar]
  91. 91.
    Sakthikumar S, Roy A, Haseeb L, Pettersson ME, Sundström E et al. 2020. Whole-genome sequencing of glioblastoma reveals enrichment of non-coding constraint mutations in known and novel genes. Genome Biol 21:127
    [Google Scholar]
  92. 92.
    Neftel C, Laffy J, Filbin MG, Hara T, Shore ME et al. 2019. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178:4835–49.e21
    [Google Scholar]
  93. 93.
    Seano G, Jain RK. 2020. Vessel co-option in glioblastoma: emerging insights and opportunities. Angiogenesis 23:19–16
    [Google Scholar]
  94. 94.
    Hirata E, Yukinaga H, Kamioka Y, Arakawa Y, Miyamoto S et al. 2012. In vivo fluorescence resonance energy transfer imaging reveals differential activation of Rho-family GTPases in glioblastoma cell invasion. J. Cell Sci. 125:4858–68
    [Google Scholar]
  95. 95.
    Farin A, Suzuki SO, Weiker M, Goldman JE, Bruce JN, Canoll P. 2006. Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis. Glia 53:8799–808
    [Google Scholar]
  96. 96.
    Winkler F, Kienast Y, Fuhrmann M, Von Baumgarten L, Burgold S et al. 2009. Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis. Glia 57:121306–15
    [Google Scholar]
  97. 97.
    Louis DN. 2006. Molecular pathology of malignant gliomas. Annu. Rev. Pathol. Mech. Dis. 1:97–117
    [Google Scholar]
  98. 98.
    Klank RL, Decker Grunke SA, Bangasser BL, Forster CL, Price MA et al. 2017. Biphasic dependence of glioma survival and cell migration on CD44 expression level. Cell Rep 18:123–31
    [Google Scholar]
  99. 99.
    Pietras A, Katz AM, Ekström EJ, Wee B, Halliday JJ et al. 2014. Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell 14:3357–69
    [Google Scholar]
  100. 100.
    Kim Y, Kumar S. 2014. CD44-mediated adhesion to hyaluronic acid contributes to mechanosensing and invasive motility. Mol. Cancer Res. 12:101416–29
    [Google Scholar]
  101. 101.
    Wolf KJ, Shukla P, Springer K, Lee S, Coombes JD et al. 2020. A mode of cell adhesion and migration facilitated by CD44-dependent microtentacles. PNAS 117:2111432–43
    [Google Scholar]
  102. 102.
    Zepecki JP, Snyder KM, Moreno MM, Fajardo E, Fiser A et al. 2019. Regulation of human glioma cell migration, tumor growth, and stemness gene expression using a Lck targeted inhibitor. Oncogene 38:101734–50
    [Google Scholar]
  103. 103.
    Gritsenko PG, Friedl P. 2018. Adaptive adhesion systems mediate glioma cell invasion in complex environments. J. Cell Sci. 131:15jcs216382
    [Google Scholar]
  104. 104.
    Weller M, Nabors LB, Gorlia T, Leske H, Rushing E et al. 2016. Cilengitide in newly diagnosed glioblastoma: biomarker expression and outcome. Oncotarget 7:1215018–32
    [Google Scholar]
  105. 105.
    Monzo P, Chong YK, Guetta-Terrier C, Krishnasamy A, Sathe SR et al. 2016. Mechanical confinement triggers glioma linear migration dependent on formin FHOD3. Mol. Biol. Cell 27:81246–61
    [Google Scholar]
  106. 106.
    Liu CJ, Shamsan GA, Akkin T, Odde DJ 2019. Glioma cell migration dynamics in brain tissue assessed by multimodal optical imaging. Biophys. J. 117:71179–88
    [Google Scholar]
  107. 107.
    Ishihara H, Kubota H, Lindberg RLP, Leppert D, Gloor SM et al. 2008. Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor β2 involves matrix metalloproteinases and tight junction proteins. J. Neuropathol. Exp. Neurol. 67:5435–48
    [Google Scholar]
  108. 108.
    Zhu TS, Costello MA, Talsma CE, Flack CG, Crowley JG et al. 2011. Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Res 71:186061–72
    [Google Scholar]
  109. 109.
    Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C et al. 2007. A perivascular niche for brain tumor stem cells. Cancer Cell 11:169–82
    [Google Scholar]
  110. 110.
    Mistry AM, Dewan MC, White-Dzuro GA, Brinson PR, Weaver KD et al. 2017. Decreased survival in glioblastomas is specific to contact with the ventricular-subventricular zone, not subgranular zone or corpus callosum. J. Neuro-Oncol. 132:2341–49
    [Google Scholar]
  111. 111.
    Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM et al. 2019. Electrical and synaptic integration of glioma into neural circuits. Nature 573:7775539–45
    [Google Scholar]
  112. 112.
    Venkataramani V, Tanev DI, Strahle C, Studier-Fischer A, Fankhauser L et al. 2019. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573:777553238
    [Google Scholar]
  113. 113.
    Boucher Y, Salehi H, Witwer B, Harsh GR, Jain RK. 1997. Interstitial fluid pressure in intracranial tumours in patients and in rodents. Br. J. Cancer 75:6829–36
    [Google Scholar]
  114. 114.
    Kingsmore KM, Logsdon DK, Floyd DH, Peirce SM, Purow BW, Munson JM. 2016. Interstitial flow differentially increases patient-derived glioblastoma stem cell invasion via CXCR4, CXCL12, and CD44-mediated mechanisms. Integr. Biol. 8:121246–60
    [Google Scholar]
  115. 115.
    Akins EA, Aghi MK, Kumar S 2020. Incorporating tumor-associated macrophages into engineered models of glioma. iScience 23:12101770
    [Google Scholar]
  116. 116.
    Heldin C-H, Rubin K, Pietras K, Ostman A 2004. High interstitial fluid pressure – an obstacle in cancer therapy. Nat. Rev. Cancer 4:10806–13
    [Google Scholar]
  117. 117.
    Cornelison RC, Brennan CE, Kingsmore KM, Munson JM. 2018. Convective forces increase CXCR4-dependent glioblastoma cell invasion in GL261 murine model. Sci. Rep. 8:117057
    [Google Scholar]
  118. 118.
    Gerstner ER, Duda DG, di Tomaso E, Ryg PA, Loeffler JS et al. 2009. VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer. Nat. Rev. Clin. Oncol. 6:4229–36
    [Google Scholar]
  119. 119.
    Lee CG, Heijn M, Di Tomaso E, Griffon-Etienne G, Ancukiewicz M et al. 2000. Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60:195565–70
    [Google Scholar]
  120. 120.
    Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DGG et al. 2007. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:183–95
    [Google Scholar]
  121. 121.
    Vredenburgh JJ, Desjardins A, Herndon JE, Dowell JM, Reardon DA et al. 2007. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin. Cancer Res. 13:41253–59
    [Google Scholar]
  122. 122.
    Pàez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H et al. 2009. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:3220–31
    [Google Scholar]
  123. 123.
    Deng X, Xiong F, Li X, Xiang B, Li Z et al. 2018. Application of atomic force microscopy in cancer research. J. Nanobiotechnol. 16:1102
    [Google Scholar]
  124. 124.
    Staunton JR, Vieira W, Fung KL, Lake R, Devine A, Tanner K. 2016. Mechanical properties of the tumor stromal microenvironment probed in vitro and ex vivo by in situ-calibrated optical trap-based active microrheology. Cell. Mol. Bioeng. 9:3398–417
    [Google Scholar]
  125. 125.
    Hochmuth RM. 2000. Micropipette aspiration of living cells. J. Biomech. 33:115–22
    [Google Scholar]
  126. 126.
    Pachenari M, Seyedpour SM, Janmaleki M, Shayan SB, Taranejoo S, Hosseinkhani H 2014. Mechanical properties of cancer cytoskeleton depend on actin filaments to microtubules content: investigating different grades of colon cancer cell lines. J. Biomech. 47:2373–79
    [Google Scholar]
  127. 127.
    Calzado-Martín A, Encinar M, Tamayo J, Calleja M, San Paulo A. 2016. Effect of actin organization on the stiffness of living breast cancer cells revealed by peak-force modulation atomic force microscopy. ACS Nano 10:33365–74
    [Google Scholar]
  128. 128.
    Davidson PM, Fedorchak GR, Mondésert-Deveraux S, Bell ES, Isermann P et al. 2019. High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells. Lab Chip 19:213652–63
    [Google Scholar]
  129. 129.
    Irianto J, Xia Y, Pfeifer CR, Greenberg RA, Discher DE. 2017. As a nucleus enters a small pore, chromatin stretches and maintains integrity, even with DNA breaks. Biophys. J. 112:3446–49
    [Google Scholar]
  130. 130.
    Tse HTK, Gossett DR, Moon YS, Masaeli M, Sohsman M et al. 2013. Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping. Sci. Transl. Med. 5:212212ra163
    [Google Scholar]
  131. 131.
    Otto O, Rosendahl P, Mietke A, Golfier S, Herold C et al. 2015. Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat. Methods 12:3199–202
    [Google Scholar]
  132. 132.
    Toepfner N, Herold C, Otto O, Rosendahl P, Jacobi A et al. 2018. Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood. eLife 7:e29213
    [Google Scholar]
  133. 133.
    Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S et al. 2005. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88:53689–98
    [Google Scholar]
  134. 134.
    Yousafzai MS, Coceano G, Bonin S, Niemela J, Scoles G, Cojoc D. 2017. Investigating the effect of cell substrate on cancer cell stiffness by optical tweezers. J. Biomech. 60:266–69
    [Google Scholar]
  135. 135.
    Wullkopf L, West A-KV, Leijnse N, Cox TR, Madsen CD et al. 2018. Cancer cells’ ability to mechanically adjust to extracellular matrix stiffness correlates with their invasive potential. Mol. Biol. Cell 29:202378–85
    [Google Scholar]
  136. 136.
    Plotnikov SV, Sabass B, Schwarz US, Waterman CM. 2014. High-resolution traction force microscopy. Methods Cell Biol 123:367–94
    [Google Scholar]
  137. 137.
    Dembo M, Wang YL. 1999. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76:42307–16
    [Google Scholar]
  138. 138.
    Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS. 2003. Cells lying on a bed of microneedles: an approach to isolate mechanical force. PNAS 100:41484–89
    [Google Scholar]
  139. 139.
    Rabodzey A, Alcaide P, Luscinskas FW, Ladoux B. 2008. Mechanical forces induced by the transendothelial migration of human neutrophils. Biophys. J. 95:31428–38
    [Google Scholar]
  140. 140.
    Maskarinec SA, Franck C, Tirrell DA, Ravichandran G 2009. Quantifying cellular traction forces in three dimensions. PNAS 106:5222108–13
    [Google Scholar]
  141. 141.
    Legant WR, Miller JS, Blakely BL, Cohen DM, Genin GM, Chen CS. 2010. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat. Methods 7:12969–71
    [Google Scholar]
  142. 142.
    Mulligan JA, Ling L, Leartprapun N, Fischbach C, Adie SG. 2021. Computational 4D-OCM for label-free imaging of collective cell invasion and force-mediated deformations in collagen. Sci. Rep. 11:12814
    [Google Scholar]
  143. 143.
    Li D, Colin-York H, Barbieri L, Javanmardi Y, Guo Y et al. 2021. Astigmatic traction force microscopy (aTFM). Nat. Commun. 12:2168
    [Google Scholar]
  144. 144.
    García AJ, Ducheyne P, Boettiger D 1997. Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials. Biomaterials 18:161091–98
    [Google Scholar]
  145. 145.
    Benoit M, Gabriel D, Gerisch G, Gaub HE 2000. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat. Cell Biol. 2:6313–17
    [Google Scholar]
  146. 146.
    Panorchan P, Thompson MS, Davis KJ, Tseng Y, Konstantopoulos K, Wirtz D 2006. Single-molecule analysis of cadherin-mediated cell-cell adhesion. J. Cell Sci. 119:Part 166–74
    [Google Scholar]
  147. 147.
    Selhuber-Unkel C, López-García M, Kessler H, Spatz JP. 2008. Cooperativity in adhesion cluster formation during initial cell adhesion. Biophys. J. 95:115424–31
    [Google Scholar]
  148. 148.
    Friedrichs J, Legate KR, Schubert R, Bharadwaj M, Werner C et al. 2013. A practical guide to quantify cell adhesion using single-cell force spectroscopy. Methods 60:2169–78
    [Google Scholar]
  149. 149.
    Chu Y-S, Thomas WA, Eder O, Pincet F, Perez E et al. 2004. Force measurements in E-cadherin-mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42. J. Cell Biol. 167:61183–94
    [Google Scholar]
  150. 150.
    Maître J-L, Berthoumieux H, Krens SFG, Salbreux G, Jülicher F et al. 2012. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338:6104253–56
    [Google Scholar]
  151. 151.
    Bazellières E, Conte V, Elosegui-Artola A, Serra-Picamal X, Bintanel-Morcillo M et al. 2015. Control of cell-cell forces and collective cell dynamics by the intercellular adhesome. Nat. Cell Biol. 17:4409–20
    [Google Scholar]
  152. 152.
    Stohrer M, Boucher Y, Stangassinger M, Jain RK. 2000. Oncotic pressure in solid tumors is elevated. Cancer Res 60:154251–55
    [Google Scholar]
  153. 153.
    Ozerdem U. 2009. Measuring interstitial fluid pressure with fiberoptic pressure transducers. Microvasc. Res. 77:2226–29
    [Google Scholar]
  154. 154.
    DuFort CC, DelGiorno KE, Carlson MA, Osgood RJ, Zhao C et al. 2016. Interstitial pressure in pancreatic ductal adenocarcinoma is dominated by a gel-fluid phase. Biophys. J. 110:92106–19
    [Google Scholar]
  155. 155.
    Kingsmore KM, Vaccari A, Abler D, Cui SX, Epstein FH et al. 2018. MRI analysis to map interstitial flow in the brain tumor microenvironment. APL Bioeng 2:3031905
    [Google Scholar]
  156. 156.
    Campàs O, Mammoto T, Hasso S, Sperling RA, O'Connell D et al. 2014. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11:2183–89
    [Google Scholar]
  157. 157.
    Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M et al. 2010. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:7303263–66
    [Google Scholar]
  158. 158.
    Nia HT, Liu H, Seano G, Datta M, Jones D et al. 2016. Solid stress and elastic energy as measures of tumour mechanopathology. Nat. Biomed. Eng. 1:4
    [Google Scholar]
  159. 159.
    Fischbach C, Chen R, Matsumoto T, Schmelzle T, Brugge JS et al. 2007. Engineering tumors with 3D scaffolds. Nat. Methods 4:10855–60
    [Google Scholar]
  160. 160.
    Hutmacher DW. 2010. Biomaterials offer cancer research the third dimension. Nat. Mater. 9:290–93
    [Google Scholar]
  161. 161.
    Tan ML, Ling L, Fischbach C 2021. Engineering strategies to capture the biological and biophysical tumor microenvironment in vitro. Adv. Drug Deliv. Rev. 176:113852
    [Google Scholar]
  162. 162.
    Tavakol DN, Fleischer S, Vunjak-Novakovic G. 2021. Harnessing organs-on-a-chip to model tissue regeneration. Cell Stem Cell 28:6993–1015
    [Google Scholar]
  163. 163.
    Petersen OW, Rønnov-Jessen L, Howlett AR, Bissell MJ. 1992. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. PNAS 89:199064–68
    [Google Scholar]
  164. 164.
    Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P et al. 1997. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137:1231–45
    [Google Scholar]
  165. 165.
    Beri P, Matte BF, Fattet L, Kim D, Yang J, Engler AJ 2018. Biomaterials to model and measure epithelial cancers. Nat. Rev. Mater. 3:11418–30
    [Google Scholar]
  166. 166.
    Velez DO, Tsui B, Goshia T, Chute CL, Han A et al. 2017. 3D collagen architecture induces a conserved migratory and transcriptional response linked to vasculogenic mimicry. Nat. Commun. 8:1651
    [Google Scholar]
  167. 167.
    Liu Z, Vunjak-Novakovic G. 2016. Modeling tumor microenvironments using custom-designed biomaterial scaffolds. Curr. Opin. Chem. Eng. 11:94–105
    [Google Scholar]
  168. 168.
    Hansen K, Kiemele L, Maller O, O'Brien J, Shankar A et al. 2009. An in-solution ultrasonication-assisted digestion method for improved extracellular matrix proteome coverage. Mol. Cell. Proteom. 8:71648–57
    [Google Scholar]
  169. 169.
    Lutolf MP, Hubbell JA. 2005. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23:147–55
    [Google Scholar]
  170. 170.
    Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE et al. 2003. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. PNAS 100:95413–18
    [Google Scholar]
  171. 171.
    Fairbanks BD, Schwartz MP, Halevi AE, Nuttelman CR, Bowman CN, Anseth KS. 2009. A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv. Mater. 21:485005–10
    [Google Scholar]
  172. 172.
    Raeber GP, Lutolf MP, Hubbell JA. 2005. Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophys. J. 89:21374–88
    [Google Scholar]
  173. 173.
    Singh SP, Schwartz MP, Lee JY, Fairbanks BD, Anseth KS. 2014. A peptide functionalized poly(ethylene glycol) (PEG) hydrogel for investigating the influence of biochemical and biophysical matrix properties on tumor cell migration. Biomater. Sci. 2:71024–34
    [Google Scholar]
  174. 174.
    Ehrbar M, Sala A, Lienemann P, Ranga A, Mosiewicz K et al. 2011. Elucidating the role of matrix stiffness in 3D cell migration and remodeling. Biophys. J. 100:2284–93
    [Google Scholar]
  175. 175.
    Moon JJ, Saik JE, Poche RA, Leslie-Barbick JE, Lee S-H et al. 2010. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31:143840–47
    [Google Scholar]
  176. 176.
    Gill BJ, Gibbons DL, Roudsari LC, Saik JE, Rizvi ZH et al. 2012. A synthetic matrix with independently tunable biochemistry and mechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model. Cancer Res 72:226013–23
    [Google Scholar]
  177. 177.
    Phelps EA, Enemchukwu NO, Fiore VF, Sy JC, Murthy N et al. 2012. Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv. Mater. 24:164–70
    [Google Scholar]
  178. 178.
    Lee TT, García JR, Paez JI, Singh A, Phelps EA et al. 2015. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat. Mater. 14:3352–60
    [Google Scholar]
  179. 179.
    Ondeck MG, Kumar A, Placone JK, Plunkett CM, Matte BF et al. 2019. Dynamically stiffened matrix promotes malignant transformation of mammary epithelial cells via collective mechanical signaling. PNAS 116:93502–7
    [Google Scholar]
  180. 180.
    Ananthanarayanan B, Kim Y, Kumar S 2011. Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials 32:317913–23
    [Google Scholar]
  181. 181.
    Wolf KJ, Chen J, Coombes J, Aghi MK, Kumar S. 2019. Dissecting and rebuilding the glioblastoma microenvironment with engineered materials. Nat. Rev. Mater. 4:10651–68
    [Google Scholar]
  182. 182.
    Hanjaya-Putra D, Wong KT, Hirotsu K, Khetan S, Burdick JA, Gerecht S. 2012. Spatial control of cell-mediated degradation to regulate vasculogenesis and angiogenesis in hyaluronan hydrogels. Biomaterials 33:266123–31
    [Google Scholar]
  183. 183.
    Shen Y-I, Abaci HE, Krupski Y, Weng L-C, Burdick JA, Gerecht S. 2014. Hyaluronic acid hydrogel stiffness and oxygen tension affect cancer cell fate and endothelial sprouting. Biomater. Sci. 2:5655–65
    [Google Scholar]
  184. 184.
    Allen SC, Widman JA, Datta A, Suggs LJ. 2020. Dynamic extracellular matrix stiffening induces a phenotypic transformation and a migratory shift in epithelial cells. Integr. Biol. 12:6161–74
    [Google Scholar]
  185. 185.
    Shimpi AA, Fischbach C. 2021. Engineered ECM models: opportunities to advance understanding of tumor heterogeneity. Curr. Opin. Cell Biol. 72:1–9
    [Google Scholar]
  186. 186.
    Baker BM, Trappmann B, Wang WY, Sakar MS, Kim IL et al. 2015. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat. Mater. 14:121262–68
    [Google Scholar]
  187. 187.
    Matera DL, DiLillo KM, Smith MR, Davidson CD, Parikh R et al. 2020. Microengineered 3D pulmonary interstitial mimetics highlight a critical role for matrix degradation in myofibroblast differentiation. Sci. Adv. 6:37eabb5069
    [Google Scholar]
  188. 188.
    Wang WY, Davidson CD, Lin D, Baker BM 2019. Actomyosin contractility-dependent matrix stretch and recoil induces rapid cell migration. Nat. Commun. 10:111
    [Google Scholar]
  189. 189.
    Azioune A, Storch M, Bornens M, Théry M, Piel M 2009. Simple and rapid process for single cell micro-patterning. Lab Chip 9:111640–42
    [Google Scholar]
  190. 190.
    Théry M. 2010. Micropatterning as a tool to decipher cell morphogenesis and functions. J. Cell Sci. 123:244201–13
    [Google Scholar]
  191. 191.
    Vignaud T, Ennomani H, Théry M 2014. Polyacrylamide hydrogel micropatterning. Micropatterning in Cell Biology Part B, Meth. Cell Biol. , Vol. 120 M Piel, M Théry pp.93–116 San Diego, CA: Academic
    [Google Scholar]
  192. 192.
    Tabdanov ED, Puram VV, Win Z, Alamgir A, Alford PW, Provenzano PP 2018. Bimodal sensing of guidance cues in mechanically distinct microenvironments. Nat. Commun. 9:4891
    [Google Scholar]
  193. 193.
    Lee J, Abdeen AA, Wycislo KL, Fan TM, Kilian KA. 2016. Interfacial geometry dictates cancer cell tumorigenicity. Nat. Mater. 15:8856–62
    [Google Scholar]
  194. 194.
    Vignaud T, Galland R, Tseng Q, Blanchoin L, Colombelli J, Théry M 2012. Reprogramming cell shape with laser nano-patterning. J. Cell Sci. 125:92134–40
    [Google Scholar]
  195. 195.
    Lee P, Lin R, Moon J, Lee LP 2006. Microfluidic alignment of collagen fibers for in vitro cell culture. Biomed. Microdev. 8:35–41
    [Google Scholar]
  196. 196.
    Brownfield DG, Venugopalan G, Lo A, Mori H, Tanner K et al. 2013. Patterned collagen fibers orient branching mammary epithelium through distinct signaling modules. Curr. Biol. 23:8703–9
    [Google Scholar]
  197. 197.
    Su C-Y, Burchett A, Dunworth M, Choi JS, Ewald AJ et al. 2021. Engineering a 3D collective cancer invasion model with control over collagen fiber alignment. Biomaterials 275:120922
    [Google Scholar]
  198. 198.
    Paul CD, Hung W-C, Wirtz D, Konstantopoulos K 2016. Engineered models of confined cell migration. Annu. Rev. Biomed. Eng. 18:159–80
    [Google Scholar]
  199. 199.
    Rianna C, Radmacher M, Kumar S. 2020. Direct evidence that tumor cells soften when navigating confined spaces. Mol. Biol. Cell 31:161726–34
    [Google Scholar]
  200. 200.
    Pathak A, Kumar S. 2012. Independent regulation of tumor cell migration by matrix stiffness and confinement. PNAS 109:2610334–39
    [Google Scholar]
  201. 201.
    Davidson PM, Sliz J, Isermann P, Denais C, Lammerding J. 2015. Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments. Integr. Biol. 7:121534–46
    [Google Scholar]
  202. 202.
    Denais CM, Gilbert RM, Isermann P, McGregor AL, te Lindert M et al. 2016. Nuclear envelope rupture and repair during cancer cell migration. Science 352:6283353–58
    [Google Scholar]
  203. 203.
    Shah P, Hobson CM, Cheng S, Colville MJ, Paszek MJ et al. 2021. Nuclear deformation causes DNA damage by increasing replication stress. Curr. Biol. 31:4753–65.e6
    [Google Scholar]
  204. 204.
    Sung KE, Beebe DJ. 2014. Microfluidic 3D models of cancer. Adv. Drug Deliv. Rev. 79–80:68–78
    [Google Scholar]
  205. 205.
    Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD. 2012. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. PNAS 109:3413515–20
    [Google Scholar]
  206. 206.
    Chramiec A, Teles D, Yeager K, Marturano-Kruik A, Pak J et al. 2020. Integrated human organ-on-a-chip model for predictive studies of anti-tumor drug efficacy and cardiac safety. Lab Chip 20:234357–72
    [Google Scholar]
  207. 207.
    Pisano M, Triacca V, Barbee KA, Swartz MA. 2015. An in vitro model of the tumor–lymphatic microenvironment with simultaneous transendothelial and luminal flows reveals mechanisms of flow enhanced invasion. Integr. Biol. 7:5525–33
    [Google Scholar]
  208. 208.
    Bäuerle T, Komljenovic D, Merz M, Berger MR, Goodman SL, Semmler W. 2011. Cilengitide inhibits progression of experimental breast cancer bone metastases as imaged noninvasively using VCT, MRI and DCE-MRI in a longitudinal in vivo study. Int. J. Cancer 128:102453–62
    [Google Scholar]
  209. 209.
    Stupp R, Hegi ME, Neyns B, Goldbrunner R, Schlegel U et al. 2010. Phase I/IIa study of cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and temozolomide maintenance therapy in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 28:162712–18
    [Google Scholar]
  210. 210.
    Stupp R, Hegi ME, Gorlia T, Erridge SC, Perry J et al. 2014. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071–22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 15:101100–8
    [Google Scholar]
  211. 211.
    Zhang Q, Bindokas V, Shen J, Fan H, Hoffman RM, Xing HR 2011. Time-course imaging of therapeutic functional tumor vascular normalization by antiangiogenic agents. Mol. Cancer Ther. 10:71173–84
    [Google Scholar]
  212. 212.
    Ferrara N, Hillan KJ, Gerber H-P, Novotny W. 2004. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 3:5391–400
    [Google Scholar]
  213. 213.
    Aalders KC, Tryfonidis K, Senkus E, Cardoso F 2017. Anti-angiogenic treatment in breast cancer: facts, successes, failures and future perspectives. Cancer Treat. Rev. 53:98–110
    [Google Scholar]
  214. 214.
    Miller K, Wang M, Gralow J, Dickler M, Cobleigh M et al. 2007. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357:262666–76
    [Google Scholar]
  215. 215.
    Robert NJ, Diéras V, Glaspy J, Brufsky AM, Bondarenko I et al. 2011. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J. Clin. Oncol. 29:101252–60
    [Google Scholar]
  216. 216.
    Brufsky AM, Hurvitz S, Perez E, Swamy R, Valero V et al. 2011. RIBBON-2: a randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 29:324286–93
    [Google Scholar]
  217. 217.
    Martino EC, Misso G, Pastina P, Costantini S, Vanni F et al. 2016. Immune-modulating effects of bevacizumab in metastatic non-small-cell lung cancer patients. Cell Death Discov 2:16025
    [Google Scholar]
  218. 218.
    Yang J, Yan J, Liu B 2018. Targeting VEGF/VEGFR to modulate antitumor immunity. Front. Immunol. 9:978
    [Google Scholar]
  219. 219.
    Bejarano L, Jordāo MJC, Joyce JA. 2021. Therapeutic targeting of the tumor microenvironment. Cancer Discov 11:4933–59
    [Google Scholar]
  220. 220.
    Hauge A, Rofstad EK. 2020. Antifibrotic therapy to normalize the tumor microenvironment. J. Transl. Med. 18:207
    [Google Scholar]
  221. 221.
    Van Cutsem E, Tempero MA, Sigal D, Oh D-Y, Fazio N et al. 2020. Randomized phase III trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma. J. Clin. Oncol. 38:273185–94
    [Google Scholar]
  222. 222.
    Benson AB III, Wainberg ZA, Hecht JR, Vyushkov D, Dong H et al. 2017. A phase II randomized, double-blind, placebo-controlled study of simtuzumab or placebo in combination with gemcitabine for the first-line treatment of pancreatic adenocarcinoma. Oncologist 22:3241–e15
    [Google Scholar]
  223. 223.
    Hecht JR, Benson AB III, Vyushkov D, Yang Y, Bendell J, Verma U 2017. A phase II, randomized, double-blind, placebo-controlled study of simtuzumab in combination with FOLFIRI for the second-line treatment of metastatic KRAS mutant colorectal adenocarcinoma. Oncologist 22:3243–e23
    [Google Scholar]
  224. 224.
    Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu C-C et al. 2014. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25:6719–34
    [Google Scholar]
  225. 225.
    Fennell DA, Baas P, Taylor P, Nowak AK, Gilligan D et al. 2019. Maintenance defactinib versus placebo after first-line chemotherapy in patients with merlin-stratified pleural mesothelioma: COMMAND-A double-blind, randomized, phase II study. J. Clin. Oncol. 37:10790–98
    [Google Scholar]
  226. 226.
    McLeod R, Kumar R, Papadatos-Pastos D, Mateo J, Brown JS et al. 2020. First-in-human study of AT13148, a dual ROCK-AKT inhibitor in patients with solid tumors. Clin. Cancer Res. 26:184777–84
    [Google Scholar]
  227. 227.
    Melisi D, Garcia-Carbonero R, Macarulla T, Pezet D, Deplanque G et al. 2018. Galunisertib plus gemcitabine versus gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. Br. J. Cancer 119:101208–14
    [Google Scholar]
  228. 228.
    Kelley RK, Gane E, Assenat E, Siebler J, Galle PR et al. 2019. A phase 2 study of galunisertib (TGF-β1 receptor type I inhibitor) and sorafenib in patients with advanced hepatocellular carcinoma. Clin. Transl. Gastroenterol. 10:7e00056
    [Google Scholar]
  229. 229.
    Ooft SN, Weeber F, Dijkstra KK, McLean CM, Kaing S et al. 2019. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci. Transl. Med. 11:513eaay2574
    [Google Scholar]
  230. 230.
    Driehuis E, Kretzschmar K, Clevers H. 2020. Establishment of patient-derived cancer organoids for drug-screening applications. Nat. Protoc. 15:103380–409
    [Google Scholar]
  231. 231.
    Tian H, Lyu Y, Yang Y-G, Hu Z. 2020. Humanized rodent models for cancer research. Front. Oncol. 10:1696
    [Google Scholar]
  232. 232.
    Sontheimer-Phelps A, Hassell BA, Ingber DE. 2019. Modelling cancer in microfluidic human organs-on-chips. Nat. Rev. Cancer 19:265–81
    [Google Scholar]
  233. 233.
    Lai BFL, Lu RXZ, Hu Y, Huyer LD, Dou W et al. 2020. Recapitulating pancreatic tumor microenvironment through synergistic use of patient organoids and organ-on-a-chip vasculature. Adv. Funct. Mater. 30:482000545
    [Google Scholar]
  234. 234.
    West J, You L, Zhang J, Gatenby RA, Brown JS et al. 2020. Towards multidrug adaptive therapy. Cancer Res 80:71578–89
    [Google Scholar]
  235. 235.
    Gatenby RA, Brown JS. 2020. Integrating evolutionary dynamics into cancer therapy. Nat. Rev. Clin. Oncol. 17:11675–86
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110220-115419
Loading
/content/journals/10.1146/annurev-bioeng-110220-115419
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error